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Abstract
We present a joint analysis of Chandra X-ray observations, Bolocam thermal Sunyaev-Zeldovich (SZ) effect

observations, Hubble Space Telescope (HST) strong lensing data, and HST and Subaru Suprime-Cam weak
lensing data. The multiwavelength dataset is used to constrain parametric models for the distribution of dark
and baryonic matter in a sample of six massive galaxy clusters selected from the Cluster Lensing And Super-
nova survey with Hubble (CLASH). For five of the six clusters, the multiwavelength dataset is well described
by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal
pressure support. The joint analysis yields considerably better constraints on the total mass and concentration
of the cluster compared to analysis of any one dataset individually. The subsample of five galaxy clusters is
used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to non-
thermal processes, such as turbulence and bulk flow of the gas. We constrain the nonthermal pressure fraction
at r500c to be < 0.11 at 95% confidence. This is in tension with state-of-the-art hydrodynamical simulations,
which predict a nonthermal pressure fraction of ⇡ 0.25 at r500c for clusters of similar mass and redshift. This
tension may be explained by the sample selection and/or our assumption of spherical symmetry.
Subject headings: galaxies: clusters: general — galaxies: clusters: individual: (Abell 383, Abell 611,

MACS J0429.6-0253, MACS J1311.0-0310, MACS J1423.8+2404, MACS J1532.8+3021)
— galaxies: clusters: intracluster medium

1. INTRODUCTION

Galaxy clusters play a unique role in the standard theory of
structure formation as the largest objects to have undergone
gravitational collapse. This makes them a powerful tool for
understanding the hierarchical process of structure formation
and the cosmological backdrop in which it occurs. Galaxy
clusters have a wealth of observable properties through which
they can be detected and studied. They are populated with
luminous galaxies that emit light in the optical and infrared
regions of the spectrum. They gravitationally lens the light
emitted from background galaxies – a process that is sen-
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sitive to the total cluster mass, the majority of which is at-
tributed to dark matter. Finally, they are pervaded by a diffuse,
hot and ionized gas known as the intracluster medium (ICM)
that accounts for the majority (⇠ 90%) of the baryonic mass.
The ICM emits X-rays through thermal bremsstrahlung ra-
diation (Sarazin 1988) and inverse-Compton scatters Cosmic
Microwave Background (CMB) photons through the thermal
Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1972).

The hydrodynamical state of the ICM can be understood
from analytical considerations, and numerical simulations can
be used to make detailed predictions (e.g., Shaw et al. (2010);
Battaglia et al. (2012); Nelson et al. (2014)). However, it is
not yet known how well these simulations account for many
of the complicated but relevant baryonic processes that take
place during cluster formation. These processes include star
formation, energy loss via radiative cooling, energy injection
and metal enrichment via active galactic nuclei and super-
novae winds, turbulence, and, at the cluster outskirts, incom-
plete virialization and bulk flow. Our lack of knowledge is es-
pecially evident in the cluster outskirts, where there is sparse
observational data to ground the predictions made by hydro-
dynamical simulations.

In our current understanding of cluster formation, an ini-
tial fast collapse is followed by a series of major mergers
and the slow growth of the cluster outskirts through accre-
tion of the surrounding intergalactic medium (IGM). The cold
IGM infalls at supersonic speeds and is shock heated near the
virial radius. The accretion shocks thermalize the majority of
the kinetic energy acquired by the gas during infall. Recent
work suggests, however, that this mechanism does not result
in complete virialization, and that some fraction of the kinetic
energy remains in bulk and turbulent flow of the ICM (Cav-
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sitive to the total cluster mass, the majority of which is at-

tributed to dark matter. Finally, they are pervaded by a diffuse,

hot and ionized gas known as the intracluster medium (ICM)

that accounts for the majority (⇠ 90%) of the baryonic mass.

The ICM emits X-rays through thermal bremsstrahlung ra-

diation (Sarazin 1988) and inverse-Compton scatters Cosmic

Microwave Background (CMB) photons through the thermal

Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1972).

The hydrodynamical state of the ICM can be understood

from analytical considerations, and numerical simulations can

be used to make detailed predictions (e.g., Shaw et al. (2010);

Battaglia et al. (2012); Nelson et al. (2014)). However, it is

not yet known how well these simulations account for many

of the complicated but relevant baryonic processes that take

place during cluster formation. These processes include star

formation, energy loss via radiative cooling, energy injection

and metal enrichment via active galactic nuclei and super-

novae winds, turbulence, and, at the cluster outskirts, incom-

plete virialization and bulk flow. Our lack of knowledge is es-

pecially evident in the cluster outskirts, where there is sparse

observational data to ground the predictions made by hydro-

dynamical simulations.

In our current understanding of cluster formation, an ini-

tial fast collapse is followed by a series of major mergers

and the slow growth of the cluster outskirts through accre-

tion of the surrounding intergalactic medium (IGM). The cold

IGM infalls at supersonic speeds and is shock heated near the

virial radius. The accretion shocks thermalize the majority of

the kinetic energy acquired by the gas during infall. Recent

work suggests, however, that this mechanism does not result

in complete virialization, and that some fraction of the kinetic

energy remains in bulk and turbulent flow of the ICM (Cav-
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Table

1

Characteristics of the multiwavelength observations of the six galaxy clusters in our sample.

Name
z RA

DEC SZ S/N Chandra Nsys
a HST rgal

b Subaru rgal
c

(J2000) (J2000)
Time (ksec)

(arcmin�2) (arcmin�2)

Abell 383
0.187 02:48:03.40 -03:31:44.9 9.6 38.8 9 50.7

9.0

Abell 611
0.288 08:00:56.82 +36:03:23.6 10.8 36.1 4 42.3

8.8

MACS J0429.6-0253 0.399 04:29:36.05 -02:53:06.1 8.9 23.2 3 42.4 12.0

MACS J1311.0-0310 0.494 13:11:01.80 -03:10:39.8 9.6 63.2 2 33.7 20.2

MACS J1423.8+2404 0.545 14:23:47.88 +24:04:42.5 9.4 115.6 5 75.3
9.8

MACS J1532.8+3021 0.363 15:32:53.78 +30:20:59.4 8.0 89.0 0 35.9 16.6

a The number of multiple-image systems used in the strong lensing analysis of Merten et al. (2015).

b The surface-number density of background selected galaxies in the HST field used for the weak lensing analysis of Merten

et al. (2015).c The surface-number density of background selected galaxies in the Subaru field used for the weak lensing analysis of Merten

et al. (2015) and derived from the work of Umetsu et al. (2014).

phologies in both X-ray and SZ maps. We emphasize that a

round and regular morphology is a necessary, but not suffi-

cient, condition for our assumed spherical model to provide

an accurate description of the cluster. For example, objects

that appear round in the plane of the sky are often elongated

along the line of sight, due to the fact that massive clusters

tend to have a prolate geometry (Meneghetti et al. 2010; Ra-

sia et al. 2012; Meneghetti et al. 2014). As detailed in Sec-

tion 6, such an elongation could potentially bias some of the

constraints we derive using a spherical model. However, for

all but one cluster in our study, the spherical model provides

an adequate fit to the data, implying that any elongation bias

is subdominant to the statistical uncertainties.
The cluster subset for this analysis is chosen in the follow-

ing way. We start by restricting our attention to the 20 CLASH

clusters that were chosen based on X-ray morphology. Sim-

ulations suggest that these 20 clusters are predominately re-

laxed (⇠ 70%) and largely free of orientation bias (Meneghetti

et al. 2014). A cluster must satisfy two additional require-

ments in order to be placed in our sample. First, the SZ mor-

phology must be circular. This requirement is implemented

by fitting the SZ image alone using circular and elliptical ver-

sions of the generalized-NFW model (gNFW) for the thermal

pressure (Nagai et al. 2007; Arnaud et al. 2010), and exam-

ining whether the elliptical model is preferred by performing

a statistical F-test. Czakon et al. (2015) outlines this proce-

dure and presents the results for all CLASH clusters. Second,

we require that the X-ray centroid shift parameter, w500c, is

less than 0.006. The centroid shift parameter is the standard

deviation in units of r500c of the separation between the peak

and centroid of the X-ray emission calculated in increasing

aperture sizes up to r500c. The w500c values for all CLASH

clusters were calculated using Chandra data according to the

procedure described in Maughan et al. (2008, 2012) and are

presented in Sayers et al. (2013a).Of the 20 X-ray selected CLASH clusters, 8 satisfy both

requirements. However, a qualitative comparison of the mass

profiles obtained from independent analyses of the gravita-

tional lensing data by Merten et al. (2015) and Umetsu et al.

(2015a) suggested possible discrepancies for 2 of the 8 clus-

ters: MACS J1931.8-2634 and MS 2137.3-2353. Since we

were not confident in the lensing constraints for these two

clusters at the time of the analysis, we removed them from

our sample. Note that Merten et al. (2015) performed a joint

analysis of HST strong lensing and HST/Subaru weak lens-

ing shear data, whereas Umetsu et al. (2015a) also included

HST/Subaru weak lensing magnification data. In the case

of MACS J1931.8-2634, the discrepancy is likely due to un-

accounted systematic uncertainties in the calibration of the

magnification data for clusters at low galactic latitude. In

the case of MS 2137.3-2353, a quantitative comparison has

since demonstrated that the two analyses are indeed consistent

within their respective uncertainties (Umetsu et al. 2015a).

