

CONSTRAINTS ON THE MASS, CONCENTRATION, AND NONTHERMAL PRESSURE SUPPORT OF SIX CLASH CLUSTERS FROM A JOINT ANALYSIS OF X-RAY, SZ, AND LENSING DATA

SETH R. SIEGEL^{1,2,3}, JACK SAYERS¹, ANDISHEH MAHDAVI⁴, MEGAN DONAHUE⁵, JULIAN MERTEN⁶, ADI ZITRIN^{1,7}, MASSIMO MENEGHETTI⁸, KEIICHI UMETSU⁹, NICOLE G. CZAKON⁹, SUNIL R. GOLWALA¹, MARC POSTMAN¹⁰, PATRICK M. KOCH⁹, ANTON M. KOEKEMOER¹⁰, KAI-YANG LIN⁹, PETER MELCHIOR^{11,12}, SANDOR M. MOLNAR⁹, LEONIDAS MOUSTAKAS⁸, TONY K. MROCZKOWSKI¹³, ELENA PIERPAOLI¹⁴, AND JENNIFER SHITANISHI¹⁴

Submitted to the Astrophysical Journal: December 19, 2016

Contexte et objectifs

V. Springel et al., Heidelberg Institute for Theoretical Studies

Formation des amas :

- Collapse rapide suivi d'une série de merger importants et de croissance lente par accrétion du milieu environnant
- Gaz accrété à des vitesses super-soniques échauffement, puis thermalisation par choc au niveau du rayon du viriel
- Virialisation incomplète du gaz : fraction de l'énergie cinétique transformée en turbulences et mouvements de bulk

Pression non-thermique : contribution significative à l'équilibre de l'ICM contre la gravité

Nécessité de contraindre la fraction de pression non-thermique dans les amas sur de larges gammes de masse et de redshift

Florian Ruppin - Journal Club - 13/01/2017

2

Simulations numériques

- Lien entre l'état hydrodynamique du milieu intra-amas (ICM) et la cosmologie
- Grandes incertitudes sur les processus liés à la physique baryonique durant la formation des amas :

Formation stellaire

Refroidissement radiatif du gaz

Mouvements de bulk

Apport d'énergie par les AGN

Vents des supernovae

Turbulences du gaz

- I Sélection de l'échantillon d'amas
- II Modélisation du contenu matériel et de la fraction de pression non-thermique
- III Les observables
- IV Les données Chandra, Bolocam et HST/Subaru
- V Analyse et résultats

II – Modélisation du contenu matériel et de la fraction de pression non-thermique

III – Les observables

IV – Les données Chandra, Bolocam et HST/Subaru

V – Analyse et résultats

- Échantillon CLASH (Cluster Lensing And Supernova survey with Hubble) :
 - 25 amas de galaxies 0.2 < z < 0.9 $M_{tot} \sim 5 20 \times 10^{14} \; {
 m M}_{\odot}$
- Amas observés en X avec le Chandra X-ray Observatory, en SZ thermique avec Bolocam et en optique avec HST (strong lensing) et Suprime-Cam@Subaru Telescope (weak lensing)
- Sélection du sous-échantillon pour une étude basée sur une modélisation sphérique des amas :
 - Surface de brillance X donnée par Chandra : symétrie circulaire avec un unique pic X bien défini
 - Morphologie SZ circulaire
 - Décalage de centroïde X, w_{500c} , inférieur à 0.006 (peu de clumps)

	Table 1 Characteristics of the multiwavelength observations of the six galaxy clusters in our sample.								
	Name	Z	RA (J2000)	DEC (J2000)	SZ S/N	<i>Chandra</i> Time (ksec)	N _{sys} ^a	HST ρ_{gal}^{b} (arcmin ⁻²)	Subaru ρ_{gal}^{c} (arcmin ⁻²)
8 amas présentent ces critères	Abell 383	0.187	02:48:03.40	-03:31:44.9	9.6	38.8	9	50.7	9.0
	Abell 611	0.288	08:00:56.82	+36:03:23.6	10.8	36.1	4	42.3	8.8
O sustana la transferazione	MACS J0429.6-0253	0.399	04:29:36.05	-02:53:06.1	8.9	23.2	3	42.4	12.0
Contraintes lensing	MACS J1311.0-0310	0.494	13:11:01.80	-03:10:39.8	9.6	63.2	2	33.7	20.2
controversées pour 2 amos	MACS J1423.8+2404	0.545	14:23:47.88	+24:04:42.5	9.4	115.6	5	75.3	9.8
controversees pour 2 amas	MACS J1532.8+3021	0.363	15:32:53.78	+30:20:59.4	8.0	89.0	0	35.9	16.6
6 amas retenus pour cette étude	^a The number of multiple ^b The surface-number de et al. (2015). ^c The surface-number de et al. (2015) and derived	e-image s ensity of nsity of t from the	systems used in background sel background sele work of Umets	the strong lens ected galaxies ected galaxies in su et al. (2014).	ing analysi in the HST n the Subar	s of Merten et a field used for u field used for	al. (2015 the wea	5). k lensing analy k lensing analy	ysis of Merten ysis of Merten

