

Recommendations for a demonstrator of Molten Salt Fast Reactor

E. MERLE-LUCOTTE , D. HEUER, M. ALLIBERT, M. BROVCHENKO, V. GHETTA, P. RUBIOLO, A. LAUREAU

merle@lpsc.in2p3.fr

Professor at Grenoble INP/PHELMA and in the Reactor Physics Group (CNRS-IN2P3-LPSC / Grenoble INP - PHELMA / UJF)

With the support of the PACEN (Programme sur l'Aval du Cycle et l'Energie Nucléaire) and NEEDS Programs and of the EVOL Euratom FP7 Project

merle@lpsc.in2p3.fr

The concept of Molten Salt Fast Reactor

What is a MSFR ?

Molten Salt Reactor (molten salt = liquid fuel also used as coolant)

Based on the Thorium fuel cycle

With no solid (i.e. moderator) matter in the core \Rightarrow Fast neutron spectrum

Parameters of study:

Initial fissile matter (²³³U, Pu, enriched U), salt composition, fissile inventory, reprocessing, waste management, deployment capacities, heat exchanges, structural materials, design..

Generation IV reactors: fuel reprocessing mandatory Neutronic core of the MSFR associated to an on-site reprocessing unit (on-line in-core bubbling and batch chemical reprocessing during reactor operation)

The concept of Molten Salt Fast Reactor

Thermal power	3000 MWth
Mean fuel salt temperature	750 °C
Fuel salt temperature rise in the core	100 °C
Fuel molten salt - Initial composition	77.5% LiF and 22.5% [ThF ₄ + (Fissile Matter)F ₄] with Fissile Matter = ²³³ U / ^{enriched} U / Pu+MA
Fuel salt melting point	565 °C
Fuel salt density	4.1 g/cm ³
Fuel salt dilation coefficient	8.82 10 ⁻⁴ / °C
Fertile blanket salt - Initial composition	LiF-ThF ₄ (77.5%-22.5%)
Breeding ratio (steady- state)	1.1
Total feedback coefficient	-5 pcm/K
Core dimensions	Diameter: 2.26 m Height: 2.26 m
Fuel salt volume	18 m ³ (½ in the core + ½ in the external circuits)
Blanket salt volume	7.3 m ³
Total fuel salt cycle	3.9 s

Design of the 'reference' MSFR

R&D objectives

The renewal and diversification of interests in molten salts have led the MSR provisional SSC to shift the R&D orientations and objectives initially promoted in the original Generation IV Roadmap issued in 2002, in order to encompass in a consistent body the different applications envisioned today for fuel and coolant salts.

Two baseline concepts are considered which have large commonalities in basic R&D areas, particularly for liquid salt technology and materials behavior (mechanical integrity, corrosion):

• The Molten Salt Fast-neutron Reactor (MSFR) is a long-term alternative to solid-fuelled fast neutron reactors offering very negative feedback coefficients and simplified fuel cycle. Its potential has been assessed but specific technological challenges must be addressed and the safety approach has to be established.

and passive safety potential for medium to very high unit power.

Which initial load fissile for a MSFR?

- Start directly ²³³U produced in Gen3+ or Gen4 (included MSFR) reactors
- Start directly with enriched U: enrichment required > 20%
- Start with the Pu of current LWRs mixed with other TRU elements: solubility limit of valence-III elements in LiF
- Mix of these solutions: Thorium as fertile matter +
 - \blacktriangleright ²³³U + TRU produced in LWRs
 - MOx-Th in Gen3+ / other Gen4
 - Uranium enriched at 13% + TRU currently produced