Table 1 lists the 6 CLASH clusters that make up our sample,

presents their basic properties, and provides metrics for the

quality of their observations.

3. CLUSTER MODELWe assume that the galaxy cluster is spherically symmet-

ric and use parametric functions to describe the radial depen-

dence of the total matter density, gas density, metallicity, and

fraction of the total pressure support sourced by nonthermal

processes. By further assuming that the cluster is in a state of

hydrostatic equilibrium, we can predict all observable quanti-

ties of interest.

3.1. Total Matter Density
We model the total matter density with the Navarro-Frenk-

White profile (NFW hereafter) (Navarro et al. 1995, 1996)rtot(r) = rtot,0

✓
r

rs

◆�1 ✓
1+ r

rs

◆�2

, (1)which is defined by two parameters: a normalization rtot,0 and

scale radius rs. It is standard to reparameterize in terms of the

total mass and concentration at a particular overdensity radiusMtot, Dref ⌘ 4pr3
s rtot,0


ln

✓
rs + rDref

rs

◆
� rDref

rs + rDref

�
(2)cDref ⌘ rDref

rs
,

(3)where rDref denotes the radius at which the average enclosed

density is D times some reference density. Two common ref-

erence densities that we will employ in this work are the criti-

cal density of the universe and the mean matter density of the

universe

rc(z) = 3H 2
0

8pG
⇥
Wm(1+ z)3+WL

⇤
, (4)

rm(z) = 3H 2
0

8pG Wm(1+ z)3 .
(5)

4

The overdensity radius rDref is determined by solving the im-

plicit equation

Mtot, Dref =
4
3
pr3

DrefDrref .
(6)

Common overdensity radii that are used throughout the liter-

ature and will be referenced in this paper are r2500c < r500c <

r200c < r200m.

3.2. Gas Density

We model the gas density as

rgas(r) =
rgas,0

✓ r
rgas

◆�a
 

1+
✓ r

rgas

◆2
!(a�3b )/2

⇥

 
1+
✓ r

rgas, outer

◆d
!�e/d

+rgas, core

 
1+
✓ r

rgas, core

◆2
!�3bcore/2

,
(7)

which is inspired by the expression used in Vikhlinin et al.

(2006) to describe the X-ray surface brightness of nearby re-

laxed galaxy clusters. Equation (7) is the sum of two b -

models (Cavaliere & Fusco-Femiano 1978), with the first b -

model modified by two additional factors. The r�a power-

law factor allows for a central cusp instead of the flat core

inherent to the b -model (Pratt & Arnaud 2002). This is nec-

essary to describe cool-core clusters, which tend to exhibit a

nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-

son & Ponman 2010). The r�e factor allows for the logarith-

mic slope of the gas density to steepen by some amount e at

radius rgas,outer (with rgas,outer > rgas). The parameter d controls

how quickly the gas density transitions from the r�3b power-

law to the r�3b�e power-law; we fix d = 4 for this analysis.

Steepening of the gas density profile in the cluster outskirts

is observed in hydrodynamical simulations (Roncarelli et al.

2006), X-ray observations of individual clusters (Vikhlinin

et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston

et al. 2008; Sanderson & Ponman 2010), and the stacked anal-

ysis of X-ray data from many clusters (Morandi et al. 2015).

The second b -model aids in the description of the core region

of the cluster. To ensure this role, we force rgas,core < 50 kpc

and fix bcore = 1. We note that our model differs from that pre-

sented in Vikhlinin et al. (2006) in two regards. First, we as-

sume a value d = 4 resulting in a slightly more rapid transition

than the Vikhlinin et al. (2006) model, which assumes a value

d = 3. This choice was motivated by a similar multiwave-

length analysis performed by Morandi et al. (2012). Second,

we model the gas density rgas whereas they model the X-ray

surface brightness, which is proportional to r2
gas. Therefore,

our prediction for the X-ray surface brightness will have a

cross-term between the first and second b -model that is not

present in their model. This will result in slightly different

gas density profiles for the same set of parameter values in

the region where the core b -model transitions to the primary

b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal

pressure and the nonthermal pressure

Ptot = Pth +Pnth

(8)

=
kBTrgas

µmp
+Pnth ,

(9)

where mp is the proton mass, µ is the mean molecular weight

of the ICM, and T is the temperature of the ICM. We model

the nonthermal pressure fraction as

Pnth

Ptot

(r)⌘ F (r) = Fouter(r)+Finner(r)
(10)

with

Fouter(r) =
C
⇢

1�A
✓

1+ exp
✓ r/r200m

B

◆g�◆� (11)

and

Finner(r) =
D

 
1+
✓ r/r200m

E

◆4
!�z/4

.
(12)

The Fouter term is a scaled version of the Nelson et al. (2014)

empirical fitting formula used to describe the mean non-

thermal pressure fraction observed in the region r & 0.1 ⇥

r200,m in a mass-limited sample of clusters from a high-

resolution hydrodynamical simulation. We fix the radial de-

pendence to that observed in the simulation by fixing the pa-

rameters [A, B, g] at the Nelson et al. (2014) best-fit values

[0.452, 0.841, 1.628], and allow only the normalization C to

float. The Finner term allows the nonthermal pressure fraction

to increase by some amount D in the cluster core. We require

that E < 0.1, which ensures that this inner term only describes

regions interior to those examined in the simulations, which

are well described by Fouter. There are a number of physical

processes that can strongly influence the thermodynamic state

of the ICM in the cluster core. Our goal in introducing the sec-

ond term is to decouple the nonthermal pressure in the outer

regions of the cluster, which is the quantity we would like to

constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where

the inward gravitational pull is balanced by a pressure gradi-

ent. This assumption of hydrostatic equilibrium is expressed

as the following differential equation:

—Ptot =�rgas—F ,

(13)

where F is the gravitational potential. We note that Equa-

tion (13) contains nonthermal pressure support as part of Ptot,

and it therefore differs from the standard definition of hydro-

static equilibrium that is commonly used in the literature and

implies entirely thermal pressure support. We are allowing

a nonthermal pressure component sourced by bulk and turbu-

lent motions of the gas to provide some fraction of the support

necessary to prevent gravitational collapse. For our model,

Equation (13) is written as

d
dr

 1

1�F (r)
rgas(r)kBT (r)

µmp

�
=�

GMtot(r)rgas(r)

r2
, (14)

where G is the gravitational constant and kB is the Boltzmann

5

constant. Integration yields

kBT (r) = kBTtrunc+

(1�F (r))
µmp

rgas(r)

Z rtrunc

r

GMtot(x)rgas(x)
x2 dx , (15)

where Ttrunc is the temperature at some radius rtrunc that desig-
nates the outer boundary of the ICM. Our model does not as-
sume an explicit parameterization for the temperature, rather
it is an internal variable that is derived from the total den-
sity, gas density, and nonthermal pressure fraction assuming
hydrostatic equilibrium.

We must the model the metallicity of the ICM because it in-
fluences the X-ray cooling function and thus the X-ray emis-
sion. We describe the metallicity with the function

Z(r) = Z0

 
1+
✓

r
rZ

◆2
!�3bZ/2

, (16)

which allows for a central metallicity Z0 that transitions to

a power-law r�3bZ at radius rZ (Pizzolato et al. 2003). The
electron and hydrogen number density are given by

nH(r) =
X
mp

rgas(r) , ne(r) =
⌧

ne

nH

�
nH(r) , (17)

where X denotes the hydrogen mass fraction and < ne/nH >

the ion to hydrogen ratio. The mean molecular weight µ ,
which appears in several equations above, along with X and
< ne/nH >, are mild functions of the metallicity, and are cal-
culated using an absolute metallicity given by Equation (16)
with the relative abundances fixed on the photospheric values
given by Grevesse & Sauval (1998).

3.4. Observables

All observable quantities of interest can be predicted from
the above model. Let DA(z) denote the angular diameter dis-
tance, q the angular separation from the cluster center, and
R = DAq the radius from the cluster center projected on the
plane of the sky.

3.4.1. X-ray

The X-ray flux from the cluster measured at an energy hn
within an annulus of inner radius R1 and outer radius R2 is
given by

S =
1

4pD2
L

Z R2

R1
2pRdR

Z rtrunc

R
ne(r)nH(r)L

⇥
hn 0,T (r),Z(r)

⇤ 2rdrp
r2 �R2

,

(18)

where DL(z) is the luminosity distance, hn 0 = hn/(1+ z) is
the energy in the cluster rest frame, and L [hn 0,T (r),Z(r)] is
the X-ray cooling function. In addition to the X-ray flux from
the cluster our model includes X-ray flux from a uniform ther-
mal background:

Ssbkg = Asbkg L [n ,Tsbkg,Z�] . (19)

This accounts for galactic soft X-ray emission which varies
across the sky and therefore is not adequately subtracted using
a background observation (see Mahdavi et al. 2007 for more
details). Here Asbkg acts as an overall normalization and Tsbkg ⇠
0.5 keV is the temperature of the galactic, X-ray emitting gas.