I – Sélection de l'échantillon d'amas

II – Modélisation du contenu matériel et de la fraction de pression non-thermique

- III Les observables
- IV Les données Chandra, Bolocam et HST/Subaru
- V Analyse et résultats

Modèle de densité totale et de gaz

- Modèle de densité totale de matière : Navarro-Frenk-White $\rho_{tot}(r) = \rho_{tot,0} \left(\frac{1}{r} \right)$
- Reparamétrisation masse totale de l'amas à un rayon de référence

$$M_{\text{tot, }\Delta\text{ref}} \equiv 4\pi r_s^3 \rho_{\text{tot,0}} \left[\ln \left(\frac{r_s + r_{\Delta\text{ref}}}{r_s} \right) - \frac{r_{\Delta\text{ref}}}{r_s + r_{\Delta\text{ref}}} \right]$$

- Modèle de densité de gaz donné par la somme de 2 modèles β :
 - Premier modèle β modifié pour mieux décrire les amas de type cool-core
 → Paramètre α fixé à 0.5
 - Paramètre d'contrôle la rapidité de transition entre les deux lois de puissance — fixé à 4
 - Deuxième modèle β → description de la région du coeur de l'amas avec $r_{\rm gas,core} < 50~{
 m kpc}$ et $\beta_{\rm core} = 1$

Paramètres variables :

$$M_{\mathrm{tot},\Delta_{\mathrm{ref}}} - r_s$$

$$p_{\rm gas,core} - r_{\rm gas,core}$$

 $p_{\rm gas,0} - r_{\rm gas} - \beta$
 $r_{\rm gas,outer} - \epsilon$

$$\left(\frac{r}{r_s}\right)^{-1} \left(1 + \frac{r}{r_s}\right)^{-2}$$

$$\begin{split} \rho_{\rm gas}(r) &= \rho_{\rm gas,0} \left(\frac{r}{r_{\rm gas}}\right)^{-\alpha} \left(1 + \left(\frac{r}{r_{\rm gas}}\right)^2\right)^{(\alpha - 3\beta)/2} \\ &\times \left(1 + \left(\frac{r}{r_{\rm gas, outer}}\right)^\delta\right)^{-\varepsilon/\delta} \\ &+ \rho_{\rm gas, \, core} \left(1 + \left(\frac{r}{r_{\rm gas, \, core}}\right)^2\right)^{-3\beta_{\rm core}/2}, \end{split}$$

8 Fraction de pression non-thermique : modèle

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

$$P_{\rm tot} = P_{\rm th} + P_{\rm nth}$$

$$=rac{k_BT
ho_{ ext{gas}}}{\mu m_p}+P_{ ext{nth}}$$
 avec $k_B,\ \mu$ et m_p : constantes connues

9 Fraction de pression non-thermique : modèle

CLUD

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

$$P_{\text{tot}} = P_{\text{th}} + P_{\text{nth}}$$

= $\frac{k_B T \rho_{\text{gas}}}{\mu m_p} + P_{\text{nth}}$ avec k_B , μ et m_p : constantes connues

¹⁰ Fraction de pression non-thermique : modèle

CLUB

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

$$P_{\text{tot}} = P_{\text{th}} + P_{\text{nth}}$$
$$= \frac{k_B T \rho_{\text{gas}}}{\mu m_p} + P_{\text{nth}} \text{ avec } k_B, \ \mu \text{ et } m_p : \text{constantes connues}$$

