Changes between Version 4 and Version 5 of WorkingGroups


Ignore:
Timestamp:
24/07/2020 15:06:41 (4 years ago)
Author:
/C=FR/L=Paris/O=Centre national de la recherche scientifique/CN=RENAULT Cecile
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • WorkingGroups

    v4 v5  
    1 The scientific program is focused on the investigation of the origin of mass and its consequences. The notion of mass and its generation permeates many aspects of fundamental physics. At the microscopic level it is intimately related to the mysterious nature of the vacuum and how particles acquire mass, to the questions of how matter forms and why there is much more matter than anti-matter. At the macroscopic level, it is intimately related to gravity, and to the observation that there is roughly five times more dark, non-luminous matter than ordinary matter. It is deeply rooted in the dynamics and history of the Universe through the even more mysterious presence of dark energy and the accelerating expansion. The project is original and innovative as it brings together physicists from different fields, from particle physics to cosmology, using different methodological approaches (from mathematical physics to instrumentation), sharing a common interest in the enigma of mass. The program is organized in three work packages, as described below. The strong interconnections between the packages are outlined.
     1The scientific program is focused on the investigation of the origin of mass and its consequences. The notion of mass and its generation permeates many aspects of fundamental physics. At the microscopic level it is intimately related to the mysterious nature of the vacuum and how particles acquire mass, to the questions of how matter forms and why there is much more matter than anti-matter.
     2\\
     3At the macroscopic level, it is intimately related to gravity, and to the observation that there is roughly five times more dark, non-luminous matter than ordinary matter. It is deeply rooted in the dynamics and history of the Universe through the even more mysterious presence of dark energy and the accelerating expansion. The project is original and innovative as it brings together physicists from different fields, from particle physics to cosmology, using different methodological approaches (from mathematical physics to instrumentation), sharing a common interest in the enigma of mass.
     4\\
     5The program is organized in three work packages, as described below with strong interconnections between them.
    26\\
    37\\
     
    610[[Image(https://www.sciencenews.org/wp-content/uploads/2012/07/storyone_main_mag.jpg,width=250)]]
    711\\
    8 During Enigmass1, the Higgs boson was discovered. This constitutes a major achievement in the domain of the enigma of mass. The consortium played a key role in both this discovery and the exploitation of the early results on the Higgs couplings. The experimental data acquired so far point to the simplest, renormalizable version of spontaneous symmetry breaking. Non-discovery of new physics at the LHC, combined with the particular value of the Higgs mass, has ushered a new paradigm. Enigmass2 will probe some of the key issues of this new landscape. Higgs physics and the concomitant understanding of the structure of the vacuum feature prominently in its research program. Searches for sources of CP violation beyond the standard model (SM) are the second key theme as they are relevant to the matter/anti-matter asymmetry in the Universe.
     12During Enigmass1, the Higgs boson was discovered. This constitutes a major achievement in the domain of the enigma of mass. The consortium played a key role in both this discovery and the exploitation of the early results on the Higgs couplings. The experimental data acquired so far point to the simplest, renormalizable version of spontaneous symmetry breaking. Non-discovery of new physics at the LHC, combined with the particular value of the Higgs mass, has ushered a new paradigm.
     13\\
     14Enigmass2 will probe some of the key issues of this new landscape. Higgs physics and the concomitant understanding of the structure of the vacuum feature prominently in its research program. Searches for sources of CP violation beyond the standard model (SM) are the second key theme as they are relevant to the matter/anti-matter asymmetry in the Universe. 
     15\\
     16The search for new physics (NP) requires novel strategies. NP can still be energetically accessible at the LHC but difficult to detect. In this respect, long-lived particles are interesting possibilities that call for new search methods. For instance, new models put forward by members of the consortium need a strong collaboration with experimentalists to resolve detector issues in the corresponding searches (tracker, as well as jet reconstruction). The connection of these non-conventional particles to dark matter (DM) should also be looked at in a new light. Through the DM connection, this topic straddles all three WPs.
    917\\
    1018\\