3.4.2. Thermal SZ Effect

The thermal SZ effect results in a distortion of the CMB
blackbody spectrum. The change in the temperature of the
CMB measured at a frequency n and projected radius R is
given by

TSZ = TCMB f (x)y . (20)

The function f (x) encodes the frequency dependence of the
classical distortion

f (x) = x
ex +1
ex �1

�4 , (21)

where x ⌘ hn/kBTCMB. The Compton y parameter sets the
magnitude of the distortion and is proportional to the integral
of the thermal electron pressure along the line of sight

y =
sT

mec2

Z rtrunc

R
ne(r)kBT (r) [1+dR(x,T (r))]

2rdrp
r2 �R2

,

(22)

where sT is the Thomson cross section, c is the speed of light,
and me is the mass of the electron. The quantity dR(x,T (r))
is a correction for the relativistic motion of the electrons,
which we approximate using the expansion given in Itoh et al.
(1998).

3.4.3. Gravitational Lensing

Based on the generally applicable assumption that the line
of sight extent of the mass distribution is small compared to
the distances between the observer, mass distribution, and
background galaxies, gravitational lensing of the light from
those galaxies is described by a lens equation � = ✓�↵(✓)

which maps the angular coordinates of the galaxy in the
source plane � = [b1,b2] to the coordinates in the lens plane
✓ = [q1,q2] through a deflection angle ↵= [a1,a2] (see, e.g.,
Bartelmann & Schneider 2001; Bartelmann 2010). We can
define a lensing potential

Y(✓) =
Dls

DlDs

2
c2

Z •

�•
F(R,`)d` , (23)

which is just the three-dimensional gravitational potential
projected along the line of sight and rescaled. In the
above equation Ds, Dl , and Dls denote the observer-source,
observer-lens, and lens-source angular diameter distances, re-
spectively. The deflection angle is then equal to the gradient
of the lensing potential

↵(✓) = —Y(✓) . (24)

The convergence k and complex shear � = [g1,g2] of the lens
are also related to the lensing potential through the equations

k(✓) =
1
2

✓
∂ 2

∂q 2
1
+

∂ 2

∂q 2
2

◆
Y(✓) =

S(✓)
Scrit

(25)

g1(✓) =
1
2

✓
∂ 2

∂q 2
1
�

∂ 2

∂q 2
2

◆
Y(✓) (26)

g2(✓) =
∂

∂q1

∂
∂q2

Y(✓) . (27)
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Here S(✓) is the surface mass density and Scrit is the critical

surface mass density for lensing, given byScrit = c2

4pG
Ds

DlsDl
,

(28)

where G is the gravitational constant.

In the weak lensing regime the gravitational shear intro-

duces a complex ellipticity e to the images of background

galaxies which is approximately equal to � and is described

by the reduced shear

hei= �
1�k ,

(29)

where hei denotes a local average necessary to mitigate the in-

trinsic ellipticity of the galaxies. In the strong lensing regime,

where multiple solutions to the lens equation are possible,

more than one image of a single source can be observed.

These multiple images straddle critical lines whose locations

are set by the relation

(1�k)2� g 2
= 0 .

(30)

The combined strong and weak lensing analysis outlined in

the following section employs the location of the critical lines

and the ellipticity of background galaxies to measure the con-

vergence of the galaxy cluster. According to our model the

convergence measured at a projected radius R is given by
k = 1

Scrit

Z •

R
rtot(r) 2rdrp

r2�R2 .
(31)

4. DESCRIPTION OF THE MULTIWAVELENGTH DATASET

4.1. Chandra X-ray

The reduction of the CLASH X-ray data is described in de-

tail in Donahue et al. (2014) and we briefly summarize the

procedure below. The data is processed using CIAO 4.6.1 (re-

leased February 2014) and CALDB 4.5.9 (released Novem-

ber 2013). Flares are identified as time intervals with outlier

event rates in 0.5–7.0 keV light curves extracted from source-

free areas of the detector. Events coincident with a flare are

removed from the event lists. Bright point sources are iden-

tified using the CIAO wavdetect algorithm and a map of the

PSF size as a function of location on the detector. Regions

near the bright point sources are filtered from the event lists.

Each dataset is matched to a deep background file from a sim-

ilar observation epoch, which is used to subtract contamina-

tion from faint point sources, galactic soft X-ray emission,

and non-flaring particle events (Hickox & Markevitch 2007;

Markevitch et al. 2003). The background files are filtered, re-

projected, and rescaled to match the target observation. The

rescaling is done by adjusting the exposure time on the deep

background file so that the event rate between 10�12 keV is

equal to that in the cluster field. This particular energy range

is chosen because the effective area for X-ray photons is low

and the event rate is dominated by high-energy particle events.

X-ray spectra are generated in concentric annular bins cen-

tered on the coordinates given in Table 1. The boundaries of

the bins are selected so that at least 1500 photon counts from

the cluster are contained in each annulus and the width of each

annulus is at least a few times the width of the PSF. Compared

to the analysis of Donahue et al. (2014), we have added one

additional annulus to each cluster. This annulus is located be-

yond the radius of the outermost annulus used in that work.

The spectra are binned in energy from 0.5–11.0 keV with a

bin width of 38 eV. The same binning scheme is applied to

both the observation file and the deep background file. The

individual weighted redistribution matrix file (RMFs) and an-

cillary response file (ARFs) are then computed. The cluster

field spectra S obs, deep background spectra S bkg, RMFs, and

ARFs are all input to the multiwavelength analysis.

The spectra generated from the deep background file are

eventually subtracted from the spectra generated from the tar-

get observation file. Consider the energy bin hn j and the an-

nulus with inner radius Ri and outer radius Ri+1. The resulting

X-ray measurement is

Si j = S obs
i j �S bkg

i j

(32)

and the associated Poisson error is
sSi j =

q
S obs

i j +S bkg
i j

(33)

with units of counts sec�1 keV�1.4.2. Bolocam Thermal SZ Effect

The thermal SZ effect has been measured at 140 GHz for

the six clusters in our sample using Bolocam, a 144-element

bolometric imaging camera at the Caltech Submillimeter Ob-

servatory (Glenn et al. 1998; Haig et al. 2004). Bolocam

has an 8 arcmin diameter circular field of view (FOV) and

a 58 arcsec full width at half maximum point spread function

(PSF). The measurements were made over the course of 14

observing runs between 2006 and 2012 as part of a larger cam-

paign that resulted in the creation of the Bolocam X-ray SZ

(BOXSZ) sample of 45 galaxy clusters (Sayers et al. 2013b;

Czakon et al. 2015). We summarize the general properties of

the SZ data products here, and direct the interested reader to

Sayers et al. (2011) for a description of the data reduction, flux

calibration, and noise estimation, and Czakon et al. (2015) for

a description of the BOXSZ sample. The SZ data products

for all of the clusters in the BOXSZ sample are publicly avail-

able. 15
Noise sourced by fluctuations in atmospheric emission

dominates the raw detector timestreams at long timescales.

The atmospheric noise is mitigated by subtracting the

response-weighted mean detector signal and applying a

250 mHz high-pass filter (Sayers et al. 2011). This data pro-

cessing attenuates the cluster signal in a way that is mildly

dependent on the cluster shape and also results in the loss of

the image’s mean signal. To account for the attenuation of the

cluster signal, a complex-valued two-dimensional map space

Fourier transfer function is calibrated for each cluster. The

mean signal of the image is included as a free parameter T̄SZ

in our model fits.Non-astronomical noise is estimated from 1000 jackknife

realizations of the cluster image. To account for astronomi-

cal noise sourced by CMB anisotropies and unresolved point

sources, Gaussian random realizations of the 140 GHz sky are

generated from SPT power spectrum measurements (Keisler

et al. 2011; Reichardt et al. 2012), passed through the data

processing pipeline, and added to each of the 1000 jackknife

realizations. Note that the SPT power spectrum measure-

ments cover the full range of angular scales probed by the

Bolocam images. Known radio point sources have been sub-

tracted from the Bolocam images, and random realizations of
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the estimated residual from the subtraction are injected into

the each of the 1000 jackknife realizations as well. It has

been confirmed that the resulting 1000 noise realizations are

statistically indistinguishable from observations of blank sky

(Sayers et al. 2011).

The pixel-to-pixel covariance matrix of the SZ image is es-

timated as

(CTSZ
)i j =

8
<

:

(sensitivity)
2

ti

i = j

0
i 6= j ,

where ti is the (known) integration time for pixel i. The sen-

sitivity is determined by fitting a Gaussian to a histogram of

the product of the pixel value and the square root of the pixel

integration time for all pixels in all 1000 noise realizations.