¹¹ Fraction de pression non-thermique : modèle

· Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

 $P_{\rm tot} = P_{\rm th} + P_{\rm nth}$

 $= \frac{k_B T \rho_{\text{gas}}}{\mu m_p} + P_{\text{nth}} \quad \text{avec } k_B, \ \mu \text{ et } m_p \text{ : constantes connues}$

Modélisation de la fraction de pression non-thermique dans les amas :

$$\frac{P_{\rm nth}}{P_{\rm tot}}(r) \equiv \mathcal{F}(r) = \mathcal{F}_{\rm outer}(r) + \mathcal{F}_{\rm inner}(r)$$

with

$$\mathcal{F}_{\text{outer}}(r) = C\left\{1 - A\left(1 + \exp\left[\left(\frac{r/r_{200m}}{B}\right)^{\gamma}\right]\right)\right\}$$

and

$$\mathcal{F}_{inner}(r) = D\left(1 + \left(\frac{r/r_{200m}}{E}\right)^4\right)^{-\zeta/4}$$

 $\mathcal{F}_{ ext{outer}}$:

Formule empirique décrivant la fraction de pression non-thermique moyenne observée dans les simulations pour $r>0.1\times r_{200,m}$

$$\longrightarrow A, B, \gamma$$
 fixés au best-fit Nelson *et al.* (2014)

 $\mathcal{F}_{\mathrm{inner}}$:

Permet à la fraction de pression non-thermique d'augmenter dans le coeur

¹² Fraction de pression non-thermique : modèle

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

 $P_{\rm tot} = P_{\rm th} + P_{\rm nth}$

 $= \frac{k_B T \rho_{gas}}{\mu m_p} + P_{nth} \quad \text{avec } k_B, \ \mu \text{ et } m_p \text{ : constantes connues}$

Modélisation de la fraction de pression non-thermique dans les amas :

$$\frac{P_{\rm nth}}{P_{\rm tot}}(r) \equiv \mathcal{F}(r) = \mathcal{F}_{\rm outer}(r) + \mathcal{F}_{\rm inner}(r)$$
Attention au signe

with

$$\mathcal{F}_{\text{outer}}(r) = C\left\{1 - A\left(1 + \exp\left[\left(\frac{r/r_{200m}}{B}\right)^{\gamma}\right]\right)\right\}$$

and

$$\mathcal{F}_{inner}(r) = D\left(1 + \left(\frac{r/r_{200m}}{E}\right)^4\right)^{-\zeta/4}$$

 $\mathcal{F}_{ ext{outer}}$:

Formule empirique décrivant la fraction de pression non-thermique moyenne observée dans les simulations pour $r>0.1\times r_{200,m}$

$$\longrightarrow A, B, \gamma$$
 fixés au best-fit Nelson *et al.* (2014)

 $\mathcal{F}_{\mathrm{inner}}$:

Permet à la fraction de pression non-thermique d'augmenter dans le coeur

• Hypothèse : ICM dans un état d'équilibre où l'attraction gravitationnelle est compensée par un gradient de pression

$$\nabla P_{\text{tot}} = -\rho_{\text{gas}} \nabla \Phi$$

$$\cdot \text{ Utilisation de la formule de } P_{\text{tot}} \longrightarrow \frac{d}{dr} \left[\frac{1}{1 - \mathcal{F}(r)} \frac{\rho_{\text{gas}}(r) k_B T(r)}{\mu m_p} \right] = -\frac{GM_{\text{tot}}(r) \rho_{\text{gas}}(r)}{r^2}$$

14 Fraction de pression non-thermique : modèle

• Hypothèse : ICM dans un état d'équilibre où l'attraction gravitationnelle est compensée par un gradient de pression

$$\nabla P_{\text{tot}} = -\rho_{\text{gas}} \nabla \Phi$$
Utilisation de la formule de $P_{\text{tot}} \longrightarrow \frac{d}{dr} \left[\frac{1}{1 - \mathcal{F}(r)} \frac{\rho_{\text{gas}}(r) k_B T(r)}{\mu m_p} \right] = -\frac{GM_{\text{tot}}(r) \rho_{\text{gas}}(r)}{r^2}$

Calcul du profil de température sans introduire de modèle paramétrique supplémentaire :

$$k_B T(r) = k_B T_{\text{trunc}} + (1 - \mathcal{F}(r)) \frac{\mu m_p}{\rho_{\text{gas}}(r)} \int_r^{r_{\text{trunc}}} \frac{GM_{\text{tot}}(x)\rho_{\text{gas}}(x)}{x^2} dx$$