[kg per GWe]	²³³ U started MSFR	TRU (Pu UOx) started MSFR	Enriched U (13%) + TRU started MSFR	Th Pu-MOx started MSFR	
Th 232	25 553	20 396	10 135	18 301	
Pa 231				20	
U 232				1	
U 233	3 260			2 308	
U 234				317	
U 235			1 735	45	
U 236				13	
U 238			11 758		
Np 237		531	335	54	
Pu 238		229	144	315	
Pu 239		3 902	2 464	1 390	
Pu 240		1 835	1 159	2 643	
Pu 241		917	579	297	
Pu 242		577	364	1 389	
Am 241		291	184	1 423	
Am 243		164	104	354	
Cm 244		69	44	54	
Cm 245		6	4		

Fast Reactor International Conference 2013, Paris, Fra

The concept of Molten Salt Fast Reactor

Fast Reactor International Conference 2013, Pari

Sizing of the facilities:

<u>Small size:</u> ~1liter - chemistry and corrosion – off-line processing Pyrochemistry: basic chemical data, processing, monitoring

<u>Medium size:</u> ~100 liters – hydrodynamics, noble FP extraction, heat exchanges Process analysis, modeling, technology tests

<u>Full size experiment:</u> ~1 m³ salt / loop – validation at loop scale Validation of technology integration and hydrodynamics models

3 levels of radio protection:

✓ Inactive simulant salt ⇒ Standard laboratory
Hydrodynamics, material, measurements, model validation

 ✓ Low activity level (Th, depleted U) ⇒ Standard lab + radio protect Pyrochemistry, corrosion, chemical monitoring

 ✓ High activity level (^{enriched}U, ²³³U, Pu, MA) ⇒ Nuclear facility Fuel salt processing: Pyrochemistry, , Actinides recycling

Power Demonstrator of the MSFR

Thermal power	100 MWth			
Mean fuel salt temperature	725 °C			
Fuel salt temperature rise in the core	30 °C			
Fuel Molten salt initial composition	75% LiF-ThF ₄ - ²³³ UF ₄ or LiF- ThF ₄ -(^{enriched} U+MOx-Th)F ₃			
Fuel salt melting point	565 °C			
Fuel salt density	4.1 g/cm ³			
Core dimensions	Diameter: 1.112 m Height: 1.112 m			
Fuel Salt Volume	1.8 m ³ 1.08 in core 0.72 in external circuits			
Total fuel salt cycle in the fuel circuit	3.5 s			

Demonstrator characteristics representative of the MSFR

From the power reactor to the demonstrator:

Power / 30 and Volume / 10

Power Demonstrator of the MSFR: initial fissile load

Power Demonstrator of the MSFR: initial fissile load

✓ ^{enriched}U mixed with transuranic elements possible with U enrichment of 15% - 20%

Power Demonstrator of the MSFR: initial fissile load

✓ ^{enriched}U mixed with transuranic elements possible with U enrichment of 15% - 20%
✓ Uranium enriched at 20% mixed with irradiated MOx-Th with a ratio of Th/(Th+U) = 20 to 65%

From Power Demonstrator of the MSFR to SMR

	No radial blanket and H/D=1	No radial blanket and H/D=1	
Power [MW _{th}]	100	200	
Initial ²³³ U load [kg]	654	654	
Fuel reprocessing of 1l/day			
Feeding in ²³³ U [kg/an]	11.38	23.38	
Breeding ratio	-29.83%	-30.64%	
Total ²³³ U needed [kg]	1013.87	1388.37	

Around 650kg of ²³³U to start

Under-breeder reactor

Fuel reprocessing of 4l/day		
Feeding in ²³³ U [kg/an]	11.20	22.58
Breeding ratio	-29.37%	-29.59%
Total ²³³ U needed [kg]	1001.86	1353.13

Low impact of the chemical reprocessing rate (not mandatory for the demonstrator)