The assumption that the off-diagonal elements are zero is a

good but not perfect description of the data. The set of ob-

servations do not contain enough information to estimate the

off-diagonal elements of the covariance matrix, and simplify-

ing assumptions about the structure of the covariance matrix

(e.g., that it is only a function of pixel separation) have proven

false. Instead, we carry out a test (described in Section 5.3) to

determine what effect the small inter-pixel correlations in the

SZ image have on the resulting parameter constraints. We find

that the effect is not significant, and therefore ignore the off-

diagonal noise terms throughout our analysis. We also note

that Sayers et al. (2011) demonstrates that the distribution of

c2 values obtained from fitting a model to the Bolocam SZ

data accounting for inter-pixel correlations using the noise re-

alizations is nearly identical to the theoretical c2 distribution

for the diagonal covariance matrix assumption.

The SZ images are 14 arcmin⇥ 14 arcmin with 20 arcsec

square pixels. For our analysis we only fit pixels with an angu-

lar separation q  6.33 arcmin from the center of the image.

This is the largest aperture wherein all pixels have an integra-

tion time t > 0.25⇥tmax, where tmax is the maximum integration

time achieved in the center of the image. The input to the mul-

tiwavelength analysis is the image TSZ in units of µKCMB, the

diagonal covariance matrix CTSZ
, and the transfer function of

the data processing pipeline.

4.3. HST and Subaru Gravitational Lensing

The vast majority of the CLASH clusters have HST strong

lensing, HST weak lensing, and Subaru Suprime-Cam weak

lensing constraints. Merten et al. (2015) outlines the proce-

dure used to self-consistently combine these constraints into

a nonparametric estimate of the lensing convergence profile.

We summarize the main steps of this procedure.

The strong lensing reduction begins by identifying

multiple-image systems in the 16-band HST images using the

method outlined in Zitrin et al. (2009, 2015). The redshift

associated to each multiple-image system is either a spec-

troscopic redshift from the CLASH VLT-VIMOS program

(Balestra et al. 2013), a Bayesian photometric redshift deter-

mined from HST photometry (Benı́tez 2000), or a value culled

from the literature. Using the method outlined in Merten et al.

(2009), the multiple-image systems are used to infer the loca-

tion of the critical lines. The locations of the critical lines are

inputs to the reconstruction algorithm.

The weak lensing input takes the form of a shear catalog

that lists the coordinates, redshift, and complex ellipticity of

background galaxies in the cluster field. The creation of the

HST shear catalog is outlined in Section 3.2 of Merten et al.

(2015) and the creation of the Subaru shear catalog is outlined

in Section 4 of Umetsu et al. (2014). The HST and Subaru

catalogs are combined into a single catalog. Before doing

so, the HST complex ellipticity measurements are multiplied

by a scale factor to refer them to the effective redshift of the

Subaru catalog. The catalogs are concatenated and the signal-

to-noise-weighted mean is computed for sources that appear

in both catalogs.

The SaWL
ens algorithm (Merten et al. 2009) is used to per-

form a nonparametric reconstruction of the lensing potential

y(✓) on an adaptively refined two-dimensional grid from the

strong lensing critical lines and the weak lensing shear cata-

log. Three different grid sizes are employed: a coarse reso-

lution grid (25� 36 arcsec pixel), which is applicable to the

wide field Subaru weak lensing data, an intermediate resolu-

tion grid (8�13 arcsec pixel), which is applicable to the HST

weak lensing data, and a fine resolution grid (6� 10 arcsec

pixel), which is applicable to the HST strong lensing data.

The lensing potential at each pixel of the grid is estimated by

minimizing a c2 function that accounts for measurements of

the average ellipticity of nearby background galaxies and the

location of nearby critical lines. The assumption of spherical

symmetry is not used in this reconstruction, nor are any other

prior assumptions about the mass distribution of the cluster.

The convergence of the lens k(✓) is then obtained by taking

second-order numerical derivatives of the reconstructed lens-

ing potential as prescribed by Equation (25). The SaWL
ens

algorithm has been shown to recover the convergence (or,

equivalently, surface mass density) of simulated clusters over

a wide range of scales (50 kpc� several Mpc) with an accu-

racy of 10% (Meneghetti et al. 2010).

The convergence map is azimuthally binned about the co-

ordinates given in Table 1. The inner boundary is set by the

resolution of the highest refinement level of the adaptive grid.

The outer boundary is fixed at the angular scale corresponding

to 2 Mpc h�1 ⇡ 2.85 Mpc h�
1

70 . The radial range defined by

these two boundaries is split into 15 bins, with the bin width

decreasing as the level of refinement is increased.

Errors are estimated from 1000 resampled realizations of

the k(✓) map. Each realization is created by taking a boot-

strap resampling of the shear catalog in the case of weak lens-

ing and a random sampling of the allowed redshift range of

the multiple-image systems in the case of strong lensing. The

full reconstruction process and azimuthal binning is carried

out on the 1000 realizations. The set is used to estimate the

covariance matrix Ck of the 15 radial bins. The convergence

profile  and associated covariance matrix Ck then act as in-

puts to the multiwavelength analysis.

The only difference in the procedure outlined above and

that presented in Merten et al. (2015) is that we center the

convergence profile on the peak of the X-ray emission rather

than the peak of the convergence map. As a result, we mea-

sure a lower convergence in the innermost bin than what is

presented in that work. The choice of center does not have a

significant effect on the convergence profile beyond the inner-

most bin. 5. METHOD

5.1. Joint Analysis of Cluster Observations (JACO)

We use the Joint Analysis of Cluster Observations (JACO)

software package to fit the model outlined in Section 3 to the

X-ray, SZ, and lensing data described in Section 4. JACO

provides a self-consistent framework for modeling and fit-
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Table 2

Model parameters and their priors.

Parameter Lower Boundary Upper Boundary Units Description

Total Density

Mtot(0.5 Mpc) 0.05 100.0 1014 M� NFW normalization. Total mass within 0.5 Mpc.

rs
0.05 25.0 Mpc NFW scale radius.

Gas Density

Mgas(0.5 Mpc) 0.0001 1.0 1014 M� Total gas mass within 0.5 Mpc.

rgas
0.0005 2.0 Mpc Scale radius of the modified b -model.

b 0.30 5.0 · · · Power-law slope (�3b ) of the modified b -model.

rgas, outer
0.20 5.0 Mpc Scale radius of the outer portion of the modified b -model.

e 0.20 5.0 · · · Power-law slope (�e) of the outer portion of the modified b -model.

a 0 1.5 · · · Power-law slope (�a) of the inner portion of the modified b -model.

[Mgas, core/Mgas](0.5 Mpc) 0 0.50 · · · Fraction of the total gas mass within 0.5 Mpc that is attributed to the

secondary, core b -model.

rgas, core
0.05 50 kpc Scale radius of the secondary, core b -model.

Nonthermal Pressure Fraction

C 0.00 1.825 · · · Normalization of the mean nonthermal pressure fraction profile ob-

served in simulation.

D 0.00 0.50 · · · Normalization of the core nonthermal pressure fraction profile.

E 0.001 0.10 r200m Scale radius of the core nonthermal pressure fraction profile.

z 0.5 3.00 · · · Power law slope (�z ) of the core nonthermal pressure fraction profile.

Nuisance Parameters

Ttrunc
0.00 15.0 keV Temperature of the ICM at the truncation radius.

Z0
0.1 2.90 Z� Metallicity in the center of the cluster.

rZ
0.005 1.00 Mpc Metallicity scale radius.

bZ
0.00 0.80 · · · Metallicity power-law slope (�3bZ).

T̄SZ
-1000 1000 µKCMB Mean value of the SZ image.

Tsbkg
0.1 0.50 K Temperature of the soft X-ray background.

Asbkg
-0.001 0.001 · · · Normalization of the soft X-ray background.

Note. — Only a subset of these parameters are allowed to float for a given cluster, as determined by the F-test decision tree described in Section 5.2. We

assume a uniform prior between the lower and upper boundaries.

ting multiwavelength observations of galaxy clusters (Mah-

davi et al. 2007). The general principle underlying JACO is

“forward model fitting”. The candidate model is projected,

convolved, and filtered so that it can be compared to the data

directly. The software is well tested; JACO has been used

to examine X-ray and weak lensing scaling relations for a

sample of 50 massive galaxy clusters in the Canadian Cluster

Comparison Project (Mahdavi et al. 2013). It has also been

used to estimate the hydrostatic mass, gas mass fraction, and

ICM temperature from Chandra and XMM observations of

the CLASH sample (Donahue et al. 2014).
As part of this work, we have expanded and modified the

version of JACO described in Mahdavi et al. (2007, 2013) in

the following ways. We have added the ability to fit Bolocam

SZ images. We use the convergence rather than the tangential

shear as the lensing observable. We use a slightly different

parameterization for the gas density. We include nonthermal

pressure support in our model. Finally, although not a change

to the underlying JACO package, we include constraints from

both weak and strong lensing rather than the weak lensing-

only constraints used in previous analyses.
JACO employs a Markov Chain Monte Carlo (MCMC) al-

gorithm to perform Metropolis-Hastings sampling of the joint

posterior distribution

p(✓p|S,TSZ,) µ L (S,TSZ,|✓p)p(✓p) , (34)

where ✓p is the set of all model parameters, L (✓p|S,TSZ,)

is the likelihood function, and p(✓p) is the set of prior con-

straints for the model parameters. The likelihood function is,

up to an overall normalization, given by

L (✓p|S,TSZ,) µ exp
�
�c2�, (35)

where

c2 = c2
XR +c2

SZ +c2
GL . (36)

That is, we assume that the X-ray, SZ, and lensing measure-

ments are independent, and therefore the total c2 is the sum

of the c2 of the individual datasets. We now describe how the

c2 of each dataset is calculated for a candidate model.