- I Sélection de l'échantillon d'amas
- II Modélisation du contenu matériel et de la fraction de pression non-thermique

III – Les observables

- IV Les données Chandra, Bolocam et HST/Subaru
- V Analyse et résultats

Émission de rayons X

- L'ICM émet des rayons X par bremsstrahlung thermique (free-free) des électrons énergétiques sur les ions
- **Signal** : nombre de coups de photons X d'une énergie définie à une certaine position dans le plan du ciel

• Flux X émis par l'amas mesuré à une énergie h
u dans un anneau de rayon interne R_1 et de rayon externe R_2 :

$$S = \frac{1}{4\pi D_L^2} \int_{R_1}^{R_2} 2\pi R dR$$
$$\int_{R}^{r_{\text{trunc}}} n_e(r) n_H(r) \Lambda \left[hv', T(r), Z(r)\right] \frac{2r dr}{\sqrt{r^2 - R^2}}$$

avec $h\nu' = h\nu/(1+z)$: énergie dans le référentiel de l'amas et Z(r): profil de métallicité de l'amas (modélisé)

L'analyse d'une carte de surface de brillance X permet de contraindre la densité du gaz

· L'amplitude de l'effet SZ est donnée par le paramètre de Compton :

$$y = \frac{\sigma_T}{m_e c^2} \int_R^{r_{\text{trunc}}} (n_e(r)k_B T(r) [1 + \delta_R(x, T(r))] \frac{2rdr}{\sqrt{r^2 - R^2}}$$

Caractérise la pression électronique thermique à l'intérieur de l'ICM

Weak lensing (WL)

- Changement de coordonnées modifiant l'image d'objets d'arrière-plan
- Mapping de la position angulaire réelle de l'objet $\vec{\beta}$ vers sa position observée $\vec{\theta}$

$$ightarrow$$
 Caractérisé par le Jacobien $A_{ij}=rac{\partialeta^{\imath}}{\partial heta^{j}}$

- · Séparation de la transformation de l'image d'un objet d'arrière-plan en 2 termes :
 - Convergence \mathcal{K} : augmente la taille angulaire des objets
 - Shear γ : élongation de l'image des objets (différent de l'ellipticité observée)
- Le Jacobien est relié au shear et à la convergence (observable) : $A = \begin{vmatrix} 1 \kappa \operatorname{Re}[\gamma] & -\operatorname{Im}[\gamma] \\ -\operatorname{Im}[\gamma] & 1 \kappa + \operatorname{Re}[\gamma] \end{vmatrix}$
- Convergence reliée à la densité totale de matiére dans l'amas : κ =

avec $\Sigma_{\rm crit} = \frac{c^2}{4\pi G} \frac{D_s}{D_{1s} D_1}$

$$=\frac{1}{\Sigma_{\rm crit}}\int_{R}^{\infty} \rho_{\rm tot}(r) \frac{2rdr}{\sqrt{r^2-R^2}}$$

Contraint la masse totale de l'amas de galaxies (potentiel gravitationnel)

- I Sélection de l'échantillon d'amas
- II Modélisation du contenu matériel et de la fraction de pression non-thermique
- III Les observables
- IV Les données Chandra, Bolocam et HST/Subaru
- V Analyse et résultats

• Chandra :

Soit un bin en énergie centré en $h
u_j$ et un anneau du ciel de rayon interne R_i et de rayon externe R_{i+1}

Mesure X donnée par : $S_{ij} = S_{ij}^{obs} - S_{ij}^{bkg}$ avec $\sigma_{S_{ij}} = \sqrt{S_{ij}^{obs} + S_{ij}^{bkg}}$

• Bolocam :

Mesure SZ donnée par la carte de surface de brillance SZ et par la matrice de covariance :

$$(C_{T_{\rm SZ}})_{ij} = \begin{cases} \frac{(\text{sensitivity})^2}{t_i} & i = j\\ 0 & i \neq j \end{cases}$$

Sensibilité calculée en utilisant 1000 réalisations de cartes de bruit à partir de cartes de jackknife

• HST et Subaru :

Combinaison des mesures de weak et strong lensing pour estimer un profil de convergence $\kappa(r)$