From Power Demonstrator of the MSFR to SMR

	No radial blanket and H/D=1	No radial blanket and H/D=1	Radial blanket and H/D=1	Radial blanket and H/D=1
Power [MW _{th}]	100	200	100	200
Initial ²³³ U load [kg]	654	654	667	667
Fuel reprocessing of 1l/day				
Feeding in ²³³ U [kg/an]	11.38	23.38	1.72	4.70
Breeding ratio	-29.83%	-30.64%	-4.52%	-6.16%
Total ²³³ U needed [kg]	1013.87	1388.37	738.83	835.16
Breeding ratio (radial + axial fertile blankets)			1.81%	-0.04%
Fuel reprocessing of 4l/day				
Feeding in ²³³ U [kg/an]	11.20	22.58	1. 48	3.58
Breeding ratio	-29.37%	-29.59%	-3.88%	-4.69%
Total ²³³ U needed [kg]	1001.86	1353.13	722.50	794.21
Breeding ratio (radial + axial fertile blankets)			2.49%	1.54%

Addition of axial + radial fertile blankets ⇒ small modular breeder MSFR

From Power Demonstrator of the MSFR to SMR

	No radial blanket and H/D=1	No radial blanket and H/D=1	Radial blanket and H/D=1	Radial blanket and H/D=1	Radial blanket and H/D=1.5	Radial blanket and H/D=1.5
Power [MW _{th}]	100	200	100	200	100	200
Initial ²³³ U load [kg]	654	654	667	667	677	677
Fuel reprocessing of 1l/day						
Feeding in ²³³ U [kg/an]	11.38	23.38	1.72	4.70	-0.07	0.98
Breeding ratio	-29.83%	-30.64%	-4.52%	-6.16%	0.18%	-1.29%
Total ²³³ U needed [kg]	1013.87	1388.37	738.83	835.16	715.05	754.25
Breeding ratio (radial + axial fertile blankets)			1.81%	-0.04%		
Fuel reprocessing of 4l/day						
Feeding in ²³³ U [kg/an]	11.20	22.58	1.48	3.58	-0.38	-0.26
Breeding ratio	-29.37%	-29.59%	-3.88%	-4.69%	1.00%	0.34%
Total ²³³ U needed [kg]	1001.86	1353.13	722.50	794.21	709.74	723.03
Breeding ratio (radial + axial fertile blankets)			2.49%	1.54%	Ĺ]

Addition of a radial fertile blanket + Elongated core ⇒ small modular breeder MSFR

European 'EVOL' (Evaluation and Viability Of Liquid fuel fast reactor systems) Project (7th PCRD) -*EURATOM/ROSATOM cooperation*

EVOL objective: to propose a design of MSFR by 2014 given the best system configuration issued from physical, chemical and material studies

- Recommendations for the design of the core and fuel heat exchangers
- Definition of a safety approach dedicated to liquid-fuel reactors Transposition of the defence in depth principle Development of dedicated tools for transient simulations of molten salt reactors
- Determination of the salt composition Determination of Pu solubility in LiF-ThF4 Control of salt potential by introducing Th metal
- Evaluation of the reprocessing efficiency (based on experimental data) FFFER project
- Recommendations for the composition of structural materials around the core

WP2: Design and Safety WP3: Fuel Salt Chemistry and Reprocessing WP4: Structural Materials

European participants to EVOL: France (CNRS: Coordinator, Aubert&Duval, INOPRO, Grenoble INP), EU (JRC – Institute for TransU Elements), Netherlands (Delft University of Technology), Germany (KIT-G, FZD), Italy (Politecnico di Torino), United Kingdom (Oxford University), Czech Republic (Energovyzkum Ltd), Hungary (Budapest University of Technology) + 2 observers (Politecnico di Milano, Italy and Paul Scherrer Institute, Switzerland)

+ Coupled to the ROSATOM project MARS (Minor Actinides Recycling in Molten Salt)

Fast Reactor International Conference 2013, Paris, France –

MSFR: Starting Modes / Initial Heavy Nuclei Inventory

Fast Reactor International Conference 2013, Paris, France – E. Merle-Lucotte

MSFR: Starting Modes / Initial Heavy Nuclei Inventory

Fast Reactor International Conference 2013, Paris, France – E. Merle-Lucotte