STEREO

Recherche de neutrinos stériles auprès du réacteur de l'ILL

Conseil scientifique du LPSC 15 novembre 2013

Anne Stutz pour le groupe STEREO

Nouvelle oscillation vers un neutrino stérile ?

• Pas de couplage par interaction faible \rightarrow Visible uniquement par effet d'oscillation

CS LPSC, novembre 2013

G. Mention et al. Phys Rev D 83 073006 (2011) 2

Cohérence des expériences de disparition

- Non oscillation est défavorisée à 3,3 σ
- Compatible avec le déficit observé dans les exp. Gallium
 → Best fit : Δm²≈ 1 eV², sin²(2θ_{new})≈0.1

- Déclenchement d'une forte activité dans la communauté neutrino
- Nombreux projets sont en préparation : accélérateurs, sources, réacteurs

STEREO@ILL

Les objectifs du projet STEREO@ILL

- Couvrir le contour de l'anomalie avec une très grande précision
- Proximité du réacteur très compact de l'ILL
- Signature non ambigüe de l'oscillation
 - Déformation du spectre en énergie et en distance
 - Analyse de forme indépendante de la normalisation (puissance, flux, normalisation)
- Utilisation d'une technologie éprouvée pour une prise de données en 2015

STEREO@ILL

$$P_{\nu_e \rightarrow \nu_e} \left(E_{\nu_e}, L \right) = 1 - \sin^2 \left(2\theta \right) \sin^2 \left(1.27 \frac{\Delta m^2 L}{E_{\nu_e}} \right)$$

- Analyse robuste de l'oscillation
 - Observation de la déformation du spectre en énergie
 - Evolution de la phase avec la distance
- Conditions
 - Bonne résolution en distance (source + détecteur)
 - Bonne résolution en énergie
 - Point critique : bruit de fond

Le réacteur de l'ILL

Cœur compact

- Φ ≈ 40 cm, h ≈ 80 cm
- Un des plus compact au monde
- Evite de moyenner l'oscillation par la taille de la source RMS_{coeur} = 24 cm << L_{osc} = 3.2 m à 3 MeV
- Déplacement du barycentre 10 cm au cour d'un cycle perpendiculairement à l'axe du détecteur/réacteur

Cœur fortement enrichi en ²³⁵U (93%)

- Spectre indépendant des effets d'évolution du combustible
- Spectre le mieux connu

Puissance : 57 MW

• 4 cycles de 50 jours par an ≈ 200 jours ON

Le réacteur de l'ILL

Plusieurs possibilités d'accès à très courte distance, mur du réacteur à 5 m

- B42 : expérience précédente 8.78 m
- Niveau C
 - Axe du réacteur
 - Protection canal d'eau

Evaluation de STEREO par le conseil scientifique de l'ILL en avril 2013

 \rightarrow Accord pour une installation au niveau C en PN3

Détection par désintégration β inverse dans du scintillateur dopé au Gd :

$$\overline{v}_{e} + p \rightarrow e^{+} + n$$

$$\downarrow \qquad \downarrow n + Gd \rightarrow Gd + \gamma s$$

$$e^{+} + e^{-} \rightarrow \gamma \gamma$$

- Seuil : $\Delta + m_e = 1.804 \text{ MeV} (\Delta = M_n M_p)$
- E_n ≈ 25 keV
- $E_{vis\approx} E_v \Delta + m_e \approx E_v 0.782 \text{ MeV}$

Signature en coïncidence temporelle :

- Signal prompt : Ionisation du positron + γ d'annihilation
- Signal retardé : capture du neutron sur Gd
 - Cascade de gammas, énergie totale ≈ 8MeV (>> radioactivité naturelle ²⁰⁸Tl à 2.6 MeV)
- ΔT ≈ 15 μs (0.2% Gd)

