Première cartographie SZ d'un amas de galaxies avec NIKA2

 

L’avènement de la camera NIKA2 au télescope de 30 mètres de l’IRAM (Grenade, Espagne) constitue une opportunité unique pour l’observation d’amas de galaxies par effet Sunyaev Zel’dovich (SZ), grâce à ses deux bandes de fréquence (150 et 260 GHz), sa grande sensibilité, son excellente résolution angulaire et son grand champ de vue.

En avril 2017, la collaboration NIKA2 a observé un premier amas faisant partie de l’échantillon du grand programme d’observation SZ. Il s’agit de l’amas PSZ2 G144.83+25.11 à un redshift z=0,58 observé pendant 11 heures avec des conditions atmosphériques relativement mauvaises. Les excellentes performances de la caméra NIKA2 (R. Adam et al., A&A 2018) ont néanmoins permis d’obtenir des résultats de premier plan.

La carte NIKA2 obtenue à 150 GHz (cf. figure) met en évidence un amas cartographié à haute résolution (plus de 20 fois mieux que Planck) et avec un fort signal sur bruit jusque dans les régions périphériques. Le résultat est comparable à la carte du milieu intras-amas obtenue en rayons X par le satellite XMM-Newton, ce qui ce qui facilite les analyses jointes SZ/X. En particulier, l’observation faite avec NIKA2 permet d’identifier une région de surpression dans l’amas et une source ponctuelle submillimétrique, qui peuvent donc être prises en compte dans l’analyse.

Les données NIKA2 ont été utilisées conjointement avec les données SZ obtenues par d’autres expériences opérant dans le millimétriques (MUSTANG, Bolocam et Planck), afin d'établir de manière non paramétrique le profil de pression, depuis le centre de l’amas jusqu'à sa périphérie. Nous avons pu montrer que la zone de surpression avait un impact notable sur la valeur du paramètre de Compton intégré (65%) et sur celle de la masse de l’amas (79%). Ces deux paramètres sont essentiels pour l’utilisation cosmologique des grands catalogues d’amas. Ainsi, les résultats obtenus dans cet article soulignent l’importance du grand programme SZ de NIKA2 pour la caractérisation de la dispersion de la relation d'échelle SZ-masse et donc pour la cosmologie avec des amas.

Le grand programme d’observation SZ de NIKA2 bénéficie de 300 heures d’observation accordées par l’IRAM dans le cadre du temps garanti attribué à la collaboration NIKA2. L'objectif est d’étalonner en masse un échantillon représentatif constitué de 50 amas de galaxies sélectionnés en SZ (catalogues Planck et ACT) à un décalage vers le rouge moyen à élevé (0,5 <z <1) et couvrant un ordre de grandeur en masse. L’observation des amas de cet échantillon permettra de mener une étude complète de la morphologie et de l'évolution des amas. De plus, ces données seront combinées aux données X du satellite XMM-Newton afin d’étudier les profils thermodynamiques radiaux (densité, pression, masse, température, entropie). Ces derniers sont essentiels pour une compréhension complète de la relation observable-masse des amas de galaxies qui permettra in fine d'exploiter les grands relevés d’amas pour contraindre la cosmologie

Plus d’informations :

First Sunyaev-Zel'dovich mapping with NIKA2: implication of cluster substructures on the pressure profile and mass estimate, F. Ruppin, F. Mayet, G. W. Pratt et al., accepté dans Astron. and Astrophys., arXiv:1712.09587

ContactThis email address is being protected from spambots. You need JavaScript enabled to view it.

--

Le groupe NIKA2 du LPSC a bénéficié des compétences des services techniques et administratifs du laboratoire. Cette activité est financée notamment par l’ANR avec le projet NIKA2Sky (ANR-15-CE31-0017 et http://lpsc.in2p3.fr/NIKA2Sky), le projet ANR-12-BS05-0007 project (2013-2015) et le Labex Enigmass.

Le grand programme d’observations SZ de NIKA2 (http://lpsc.in2p3.fr/NIKA2LPSZ/) regroupe 10 instituts européens dont l’IN2P3, l’INSU et le CEA au niveau français.

 

PhysRevLett.120.021101Les explosions d'étoiles comme les supernovae projettent dans l'espace interstellaire des noyaux à des vitesses relativistes appelés rayons cosmiques. Lorsque ces noyaux entrent en collision avec le gaz épars entre les étoiles, ils produisent une cascade de particules, appelées rayons cosmiques secondaires. Cette composante peut être utilisée pour tracer l'histoire des rayons cosmiques lors de leur propagation dans la galaxie. Les mesures des flux de lithium, béryllium et bore - trois espèces de rayons cosmiques secondaires - effectuées par le spectromètre magnétique alpha (AMS) à bord de la station spatiale internationale, permettent de caractériser avec une précision sans précédent cette composante. Un «durcissement» spectral des rayons cosmiques secondaires est notamment observé - un plus grand nombre de particules à des énergies élevées que ce que l'on pourrait attendre d'une loi de puissance standard. Un tel durcissement a déjà été observé par la collaboration AMS dans les rayons cosmiques primaires tels que l'hélium, le carbone et l'oxygène mais l'amplitude de ce durcissement est plus grande pour les rayons cosmiques secondaires que pour les rayons cosmiques primaires. Ces nouvelles observations suggèrent que de nouveaux mécanismes doivent être pris en compte pour décrire avec précision la propagation des rayons cosmiques à travers l'espace.

Actualités IN2P3 :

http://www.in2p3.fr/recherche/actualites/2018/breve_ams_rayonssecondaires.html

Pour en savoir plus :

https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.120.021101

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.021101

 

Cette année le Laboratoire fêtera la science les jeudi 12, vendredi 13 et samedi 14 octobre. Venez rencontrer les chercheurs, les enseignants-chercheurs, les ingenieurs et techniciens du LPSC afin de découvrir ou d'approfondir vos connaissances sur les activités de recherche du laboratoire. Des visites, des ateliers pour enfants et un parcours pour les familles
Programme détaillé des activités proposées par le LPSC ici!

2017 banniereFixes Isere

 

Les rayons cosmiques les plus énergétiques proviennent d’au-delà de notre galaxie

 

Voir le communiqué de presse du CNRS

 

Communiqué de la collaboration Pierre Auger :

Dans un article publié dans Science la Collaboration Pierre Auger présente les résultats de ses recherches montrant que les rayons cosmiques d’une énergie un million de fois supérieure à celle des protons accélérés dans le Grand Collisionneur de Hadron (LHC, au CERN) proviennent de bien au-delà de notre Galaxie.


Depuis que des rayons cosmiques avec des énergies de plusieurs Joules ont été observés dans les années 1960, la question de savoir si de telles particules sont produites au sein de la Voie lactée ou dans des objets extragalactiques éloignés fait débat. Ce mystère vieux de 50 ans a été résolu en étudiant des particules cosmiques d'énergie moyenne de 2 Joules détectées avec le plus grand observatoire de rayons cosmiques jamais construit, l'Observatoire Pierre Auger en Argentine. À ces énergies, on mesure un flux de rayons cosmiques en provenance d’un côté du ciel environ 6% plus élevé que du côté opposé, le maximum de flux pointant dans une direction située à 120 ° du centre Galactique.

Gerbe

Vue d’artiste d’une gerbe atmosphérique
au-dessus d’un détecteur de particules
de l’Observatoire Pierre Auger,
sur fond de ciel étoilé.


© A. Chantelauze, S. Staffi, L. Bret