For a given set of parameters, JACO generates a set of syn-

thetic X-ray event spectra bS(✓p) using Equation (18) and the

input ARF and RMF files. The cooling function is computed

using the MEKAL plasma code. The model spectra are con-

volved with the energy-dependent instrument PSF. The details

of how the PSF is calculated for a given set of annular bins can

be found in Mahdavi et al. (2007). The X-ray contribution to

c2 is then given by

c2
XR = Â

i, j

(Si j � bSi j(✓p))
2

s2
Si j

, (37)
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where the summation runs over the desired annular bins and

energy bins.For a given set of parameters, JACO generates a model

SZ image bTSZ(✓
p) using Equations (20)�(22). Prior to cal-

culating c 2
SZ , it accounts for instrumental effects by simu-

lating the act of observing the model SZ image with Bolo-

cam. The model image is generated to have a larger size

(25 arcmin ⇥ 25 arcmin) and a finer resolution (10 arcsec)

than the data to avoid edge effects and sampling effects dur-

ing convolution. It is is convolved with a Gaussian kernel

with a 60.33 arcsec FWHM in order to account for the in-

strument PSF (59.17 arcsec FWHM) and pointing uncertainty

(5 arcsec RMS). Afterwards it is rebinned and resized to an

identical grid as that of the data. It is then convolved with the

transfer function of the data processing pipeline. Finally, the

parameter
T̄SZ is added to the image to represent the unknown

mean signal offset. The SZ contribution to c 2 is calculated as
c 2

SZ =Â
i

(
TSZ,

i � b
TSZ,

i

(✓
p))2

(
C

TSZ )
ii

,
(38)

where the summation runs over all pixels with an angular sep-

aration q  6.33 arcmin.
Finally, for a given set of parameters, JACO generates a

convergence profile b(✓
p) using Equation (31). This is com-

pared directly to the convergence profile determined by the

SaWLens algorithm. The lensing contribution to c 2 is calcu-

lated as

c 2
GL = (� b(✓

p))| C�1k (� b(✓
p)) , (39)

which accounts for the nonzero covariance between the radial

bins that has been calculated using the SaWLens bootstraps.

We place a uniform prior on each parameter with the lower

and upper boundaries chosen so that the prior is uninforma-

tive. Specifically, the lower and upper boundaries are cho-

sen so that they eliminate regions of parameter space where

the likelihood function is already small. This is not always

possible, and in these cases we choose physically reason-

able lower and upper boundaries (e.g., the boundaries for the

normalization of the nonthermal pressure fraction
C are cho-

sen to ensure that 0  F (
r)  1). The model parameters

and their priors are summarized in Table 2. We marginal-

ize over the nuisance parameters to obtain constraints on the

parameters of interest. Figure 1 shows an example of the

marginalized two-dimensional joint posterior distributions re-

sulting from a JACO fit to the full multiwavelength dataset for

MACS J1532.8+3021.

5.2.
M

o

d

e

l

D

e

t

e

r

m

in

a

ti

o

n

The model presented in Section 3 assumes that there is a

discrete boundary at which the ICM ends, which we call the

truncation radius
rtrunc . We fix the truncation radius at a dis-

tinct physical radius for each cluster that is chosen to be large

enough that increasing it further does not have an effect on the

model fit. This is accomplished through the following proce-

dure. First, we use JACO to fit the NFW model for the total

density to the lensing data only. From these fits, we obtain

an estimate of
r500

c

. We then refit the full multiwavelength

dataset with the value of
rtrunc fixed at integer multiples of

r500
c

between 3 and 10. In all cases, it was found that the result-

ing constraints on the thermodynamic properties of the ICM

converged for values of
rtrunc � 7⇥

r500
c

. We fix the radius at

T

a

b

le

3

Maximally restricted model for each cluster as

determined by the
F-test decision trees.

Name

Gas
Nonthermal

Density Pressure Fraction

Abell 383
G-1b

F-1a

Abell 611
G-1a

F-0

MACS J0429.6-0253 G-1a
F-0

MACS J1311.0-0310 G-0
F-0

MACS J1423.8+2404 G-1b
F-0

MACS J1532.8+3021 G-1b
F-1b

which we truncate the ICM to the physical radius correspond-

ing to
rtrunc = 7⇥

r500
c for all further analysis.

The data does not warrant the full complexity of the model

presented in Section 3 for any of the clusters in our sample.

We perform a series of
F-test decision trees in order to de-

termine the maximally restricted model that provides an ade-

quate fit to the data. The
F-test is a statistical test that can be

used to quantify whether adding additional model parameters

results in a significantly better fit to the data. The test statistic

is the fractional increase in the minimum c 2 that results from

restricting the additional parameters divided by the fractional

change in the number of degrees of freedomF =
�
c 2

restricted �c 2
unrestricted

�
/c 2

unrestricted

(nrestricted �nunrestricted)/nunrestricted
.

(40)

The test statistic will follow an
F-distribution,

F(nrestricted �

nunrestricted ,nunrestricted), under the null hypothesis that the unre-

stricted model does not provide a significantly better fit than

the restricted model. We reject the null hypothesis and add

the additional model parameters if the probability of observ-

ing the measured value of
F is less than 0.02. We apply the

F-test a total of 48 times in the process of determining the

maximally restricted model for all 6 clusters. The 0.02 cutoff

implies that we will add additional model parameters unnec-

essarily approximately one time.

The first
F-test decision tree is used to determine if the

r

�a

power-law and the second b -model are necessary to describe

the gas density in the cluster core. We construct the following

hierarchy of models ordered by the number of free parame-

ters:

G

-

0 We fix a = 0 and rgas,c = 0.
G

-

1

a We let a float, but fix rgas,c = 0.
G

-

1

b We let rgas,c and
r

c float (recall that b
c = 1), but fix a =

0.
G

-

2 We let a , rgas,c , and
r

c float.
We fit all four models to the data. Since constraints on rgas

originate from the X-ray and SZ data, we perform this test

without the lensing data and assume entirely thermal pressure

support. Since the various models differ only in their treat-

ment of the cluster core, the results of the test are driven al-

most entirely by the X-ray data. We examine the two branches

of the tree: 0!1a!2 and 0!1b!2. We move along each

branch, applying the
F-test at each step, and stop when we ei-

ther accept the restricted model or reach the end of the branch.

We then compare the stopping points on each branch and

choose the model that yields an acceptable fit to the data with

the fewest parameters.
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After we have settled on a model for the gas density, we

carry out a second F-test decision tree to determine if a non-

thermal pressure component is necessary. In this case, the

hierarchy of models is

F

-

0

We assume completely thermal pressure support by fix-

ing C = 0 and D = 0.

F

-

1

a

We allow for an outer nonthermal pressure component

by floating C, but fix D = 0.

F

-

1

b

We allow for an inner nonthermal pressure component

by floating D, E, and z , but fix C = 0.

F

-

2

We allow for both outer and inner nonthermal pressure

components by floating C, D, E, and z .

We fit all four models to the full multiwavelength dataset and

apply the F-test decision tree in an identical manner as was

carried out for the gas density. Table 3 lists the maximally re-

stricted model for both the gas density and nonthermal pres-

sure fraction that was chosen for each cluster. We have com-

pared the constraints on C obtained when fitting model F-1a

and model F-2 and find that they are nearly identical. This

suggests that the constraints on C are not driven by the core

region of the cluster.

5.3. SZ Covariance

In order to determine the effect that the small inter-pixel

correlations in the SZ image have on our results, we have

carried out the following simulation for the galaxy cluster

Abell 611. We take the best-fit maximally restricted model

and generate 100 model-plus-noise realizations. In the case of

the X-ray data, this is accomplished by perturbing the model

prediction for each X-ray spectral bin Ŝi j(✓p) by a random

draw from a Gaussian with mean equal to zero and standard

deviation equal to sSi j.
In the case of the lensing data, this

is accomplished by perturbing the model prediction for the

convergence profile ̂(✓p) by a random draw from a multi-

variate Gaussian distrib
ution with mean equal to zero and co-

variance equal to Ck. Finally, in the case of the SZ data, this

is accomplished by adding a random noise realization to the

model prediction for the SZ image T̂SZ(✓p).
The SZ noise

realizations are described in Section 4.2; recall that they con-

tain the inter-pixel correlations that this simulation aims to un-

derstand. For each of the 100 model-plus-noise realizations,

we repeat the full JACO fit. We then compare the resulting

distrib
ution of best-fit parameter values to the marginalized

posterior distrib
ution obtained from the original fit to the data

(which assumes a diagonal covariance matrix for the SZ data).