Le détecteur

2m³ de scintillateur liquide dopé 0.2% Gd

- Cible + capture du neutron
- 6 cellules de 40 cm de profondeur le long de la direction du coeur
 - 90 cm haut, 90 cm de large
 - Détermination passive de la position du vertex $\overline{V_e}$
 - Profondeur comparable à la taille du cœur
 - $\rightarrow \delta L_{osc} = 32 \text{ cm} (1\sigma)$

Couronne 30 cm scintillateur non dopé (1.7 m³)

- Améliore la résolution en énergie et l'efficacité neutron
- Veto actif pour le bruit de fond externe

Collection lumière

- Par le dessus avec 24 x 10" et 24 x 8" PMTs (50% surface)
- Buffer en acrylique 20 cm
 - Homogènéité de la réponse de la cellule dans tout le volume
- Contact optique Buffer/PMT avec huile minérale

La réponse en énergie

Réponse en énergie estimée par simulation Geant4

- simulation adaptée de DC et Nucifer
 - modèle de scintillation détaillé et validé
- Résolution dominée par l'échappement des 511 keV
 - Réponse homogène centre/bord grâce à la couronne externe
 - ≈ 460 pe /MeV (5%), effet haut/bas ≈3 % / m
 - $\rightarrow \delta E/E \approx 10\%$ e⁺ 2 MeV (≈ 3.02 MeV E_{déposée})

Calibration de chaque cellule avec des sources

- Précision de 2% sur l'échelle d'énergie
- Contrôle du gain des PMTs et transmission optique
 - système d'injection de lumière par LED et fibres optiques
 - Précision de 1% sur la stabilité du détecteur

⁶⁰Co Nucifer : simu vs data

e+ de 2 MeV : Cible + GC

L'efficacité de détection neutron

- ≈ 90 % des captures sur Gd
- Temps de capture ≈ 15 μs Gd vs 200 μs H
- Cascade de gammas d'énergie totale 8 MeV
 - ≈ 30 cm dans le scintillateur
 - Couronne externe réduit les fuites de γ
- Efficacité de détection moyenne
 - 64 % pour E_{dep} > 5 MeV
 - 51 % pour E_{dep} > 6 MeV
- Effet centre/bord
 - Cellule centre : 66 %
 - Cellule bord : 62 %
- Etalonnage avec source Am-Be
 - Corrélation neutron et γ de 4.4 MeV
 - Précision 2 % sur l'efficacité de détection

Les bruits de fond

Bruit de fond associé au réacteur

- Gammas et neutrons thermiques -> Bruit de fond fortuit
- Neutrons rapides (signal prompt = proton de recul + signal retardé = capture du neutron)
 - bruit de fond corrélé \rightarrow doit être rendu négligeable
- Protection par des blindages lourds
 - la tenue de la dalle est suffisante 10 à 20 t/m² (étude ILL 2010)

Bruit de fond indépendant du réacteur

- Neutrons rapides induits par interactions des muons -> bruit de fond corrélé
 - Protection par le canal d'eau et un véto muon
- Radioactivité des matériaux -> bruit de fond fortuit
 - Test des matériaux

Le bruit de fond fortuit est mesuré en ligne avec une grande précision

- $R_p \times R_d \times \Delta t < R_v$
- Signal prompt : $E_{dep} > 2 \text{ MeV} (\gamma s) \rightarrow Rp < 200 \text{ Hz}$
- Signal retardé : $5 < E_{dep} < 10 \text{ MeV} \rightarrow R_d < 1 \text{ Hz}$
- •

Le bruit de fond corrélé est mesuré pendant les périodes de réacteur OFF

- OFF ≈ 45 % du temps
- Corrélés avant PSD < 5.10-3 Hz

Les blindages

Blindage passif

- Pb 10 cm
- Mur frontal Pb 10 cm coté réacteur
- Polyéthylène boré 15 cm faces latérales 20 cm en bas, 30 cm en haut