Rééchantillonnage du catalogue de shear par bootstrap (weak lensing) et variation gaussienne du redshift des images multiples (strong lensing) \longrightarrow estimation de la matrice de covariance C_{κ}

- I Sélection de l'échantillon d'amas
- II Modélisation du contenu matériel et de la fraction de pression non-thermique
- III Les observables
- IV Les données Chandra, Bolocam et HST/Subaru
- V Analyse et résultats

- Utilisation du code d'analyse JACO (Joint Analysis of Cluster Observations)
- · Algorithme MCMC utilisant un échantillonnage de Metropolis-Hastings de la postérieure :

$$p(\boldsymbol{\theta}_p | \boldsymbol{S}, \boldsymbol{T}_{sz}, \boldsymbol{\kappa}) \propto \mathcal{L}(\boldsymbol{S}, \boldsymbol{T}_{sz}, \boldsymbol{\kappa} | \boldsymbol{\theta}_p) \pi(\boldsymbol{\theta}_p)$$

- $\cdot\,$ À chaque pas du MCMC dans l'espace des paramètres $heta_p$:
 - Nouveau modèle d'amas généré
 Calcul du χ^2 total
 Spectres X associés $\widehat{S}_{ij}(\theta_p)$ Carte de surface de brillance SZ $\widehat{T}_{SZ}(\theta_p)$ Profil de convergence $\widehat{\kappa}(\theta_p)$ Calcul du χ^2 total $\chi^2_{XR} = \sum_{i,j} \frac{(S_{ij} \widehat{S}_{ij}(\theta_p))^2}{\sigma^2_{S_{ij}}}$ $\chi^2_{SZ} = \sum_i \frac{(T_{SZ,i} \widehat{T}_{SZ,i}(\theta_p))^2}{(C_{T_{SZ}})_{ii}}$ $\chi^2_{GL} = (\kappa \widehat{\kappa}(\theta_p))^{\intercal} C_{\kappa}^{-1} (\kappa \widehat{\kappa}(\theta_p))$
 - Test d'acceptance

Après convergence des chaînes, la postérieure finale contraint chaque paramètre du modèle d'amas choisi

$$F = \frac{\left(\chi_{\text{restricted}}^2 - \chi_{\text{unrestricted}}^2\right) / \chi_{\text{unrestricted}}^2}{\left(\nu_{\text{restricted}} - \nu_{\text{unrestricted}}\right) / \nu_{\text{unrestricted}}}$$

augmentation de la valeur du $\,\chi^2$ minimum résultant de la suppression d'un paramètre libre sur l'augmentation du ndf

Test statistique suivant une F-distribution sous l'hypothèse H_0 que le modèle non-contraint n'améliore pas l'ajustement

Densité de gas

- **G-0** We fix $\alpha = 0$ and $\rho_{\text{gas,c}} = 0$.
- **G-1a** We let α float, but fix $\rho_{gas,c} = 0$.
- **G-1b** We let $\rho_{gas,c}$ and r_c float (recall that $\beta_c = 1$), but fix $\alpha = 0$.
- **G-2** We let α , $\rho_{gas,c}$, and r_c float.

Table 3Maximally restricted model for each cluster as
determined by the *F*-test decision trees.

Name	Gas Density	Nonthermal Pressure Fraction
Abell 383 Abell 611 MACS J0429.6-0253 MACS J1311.0-0310 MACS J1423.8+2404 MACS I1532 8+3021	G-1b G-1a G-1a G-0 G-1b G-1b	F-1a F-0 F-0 F-0 F-0 F-1b

Fraction de pression non-thermique

- **F-0** We assume completely thermal pressure support by fixing C = 0 and D = 0.
- **F-1a** We allow for an outer nonthermal pressure component by floating C, but fix D = 0.
- **F-1b** We allow for an inner nonthermal pressure component by floating D, E, and ζ , but fix C = 0.
- **F-2** We allow for both outer and inner nonthermal pressure components by floating C, D, E, and ζ .