We find no significant bias in the center of the distrib
ution for

the parameters of interest. More specifically, for each param-

eter of interest, the center of the distrib
ution of best-fit values

obtained from fitting the 100 model-plus-noise realizations,

which contain the inter-pixel SZ correlations, differs from the

center of the marginalized posterior distrib
ution of the orig-

inal fit to the data, which assumes a diagonal SZ covariance

matrix, at roughly 10% of the width of the marginalized pos-

terior distrib
ution. This is consistent with our uncertainty on

the quantity due to the fact that we have a sample size of 100.

Similarly, we find no significant change in the width of the

distrib
ution for the parameters of interest. The widths esti-

mated with and without SZ correlations differ at roughly the

10% level, again consistent with how well we can measure

this quantity as estimated by bootstrap resampling the 100

samples. Note that the choice of 100 samples was a balance

between computation time and resulting sensitivity. We have

assumed that the conclusions drawn from this simulation gen-

eralize to the other clusters in our sample, and thus we assume

a diagonal SZ covariance matrix for the results presented in

the following section.
6. RESULTS

In order to investigate the interplay between the various

datasets, we fit lensing only (GL), X-ray only (XR), joint X-

ray and SZ (XR+SZ), and the full dataset (XR+SZ+GL). We

do not perform an SZ only fit because the SZ data alone is not

sufficient to fully constrain the thermodynamic properties of

the ICM. When we fit the full dataset, we use the maximally

restricted model determined in Section 5.2 for each cluster.

When we fit subsets of the full dataset we use restricted ver-

sions of this model. In the case of GL, the model reduces to

an NFW density profile fully described by two parameters. In

the case of XR and XR+SZ, we assume entirely thermal pres-

sure support (by fixing C = 0 and D = 0) because our ability

to constrain the nonthermal pressure component relies on a

comparison of the lensing and X-ray/SZ data. We note that

the GL fits use data that are identical to those used by Merten

et al. (2015), other than the choice of cluster center, and our

derived parameters from the GL fits are fully consistent with

those derived by Merten et al. (2015). Furthermore, the XR

fits use data that are identical to those used by Donahue et al.

(2014), other than the addition of one more annulus at large

radius, and the derived parameters from our XR fits are con-

sistent with those derived in Donahue et al. (2014).

For each fit, we first employ a Levenberg–Marquardt (LM)

minimization algorithm to search for the global maximum of

the likelihood function. We then run 8 MCMC chains in par-

allel all starting from the best-fit parameter values determined

by the LM algorithm. Each chain is run for 22,500⇥Nparam

total iterations. The first 10% of the iterations are discarded

as burn-in and the chains are concatenated. This yields 2–3

million draws from the joint posterior distrib
ution. The ac-

ceptance rate of the MCMC algorithm is close to optimal with

approximately 25% of the proposed steps accepted (Roberts

& Rosenthal 2001). However, the chains have significant se-

rial correlation; we observe an exponential decay in the au-

tocorrelation function with an e-folding time t ⇠ 1000 iter-

ations. We thin the chains by t when calculating statistic
s,

which results in an effective sample size of 2,000–3,000. We

apply the Geweke diagnostic (Geweke 1992), Heidelberger-

Welch diagnostic (Heidelberger & Welch 1983, 1981), and

Raftery-Lewis diagnostic (Raftery et al. 1992) to the individ-

ual parameter chains to confirm that they have converged at

an acceptable level.

The minimum c2 for each fit is presented in Table 4 along

with the number of model parameters, number of degrees of

freedom, and the probability to exceed (PTE). All of the clus-

ters have an acceptable quality of fit for all of the data combi-

nations, with the exception of Abell 383. There is modest ten-

sion between the X-ray and SZ data for MACS J0429.6-0253

and MACS J1532.8+3021, which is evident in the decrease in

PTE when including the SZ data (XR ! XR+SZ). We address

this tension in the subsections below where we discuss each

cluster individually. The best-fit models corresponding to the

XR+SZ+GL rows are compared to the data in Appendix A

(Figures 4–8).

We present the resulting constraints on the total mass Mtot,
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. Posterior distribution of the normalization C of the best-fit non-

thermal pressure fraction profile from Nelson et al. (2014). The different

colors denote the different galaxy clusters in the spherical sample (exclud-

ing Abell 383). Black denotes the combined posterior distribution obtained

by multiplying the posterior distributions from the individual clusters. The

shading denotes the 95% credible region determined from the combined pos-

terior distribution. The dashed gray line at C = 1.0 corresponds to the mean

value observed in simulation.concentration c, and gas mass fraction fgas(r) =Mgas(r)/Mtot(r)

at several overdensity radii in Table 5. The quoted value and

error correspond to the center and half of the span of the

smallest 68% credible region determined from the marginal-

ized posterior distribution for that parameter. We also plot the

two-dimensional constraints on Mtot,500c–c500c in Figure 2.

As mentioned in Section 5.2, Abell 383 is the only cluster

that requires an outer nonthermal pressure component based

on our F-test decision tree. For this cluster, the total mass

inferred from the GL analysis is 2–3 times larger than that

inferred from the XR or XR+SZ analysis. This forces the

nonthermal pressure fraction to very large values when per-

forming the XR+SZ+GL analysis, and even that does not re-

solve the discrepancy, as evidenced by the poor quality of fit.

We do not believe that a spherically symmetric model is a

reasonable approximation for Abell 383, for reasons that will

be outlined in Section 6.1. Both nonthermal pressure support

and an elongation of the cluster along the line-of-sight direc-

tion will elevate the lensing inferred mass compared to the X-

ray/SZ inferred mass. Hence, if the cluster is elongated along

the line-of-sight direction, the nonthermal pressure fraction

inferred from a spherical fit will be overestimated. We do not

include Abell 383 in our analysis of the nonthermal pressure

support for this reason and stress caution in interpreting the

resulting mass estimates.
We use the other five clusters to test for the nonthermal

pressure support predicted by simulations. We perform a

second fit to the full multiwavelength dataset allowing the

normalization C of the nonthermal pressure fraction pro-

file calibrated from simulation to vary. This fit is labeled

“XR+SZ+GL (Nonthermal)” in Table 4 and Table 5. Note that

a uniform prior U(0, 1.825) is placed on C. The lower bound

C = 0 corresponds to entirely thermal pressure support at all

radii. The upper bound C = 1.825 corresponds to zero ther-

mal pressure support at the cluster outskirts (r & r200m). The

marginalized posterior distribution for C is shown in Figure 3

for each of the five clusters. We find that MACS J0429.6-

T

a

b

le

6

Upper bound on the nonthermal pressure fraction at several overdensity radii.

Parameter Ncluster
a

95% Upper Bound Expectation from Simulation b

C
5

0.44

1.00

F (r2500c) 5
0.06

0.15

F (r500c) 4
0.11

0.26

F (r200c) 1
0.29

0.35

F (r200m) 1
0.35

0.43

a Number of galaxy clusters used to construct the 95% upper bound.

b Median value from the simulation of Nelson et al. (2014) for clusters with

the mass/redshift as those used to construct the upper bound.

0253, MACS J1311.0-0310, and MACS J1423.8+2404 have

fairly flat posterior distributions, although there is a prefer-

ence for C less than 1.0 over C greater than 1.0. Abell 611

and MACSJ1532.8+3021 have higher quality X-ray data and

as a result are able to place meaningful upper bounds on the

nonthermal pressure fraction. Since constraints from the indi-

vidual clusters are consistent with a common value of C, we

multiply the individual posterior distributions together to ob-

tain a combined constraint. The resulting 95% credible inter-

val on the normalization C is (0, 0.43). Hence, the universal

nonthermal pressure fraction profile observed in simulations

(C = 1.0) is an extremely unlikely description of this sample

of five clusters. We also derive the combined constraint on

the nonthermal pressure fraction F (r) at several over-density

radii r = [r2500c , r500c , r200c, r200m] using the same procedure.

These are presented in Table 6.
While the GL and SZ data are quite uniform over the sam-

ple, the radii over which we have X-ray constraints varies

significantly from cluster to cluster, depending on the clus-

ter redshift and the total integration time achieved by Chan-

dra. The X-ray data is necessary to constrain the gas density

and fully characterize the thermodynamic state of the ICM.

In order to determine the maximum radius where our model

provides reliable results, we perform the following test using

the two clusters with the highest quality X-ray data, Abell 611

and MACS J1532.8+3021. We repeat the XR+SZ+GL (Non-

thermal) fit multiple times, each time discarding the outer-

most X-ray annulus. We compare the thermodynamic profiles

obtained from fits to the reduced X-ray datasets to those ob-

tained from the fits to the full X-ray dataset. Specifically, we

examine the total density, gas density, temperature, entropy,

pressure, and nonthermal pressure fraction as a function of

the ratio of the outer radius of the reduced dataset to the outer

radius of the full dataset. In examining these fits, we find that

none of the results change by more than their 1-s uncertain-

ties as long as the reduced X-ray data cover at least half of

the original radial range. We therefore assume that our results

our reliable to a radius a factor of two beyond the outermost

X-ray annulus. In Table 5 we only quote contraints at a given

overdensity radius rDref for those clusters whose X-ray data ex-

tends past 1
2 rDref . The same criteria is used to determine what

clusters are included in the combined constraint on the non-

thermal pressure fraction presented in Table 6.