Blindage actif

- Veto muon : Cerenkov à eau 20 cm
- Couronne externe 30 cm LS

Aménagement de la casemate PN3

• Opportunité offerte par l'arrêt prolongé du réacteur de l'ILL du 9 aout 2013 -> juin-juillet 2014

Validation des protections nécessaires

- Mesures sur sites avec détecteurs Ge et ³He : 4 campagnes depuis juin 2012
- Comparaison avec des expériences similaires ILL-1@B42 Nucifer@OSIRIS
- Simulations Geant4 MCNPX

Discrimination de forme du proton de recul

Utilisation des propriétés de discrimination de forme du scintillateur (PSD)

- Rejection d'un facteur 20 des protons de recul pour un rejet de 1% des positrons
- 1^{er} échantillon du scintillateur testé en juin : les résultats sont très satisfaisants !
 - Bénéfice des développements faits pour Double Chooz (20% PXE + 80% LAB)
 - Scintillateur stable : DC pendant 5 ans, Nucifer depuis 8 mois
 - Rendement lumineux ≈ 7500 ph/MeV, Longueur d'atténuation ≈ 5 m
 - Analyse de la forme du signal (PSD) pour discrimination n, γ
 - Facteur de mérite en cellule test de 1.05 vs 0.8 Nucifer (Delta_Mean/Sum_FWHM)

Implantation sur site

Contraintes d'installation

- Sécurité sismique
- Sécurité incendie
- Dossier ASN à déposer fin 2013
- Travail en cours avec expert incendie et ingénieure de sécurité ILL

Modification du détecteur par rapport au projet initial ANR

- → Distance STEREO/réacteur : 10 m
- → Largeur de la cible réduite de 1.1 à 0.9 m
- \rightarrow 6 cellules au lieu de 5

Caractéristiques principales de STEREO

Puissance du réacteur	57 MW
σ (²³⁵ U) /fission	6.69 10 ⁻⁴³ cm ²
Distance moyenne au cœur	10 m
Nombre de protons cibles	1,3 10 ²⁹
Seuil Evis à 2 MeV ($E_v > 2.8$ MeV)	81 %
Efficacité neutron (Edep > 5 MeV)	64 %
Temps mort	5 %
δΕ/Ε @ 2 MeV	10 %
δL evt by evt	32 cm

Signal attendu 480 v/ jrs Challenge : S/B > 1.5 (≈ ILL-1)

Phys. Rev. D 24.1097 1981

Sensibilité

• 300 jours de réacteur ON - 160 jours de OFF - S/B= 1.5

Analyse de forme

Erreurs systématiques

- Spectre de fission 0.7 -> 4 %
- Magnétisme faible (E-1.0)*1.0%/MeV
- Distance $evt/evt \delta L = 32 cm$
- Calibration énergie sources 2.0 %
- Monitoring 1%

Analyse de forme + norme

Erreurs systématiques normalisation 3.5%

- Np 0.5%
- Spill in Spill out 1%
- Efficacité de détection 2%
- Puissance thermique 2.0 %
- Spectre de fission 1.8 %

Mesures sur site

Neutrons rapides induits par les muons

- Muons induisent des neutrons rapides dans les matériaux lourds
- Protection avec canal d'eau
 - U 1.9 m de béton + 6 m d'eau, 7.8 m de large
 - Suppression de la composante hadronique
- Mesure du flux de muons in situ
 - Roue cosmique : dépendance azimuthal

→Réduction du flux de muon X 4 par rapport à la surface (X 2.7@Osiris et ≈ mieux que B42)

Neutrons rapides du réacteur

- Nombreux faisceaux de neutrons dans le hall C
- Caractérisation du flux par des mesures sur sites
 - Tube ³He (10 bar, Φ=25 mm, L=300 mm)
 - Ouverture/fermeture des faisceaux IN20 et D19
 - Réalisation une maquette de blindage pour tests
 - Modulaire et hermétique
 - PEHD (4X5 cm + 15 cm + B4C 5 mm)
 - Équivalente au blindage prévu pour Stereo (MCNPX)
- Simulation MCNPX des différentes configurations