- Aucun amas du sous-échantillon ne nécessite un modèle totalement non-contraint

- Deux amas nécessitent un terme de pression non-thermique pour décrire les données observées

Intérêt de l'analyse jointe

Figure 2. Constraints on the concentration and total mass at r_{500c} for the six galaxy clusters in our sample. Contours denote 68% and 95% credible regions. The colors denote fits to different combinations of datasets. Blue denotes a fit to the lensing data only (GL), green the X-ray data only (XR), red the X-ray and SZ data (XR+SZ), and gold the full multiwavelength dataset using the maximally restricted model (XR+SZ+GL). Note that the range of the y-axis is different for each row. In the case of MACS J1532.8+3021, the model employed in the XR+SZ+GL fit includes an inner nonthermal pressure component that was omitted from the other three analyses (because it cannot be constrained without the full multiwavelength dataset) and results in the seemingly conflicting constraints on the concentration.

 Ajustement d'un sous-ensemble des données pour identifier les améliorations apportées par l'analyse jointe

Incertitude sur la mesure de la masse totale par le lensing (non-biaisée) significativement réduite par l'analyse jointe X-SZ-lensing

 Amas Abell 383 : mauvaise description par un modèle sphérique car vraisemblablement étiré le long de la ligne de visée (modèle triaxial de Morandi *et al.* (2012))

$$\begin{aligned} \theta_{\rm l.o.s} &= 21.1^{\circ} \pm 10.1^{\circ} \\ \eta_{\rm DM,a} &= 0.55 \pm 0.06 \\ \eta_{\rm DM,b} &= 0.71 \pm 0.10 \end{aligned}$$

 MACS J1532.8+3021 contient un AGN puissant qui induit certainement l'importante fraction de pression non-thermique observée dans le coeur de l'amas

²⁵ Fraction de pression non-thermique : résultat

- Nouvel ajustement des 5 amas bien décrits par un modèle sphérique en laissant le paramètre C variable
- Distribution postérieure marginalisée ightarrow paramètre C
- Postérieures multipliées entre-elles pour obtenir une contrainte combinée
- $\cdot\,$ L'intervalle de crédibilité à 95% sur C est donné par |0,0.43|
- Comparaison de la limite supérieure obtenue avec les résultats des simulations numériques

Table 6 Upper bound on the nonthermal pressure fraction at several overdensity radii.							
Parameter	N_{cluster} ^a	95% Upper Bound	Expectation from Simulation ^b				
С	5	0.44	1.00				
$\mathcal{F}(r_{2500c})$	5	0.06	0.15				
$\mathcal{F}(r_{500c})$	4	0.11	0.26				
$\mathcal{F}(r_{200c})$	1	0.29	0.35				
$\mathcal{F}(r_{200m})$	1	0.35	0.43				

^a Number of galaxy clusters used to construct the 95% upper bound.

^b Median value from the simulation of Nelson et al. (2014) for clusters with the mass/redshift as those used to construct the upper bound.

٠

٠

- Modèle sphérique avec équilibre hydrostatique et 100% de pression thermique adapté pour décrire 4 des 6 amas de l'échantillon sélectionné
- Contraintes sur la masse totale améliorées de 50 à 70% par l'analyse multi-sonde X-SZ-lensing vis-à-vis de celles obtenues par le lensing uniquement
- La fraction de pression non-thermique à r_{500c} est inférieure à 11% à 95% de niveau de confiance pour cet échantillon

Tension avec les simulations numériques qui suggèrent une fraction de 26% à r_{500c} pour des amas de masse et redshift équivalents

- Explication la plus probable : effet de sélection de l'échantillon (amas sphériques et relaxés)
- **Perspective des auteurs :** effectuer la même analyse sur les 25 amas de CLASH avec un modèle triaxial

V. Springel et al., Heidelberg Institute for Theoretical Studies

Merci de votre attention

La première règle du Journal Club est : "Il est important de participer au Journal Club"

Journal Club Astropart/Cosmo - Vendredi 11h

Sondage lancé par Celine | 1 5 | 90 | 0 il y a 40 jours

Renseignez le ou les jours où vous souhaitez présenter un article. Pas plus de deux articles par séance pour laisser du temps aux discussions.

pining .

Ce sondage est plus grand que d'habitude

Agrandir la vue pour participer au sondage.

Montrer les 12 options

Vue tableau

	novembre	novembre 2016 janvier 2017			février 2017	mars 2017	
5 participants	ven. 18	ven. 25	ven. 13	ven. 20	ven. 27	ven. 10	ven. 31
Celine					1		
Barbara			?	?	?	?	?
Q Vincent		1	?	?	?	?	?
C Florian			1				
David	1			1			
Votre nom							
	1	1	1	1	1	0	0
							Enregistrer