In order to test the robustness of our result to the particular

parameterization of the nonthermal pressure fraction profile,

we have repeated the above analysis using a simple piecewise

linear function

Fouter(r) =
(

a+b
⇣

r
r200m

⌘
r < r200m

a+b
r � r200m
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• Formation des amas : 
- Collapse rapide suivi d’une série de merger importants et de croissance lente par accrétion du milieu environnant

- Virialisation incomplète du gaz : fraction de l’énergie cinétique transformée en turbulences et mouvements de bulk

Pression non-thermique : contribution significative à l’équilibre de l’ICM contre la gravité

• Simulations numériques

Lien entre l’état hydrodynamique du 
milieu intra-amas (ICM) et la cosmologie 

• Grandes incertitudes sur les processus liés à la 
physique baryonique durant la formation des amas :

Formation stellaire

Refroidissement radiatif du gaz

Apport d’énergie par les AGN

Vents des supernovae

Turbulences du gazMouvements de bulk

Nécessité de contraindre la fraction de pression non-thermique 
dans les amas sur de larges gammes de masse et de redshift

- Gaz accrété à des vitesses super-soniques       échauffement, puis thermalisation par choc au niveau du rayon du viriel
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Table 1

Characteristics of the multiwavelength observations of the six galaxy clusters in our sample.

Name z RA DEC SZ S/N Chandra Nsys
a HST rgal

b Subaru rgal
c

(J2000) (J2000) Time (ksec) (arcmin�2) (arcmin�2)

Abell 383 0.187 02:48:03.40 -03:31:44.9 9.6 38.8 9 50.7 9.0
Abell 611 0.288 08:00:56.82 +36:03:23.6 10.8 36.1 4 42.3 8.8
MACS J0429.6-0253 0.399 04:29:36.05 -02:53:06.1 8.9 23.2 3 42.4 12.0
MACS J1311.0-0310 0.494 13:11:01.80 -03:10:39.8 9.6 63.2 2 33.7 20.2
MACS J1423.8+2404 0.545 14:23:47.88 +24:04:42.5 9.4 115.6 5 75.3 9.8
MACS J1532.8+3021 0.363 15:32:53.78 +30:20:59.4 8.0 89.0 0 35.9 16.6

a The number of multiple-image systems used in the strong lensing analysis of Merten et al. (2015).
b The surface-number density of background selected galaxies in the HST field used for the weak lensing analysis of Merten
et al. (2015).
c The surface-number density of background selected galaxies in the Subaru field used for the weak lensing analysis of Merten
et al. (2015) and derived from the work of Umetsu et al. (2014).

phologies in both X-ray and SZ maps. We emphasize that a
round and regular morphology is a necessary, but not suffi-
cient, condition for our assumed spherical model to provide
an accurate description of the cluster. For example, objects
that appear round in the plane of the sky are often elongated
along the line of sight, due to the fact that massive clusters
tend to have a prolate geometry (Meneghetti et al. 2010; Ra-
sia et al. 2012; Meneghetti et al. 2014). As detailed in Sec-
tion 6, such an elongation could potentially bias some of the
constraints we derive using a spherical model. However, for
all but one cluster in our study, the spherical model provides
an adequate fit to the data, implying that any elongation bias
is subdominant to the statistical uncertainties.

The cluster subset for this analysis is chosen in the follow-
ing way. We start by restricting our attention to the 20 CLASH
clusters that were chosen based on X-ray morphology. Sim-
ulations suggest that these 20 clusters are predominately re-
laxed (⇠ 70%) and largely free of orientation bias (Meneghetti
et al. 2014). A cluster must satisfy two additional require-
ments in order to be placed in our sample. First, the SZ mor-
phology must be circular. This requirement is implemented
by fitting the SZ image alone using circular and elliptical ver-
sions of the generalized-NFW model (gNFW) for the thermal
pressure (Nagai et al. 2007; Arnaud et al. 2010), and exam-
ining whether the elliptical model is preferred by performing
a statistical F-test. Czakon et al. (2015) outlines this proce-
dure and presents the results for all CLASH clusters. Second,
we require that the X-ray centroid shift parameter, w500c, is
less than 0.006. The centroid shift parameter is the standard
deviation in units of r500c of the separation between the peak
and centroid of the X-ray emission calculated in increasing
aperture sizes up to r500c. The w500c values for all CLASH
clusters were calculated using Chandra data according to the
procedure described in Maughan et al. (2008, 2012) and are
presented in Sayers et al. (2013a).

Of the 20 X-ray selected CLASH clusters, 8 satisfy both
requirements. However, a qualitative comparison of the mass
profiles obtained from independent analyses of the gravita-
tional lensing data by Merten et al. (2015) and Umetsu et al.
(2015a) suggested possible discrepancies for 2 of the 8 clus-
ters: MACS J1931.8-2634 and MS 2137.3-2353. Since we
were not confident in the lensing constraints for these two
clusters at the time of the analysis, we removed them from
our sample. Note that Merten et al. (2015) performed a joint
analysis of HST strong lensing and HST/Subaru weak lens-
ing shear data, whereas Umetsu et al. (2015a) also included
HST/Subaru weak lensing magnification data. In the case
of MACS J1931.8-2634, the discrepancy is likely due to un-

accounted systematic uncertainties in the calibration of the
magnification data for clusters at low galactic latitude. In
the case of MS 2137.3-2353, a quantitative comparison has
since demonstrated that the two analyses are indeed consistent
within their respective uncertainties (Umetsu et al. 2015a).

Table 1 lists the 6 CLASH clusters that make up our sample,
presents their basic properties, and provides metrics for the
quality of their observations.

3. CLUSTER MODEL

We assume that the galaxy cluster is spherically symmet-
ric and use parametric functions to describe the radial depen-
dence of the total matter density, gas density, metallicity, and
fraction of the total pressure support sourced by nonthermal
processes. By further assuming that the cluster is in a state of
hydrostatic equilibrium, we can predict all observable quanti-
ties of interest.

3.1. Total Matter Density
We model the total matter density with the Navarro-Frenk-

White profile (NFW hereafter) (Navarro et al. 1995, 1996)

rtot(r) = rtot,0

✓
r
rs

◆�1✓
1+

r
rs

◆�2
, (1)

which is defined by two parameters: a normalization rtot,0 and
scale radius rs. It is standard to reparameterize in terms of the
total mass and concentration at a particular overdensity radius

Mtot, Dref ⌘ 4pr3
s rtot,0


ln
✓

rs + rDref

rs

◆
� rDref

rs + rDref

�
(2)

cDref ⌘
rDref

rs
, (3)

where rDref denotes the radius at which the average enclosed
density is D times some reference density. Two common ref-
erence densities that we will employ in this work are the criti-
cal density of the universe and the mean matter density of the
universe

rc(z) =
3H2

0
8pG

⇥
Wm(1+ z)3 +WL

⇤
, (4)

rm(z) =
3H2

0
8pG

Wm(1+ z)3 . (5)

• Échantillon CLASH (Cluster Lensing And Supernova survey with Hubble) :

• Amas observés en X avec le Chandra X-ray Observatory, en SZ thermique avec Bolocam et en 
optique avec HST (strong lensing) et Suprime-Cam@Subaru Telescope (weak lensing)

25 amas de galaxies 0.2 < z < 0.9 25 amas de galaxies M
tot

⇠ 5� 20⇥ 1014 M�

• Sélection du sous-échantillon pour une étude basée sur une modélisation sphérique des amas :

Surface de brillance X donnée par Chandra : symétrie circulaire avec un unique pic X bien défini

Morphologie SZ circulaire

Décalage de centroïde X,             , inférieur à 0.006 (peu de clumps)

8 amas présentent ces critères

w500c

Contraintes lensing 
controversées pour 2 amas 

6 amas retenus pour cette étude
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Table 1

Characteristics of the multiwavelength observations of the six galaxy clusters in our sample.

Name z RA DEC SZ S/N Chandra Nsys
a HST rgal

b Subaru rgal
c

(J2000) (J2000) Time (ksec) (arcmin�2) (arcmin�2)

Abell 383 0.187 02:48:03.40 -03:31:44.9 9.6 38.8 9 50.7 9.0
Abell 611 0.288 08:00:56.82 +36:03:23.6 10.8 36.1 4 42.3 8.8
MACS J0429.6-0253 0.399 04:29:36.05 -02:53:06.1 8.9 23.2 3 42.4 12.0
MACS J1311.0-0310 0.494 13:11:01.80 -03:10:39.8 9.6 63.2 2 33.7 20.2
MACS J1423.8+2404 0.545 14:23:47.88 +24:04:42.5 9.4 115.6 5 75.3 9.8
MACS J1532.8+3021 0.363 15:32:53.78 +30:20:59.4 8.0 89.0 0 35.9 16.6

a The number of multiple-image systems used in the strong lensing analysis of Merten et al. (2015).
b The surface-number density of background selected galaxies in the HST field used for the weak lensing analysis of Merten
et al. (2015).
c The surface-number density of background selected galaxies in the Subaru field used for the weak lensing analysis of Merten
et al. (2015) and derived from the work of Umetsu et al. (2014).

phologies in both X-ray and SZ maps. We emphasize that a
round and regular morphology is a necessary, but not suffi-
cient, condition for our assumed spherical model to provide
an accurate description of the cluster. For example, objects
that appear round in the plane of the sky are often elongated
along the line of sight, due to the fact that massive clusters
tend to have a prolate geometry (Meneghetti et al. 2010; Ra-
sia et al. 2012; Meneghetti et al. 2014). As detailed in Sec-
tion 6, such an elongation could potentially bias some of the
constraints we derive using a spherical model. However, for
all but one cluster in our study, the spherical model provides
an adequate fit to the data, implying that any elongation bias
is subdominant to the statistical uncertainties.