- Identification d'une composante de neutrons rapides venant du tube H7
 - → Réduction d'un facteur 100 nécéssaire

Neutrons rapides du réacteur

- Simulation MCNPX
 - Géomètrie détaillée du cœur
 - Calcul du flux en sortie du tube H7
 - Intégrale : 3.5 ± 0.5 10⁷n/cm²/s
 - Chute brutale pour E>5 MeV
- Présence de ⁶Li dans collimateur de H7
 - flux $10^{10} n_{th}/cm^2/s$
 - → neutrons rapides au delà de 10 MeV $n_{th} + {}^{6}Li \rightarrow {}^{4}He + t$, $t + {}^{6}Li \rightarrow {}^{8}Be + n_{fast}$

→Remplacement du collimateur de H7 par un bouchon plein

- Suppression du ⁶Li par du boral
- 2cm B4C + 8cm Pb +1 m de béton lourd + 2cm B4C + 8cm Pb
- Réduction flux neutrons 10⁹ et gammas de hautes énergies 10⁶
- Installation prévue en mai 2014 pendant grand arrêt 2013-2014

Bruit de fond corrélé associé au réacteur

- Flux de neutrons du réacteur < 5 MeV
- Effet de quenching dans les scintillateurs $\rightarrow E_{dep}$ (proton recul) < 2 MeV
- Vérification en relâchant la coupure PSD, comparaison ON/OFF
- Non observé ni à ILL-1@B42 ni à Nucifer@Osiris

Nucifer@Osiris

Bruit de fond neutron thermique

- Hall C baigne dans un gaz de neutrons thermiques
- Fuites identifiées en provenance du tube H7 et coté IN20
 - Simulation MCNPX identifie la bride du tube H13
- \rightarrow Couverture des surfaces de la casemate avec B4C 5 mm
 - Tests d'efficacité du B4C validé coté mur réacteur
 - Programmé pendant le grand arrêt arrêt réacteur 2013-2014

Atténuation du blindage est validée par les mesures avec à la maquette (≈10⁵)
 →Signal estimé dans STEREO inférieur à 10⁻⁴ Hz

Bruit de fond gamma

Mesure in situ avec détecteur Ge

- Identification des sources
 - Mur réacteur coté H7 et casemate IN20
 - Gammas de hautes énergies associés aux captures de neutrons sur Fe, Ni, Al
 - Réduites par le blindage B4C

Mise en place d'importants blindages additionnels au plus près des sources

Aménagement de la casemate pour STEREO

Objectif : protéger le détecteur des sources identifiées par 20 cm de plomb

• ILL-1 : les taux de comptage single sont indépendants de l'état du réacteur

- Mise en place durant le grand arrêt du réacteur
- Profiter des premiers cycles pour valider et optimiser l'installation des blindages avant d'installer le détecteur

Calendrier et répartitions des tâches

Calendrier

- Aout 2013- mi juin 2014 : Grand arrêt réacteur de 10 mois
 - Remplacement bouchon-collimateur
 - Couverture B4C des casemates PN3 et IN20
 - Montage des murs de plomb suplémentaires
- Juin 2014 : 1 cycle court réacteur ON de 1 mois
 - test de bruit de fond de la casemate aménagée
- Juillet 2014 à fin 2014
 - Installation des blindages et du détecteur
 - Tests de bruit de fond à chaque étape
- Début 2015 : 2 cycles pour comissionning
- Avril 2015 à fin 2016 : Prise de données effectives durant 6 cycles
- Janvier 2017 : changement du tube H6-H7, Stereo devra être démonté

Calendrier d'intégration à l'ILL

Répartition des taches par laboratoire

Partenaires (nb Phys. permanents)	Tâches
CEA/Irfu (7)	Coordination du projet Conception et réalisation du détecteur interne Calcul du spectre neutrino
IN2P3/LPSC (5)	Veto muon Electronique, acquisition de données et contrôle lent Système d'injection de lumière Fabrication et montage du blindage Coordination de la simulation
IN2P3/LAPP (2)	Dispositif de calibration Conception du blindage Fabrication de la structure du blindage
MPIK-Heidelberg (2)	Scintillateur liquide, système de remplissage, PMTs
ILL (4)	Conception et réalisation du bouchon H7 Etudes de sureté Aménagement de l'aire expérimentale, installation sur site
Casablanca Univ. (2)	Fabrication de la structure des murs de plomb aditionnels

Financement

Estimation du budget	k€
Détecteur	1000
Tank Scintillateurs + remplissage PMT Electronique + DAQ Calibration Prototype	200 320 125 175 130 50
Blindage du détecteur	305
Plomb PEHD Structures Veto muon	140 50 70 45
Renforcement du blindage	240
Bouchon H7 Structures + Plomb B4C Béton, Maçonnerie	35 100 25 80
Autres	350
Postdocs Fonctionnement Etudes de sureté BE H7	365 95 20 20
TOTAL	2045

Ressources	k€
ANR	990
ILL	55
МРІК	445
CEA-Irfu	50
AGIR/UJF/INP	10
Univ. Casablanca	20
Labex ENIGMASS	150
TOTAL	1720

~85 % du budget disponible

- Demande de postdoc IN2P3
- Récupération de plomb CERN
- Demande complémentaire à l'IN2P3
- Discussion ILL aménagement des casemates

Stereo @ LPSC

Stereo @ LPSC

Groupement d'intérêt de physiciens venant de différents groupes

- Permanents : S. Kox, J. Lamblin, F. Montanet, J.S. Réal, A. Stutz
- Doctorant : S. Szlosdos
- Post-doctorant ENIGMASS en cours de recrutement

Implication des services techniques du LPSC

- Détecteurs et Instrumentation, Electronique
- Mécanique, Informatique
- Coordination technique est assurée par M. Heusch

Tâche 3 : Aménagement de la casemate

- **Objectifs**:
 - Démantèlement de GAMS5 et mise en place de casemate Stereo •
 - Suppression des fuites neutrons et gamma •
 - Changement du bouchon du tube H7
 - Installation de murs de plomb supplémentaires
 - Installation de B4C sur les murs des casemates primaires H7 et H13 •
- Délais :
 - Avant redémarrage du réacteur juin-juillet 2014 ۲
- Responsabilité : T. Soldner (ILL)
- Rôle du LPSC :
 - Aide au montage (SDI)
 - Eventuellement fabrication et BE pour les murs de plomb (SERM)

D19

Shadow of water

channel

IN2(

B4C Lead

Tâche 4 : Blindages du détecteur

- Concevoir, produire et installer le blindage entourant le détecteur
- Véto muon
- Blindage hermétique passif : plomb + PEHD boré

Responsabilités

- J.S Réal (LPSC) + P. Del Amo Sanchez (LAPP)
- S. Fuard (interface avec ILL)

Délais

• Début d'installation fin du grand arrêt, juin 2014

Rôles du LPSC

- Conception et réalisation du veto muon (SDI)
- Fabrication structure avec le LAPP et/ou sous-traitance (SERM)
- Aide au montage à l'ILL (SDI)

Tâche 4 : veto muon

Cahier des charges :

- Efficacité de détection des muons > 95 %
- Faible sensibilité aux neutrons et gammas
- Dimensions ~ 3,8 m x 2,50 m x 20 cm
- Faible capacité calorifique

Taux de muons attendu ~ 500 Hz →Temps mort de 5% (100 μs)

Détecteur Cerenkov à eau :

- ~500 photons/cm 300-600 nm
- Simulations rapides → réponse homogène
 - 4 PMTs sur faces latérales
 - Avec ou sans WLS dissous dans l'eau
 - Fibres optiques avec WLS
 - Réflecteur tyvek
- Prototype en cours de réalisation

36

Proto veto muon

Prototype en cours d'installation dans le hall Ariane

- Cuve en PMMA + couvercle
 - 3 m x 2 m x 25 cm
- Eau purifiée + WLS (4-MU)
 - Déminéralisation
 - Circulation avec filtre UV
 - Dissolution du 4-MU dans l'eau testée avec TP durée de vie du muon
- Réflexion/diffusion lumière à optimiser
 - Tyvek, PTFE Gore, VM2000...
- PMTs sur les faces latérales
 - Nombre et position à optimiser
 - 14 PMTs 5" XP4572

CS LPSC, novembre 2013

Proto veto muon

- Prototype placé dans une chambre noire dans le hall Ariane
 - 5 x 4 x 2,5 m³ à ossature bois
- Télescope muon
 - 2 X 8 scintillateurs plastique vus par 2 PMTs
 - Sur le plafond de la chambre et sous la cuve

Objectifs

• Conception, test, construction et exploitation du système de calibration basé des sources radioactives et un système de surveillance à base de LED.

Responsabilités

• P. Del Amo Sanchez (LAPP), A. Stutz (LPSC)

Délais

• Début d'installation novembre 2014

Rôles du LPSC

- Réalisation du système d'injection de lumière (SDI)
 - LED et fibres optiques
 - Calibration du gain au 1 pe
 - Contrôle de la transmission du scintillateur + linéarité

Tâche 8 : Electronique et acquisition de données

Objectifs

• Conception, test, production et installation de l'électronique, des triggers et de acquisition de données du détecteur Stereo.

Responsabilités

• C. Vescovi, J. Lamblin

Délais

• Début d'installation novembre 2014

Rôles du LPSC

- Traitement et distribution des signaux du détecteur vers le système d'acquisition de données
- Formation de trigger de bas et hauts niveaux
- Acquisition de données
- Surveillance de la stabilité et des performances du détecteur

Démonstrateur de la carte FEE

Démonstrateur en cours de fabrication

- Carte FE 4 voies : FADC 250 MHz + FPGA moderne
- Ressources nécessaires à la simulation de la carte trigger/centralisation
 - → Validation du protocole d'échange de données
 - → Système d'acquisition autonome de test
- Banc de test avec PMT + scintillateur liquide + LED

Simulations

Coordination du groupe de simulation (A. Stutz)

- Etude de la réponse du détecteur, GEANT4
 - Collection de lumière
 - Optimisation de la géométrie cible/gamma-catcher
 - Topologie des événements
- Validation des blindages externes : MCNPX/GEANT4
 - Définition du bouchon du tube H7
 - Définition des blindages passifs
- Etude du bruit de fond : MCNPX/GEANT4
 - Synergie avec mesures sur site
- Préparation à l'analyse des données

- STEREO propose une mesure de précision à moins de 10 m du cœur compact du réacteur de recherche de l'ILL de Grenoble.
- La recherche d'une distorsion du spectre en énergie le long de l'axe du détecteur offre une signature claire d'une possible nouvelle oscillation, indépendante des paramètres du réacteur.
- Le concept de la détection par désintégration β inverse dans un scintillateur liquide dopé au Gd est éprouvé.
- Fort bruit de fond gamma et neutron avec des sources identifiées par les mesures sur site.
- Aménagement des casemates PN3 et IN20 est est intégré dans le planning du grand arrêt de l'ILL (mi-2013, mi-2014).
- Le calendrier d'installation proposé et la sensibilité de la mesure offrent un potentiel de découverte élevé
- Forte synergie locale avec la proximité de l'ILL et la participation de 2 laboratoires du labex ENIGMASS et du PRES Grenoblois. Bonne visibilité du LPSC.