The cluster subset for this analysis is chosen in the follow-
ing way. We start by restricting our attention to the 20 CLASH
clusters that were chosen based on X-ray morphology. Sim-
ulations suggest that these 20 clusters are predominately re-
laxed (⇠ 70%) and largely free of orientation bias (Meneghetti
et al. 2014). A cluster must satisfy two additional require-
ments in order to be placed in our sample. First, the SZ mor-
phology must be circular. This requirement is implemented
by fitting the SZ image alone using circular and elliptical ver-
sions of the generalized-NFW model (gNFW) for the thermal
pressure (Nagai et al. 2007; Arnaud et al. 2010), and exam-
ining whether the elliptical model is preferred by performing
a statistical F-test. Czakon et al. (2015) outlines this proce-
dure and presents the results for all CLASH clusters. Second,
we require that the X-ray centroid shift parameter, w500c, is
less than 0.006. The centroid shift parameter is the standard
deviation in units of r500c of the separation between the peak
and centroid of the X-ray emission calculated in increasing
aperture sizes up to r500c. The w500c values for all CLASH
clusters were calculated using Chandra data according to the
procedure described in Maughan et al. (2008, 2012) and are
presented in Sayers et al. (2013a).

Of the 20 X-ray selected CLASH clusters, 8 satisfy both
requirements. However, a qualitative comparison of the mass
profiles obtained from independent analyses of the gravita-
tional lensing data by Merten et al. (2015) and Umetsu et al.
(2015a) suggested possible discrepancies for 2 of the 8 clus-
ters: MACS J1931.8-2634 and MS 2137.3-2353. Since we
were not confident in the lensing constraints for these two
clusters at the time of the analysis, we removed them from
our sample. Note that Merten et al. (2015) performed a joint
analysis of HST strong lensing and HST/Subaru weak lens-
ing shear data, whereas Umetsu et al. (2015a) also included
HST/Subaru weak lensing magnification data. In the case
of MACS J1931.8-2634, the discrepancy is likely due to un-

accounted systematic uncertainties in the calibration of the
magnification data for clusters at low galactic latitude. In
the case of MS 2137.3-2353, a quantitative comparison has
since demonstrated that the two analyses are indeed consistent
within their respective uncertainties (Umetsu et al. 2015a).

Table 1 lists the 6 CLASH clusters that make up our sample,
presents their basic properties, and provides metrics for the
quality of their observations.

3. CLUSTER MODEL

We assume that the galaxy cluster is spherically symmet-
ric and use parametric functions to describe the radial depen-
dence of the total matter density, gas density, metallicity, and
fraction of the total pressure support sourced by nonthermal
processes. By further assuming that the cluster is in a state of
hydrostatic equilibrium, we can predict all observable quanti-
ties of interest.

3.1. Total Matter Density
We model the total matter density with the Navarro-Frenk-

White profile (NFW hereafter) (Navarro et al. 1995, 1996)

rtot(r) = rtot,0

✓
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which is defined by two parameters: a normalization rtot,0 and
scale radius rs. It is standard to reparameterize in terms of the
total mass and concentration at a particular overdensity radius
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where rDref denotes the radius at which the average enclosed
density is D times some reference density. Two common ref-
erence densities that we will employ in this work are the criti-
cal density of the universe and the mean matter density of the
universe
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3H2

0
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, (4)
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4

The overdensity radius rDref is determined by solving the im-
plicit equation

Mtot, Dref =
4
3

pr3
DrefDrref . (6)

Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
r200c < r200m.

3.2. Gas Density
We model the gas density as

rgas(r) = rgas,0
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, (7)

which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as

Pnth

Ptot

(r)⌘ F (r) = Fouter(r)+Finner(r) (10)

with
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr


1

1�F (r)
rgas(r)kBT (r)

µmp

�
=�GMtot(r)rgas(r)

r2 , (14)

where G is the gravitational constant and kB is the Boltzmann
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Table 1

Characteristics of the multiwavelength observations of the six galaxy clusters in our sample.

Name z RA DEC SZ S/N Chandra Nsys
a HST rgal

b Subaru rgal
c

(J2000) (J2000) Time (ksec) (arcmin�2) (arcmin�2)

Abell 383 0.187 02:48:03.40 -03:31:44.9 9.6 38.8 9 50.7 9.0
Abell 611 0.288 08:00:56.82 +36:03:23.6 10.8 36.1 4 42.3 8.8
MACS J0429.6-0253 0.399 04:29:36.05 -02:53:06.1 8.9 23.2 3 42.4 12.0
MACS J1311.0-0310 0.494 13:11:01.80 -03:10:39.8 9.6 63.2 2 33.7 20.2
MACS J1423.8+2404 0.545 14:23:47.88 +24:04:42.5 9.4 115.6 5 75.3 9.8
MACS J1532.8+3021 0.363 15:32:53.78 +30:20:59.4 8.0 89.0 0 35.9 16.6

a The number of multiple-image systems used in the strong lensing analysis of Merten et al. (2015).
b The surface-number density of background selected galaxies in the HST field used for the weak lensing analysis of Merten
et al. (2015).
c The surface-number density of background selected galaxies in the Subaru field used for the weak lensing analysis of Merten
et al. (2015) and derived from the work of Umetsu et al. (2014).

phologies in both X-ray and SZ maps. We emphasize that a
round and regular morphology is a necessary, but not suffi-
cient, condition for our assumed spherical model to provide
an accurate description of the cluster. For example, objects
that appear round in the plane of the sky are often elongated
along the line of sight, due to the fact that massive clusters
tend to have a prolate geometry (Meneghetti et al. 2010; Ra-
sia et al. 2012; Meneghetti et al. 2014). As detailed in Sec-
tion 6, such an elongation could potentially bias some of the
constraints we derive using a spherical model. However, for
all but one cluster in our study, the spherical model provides
an adequate fit to the data, implying that any elongation bias
is subdominant to the statistical uncertainties.

The cluster subset for this analysis is chosen in the follow-
ing way. We start by restricting our attention to the 20 CLASH
clusters that were chosen based on X-ray morphology. Sim-
ulations suggest that these 20 clusters are predominately re-
laxed (⇠ 70%) and largely free of orientation bias (Meneghetti
et al. 2014). A cluster must satisfy two additional require-
ments in order to be placed in our sample. First, the SZ mor-
phology must be circular. This requirement is implemented
by fitting the SZ image alone using circular and elliptical ver-
sions of the generalized-NFW model (gNFW) for the thermal
pressure (Nagai et al. 2007; Arnaud et al. 2010), and exam-
ining whether the elliptical model is preferred by performing
a statistical F-test. Czakon et al. (2015) outlines this proce-
dure and presents the results for all CLASH clusters. Second,
we require that the X-ray centroid shift parameter, w500c, is
less than 0.006. The centroid shift parameter is the standard
deviation in units of r500c of the separation between the peak
and centroid of the X-ray emission calculated in increasing
aperture sizes up to r500c. The w500c values for all CLASH
clusters were calculated using Chandra data according to the
procedure described in Maughan et al. (2008, 2012) and are
presented in Sayers et al. (2013a).

Of the 20 X-ray selected CLASH clusters, 8 satisfy both
requirements. However, a qualitative comparison of the mass
profiles obtained from independent analyses of the gravita-
tional lensing data by Merten et al. (2015) and Umetsu et al.
(2015a) suggested possible discrepancies for 2 of the 8 clus-
ters: MACS J1931.8-2634 and MS 2137.3-2353. Since we
were not confident in the lensing constraints for these two
clusters at the time of the analysis, we removed them from
our sample. Note that Merten et al. (2015) performed a joint
analysis of HST strong lensing and HST/Subaru weak lens-
ing shear data, whereas Umetsu et al. (2015a) also included
HST/Subaru weak lensing magnification data. In the case
of MACS J1931.8-2634, the discrepancy is likely due to un-

accounted systematic uncertainties in the calibration of the
magnification data for clusters at low galactic latitude. In
the case of MS 2137.3-2353, a quantitative comparison has
since demonstrated that the two analyses are indeed consistent
within their respective uncertainties (Umetsu et al. 2015a).

Table 1 lists the 6 CLASH clusters that make up our sample,
presents their basic properties, and provides metrics for the
quality of their observations.

3. CLUSTER MODEL

We assume that the galaxy cluster is spherically symmet-
ric and use parametric functions to describe the radial depen-
dence of the total matter density, gas density, metallicity, and
fraction of the total pressure support sourced by nonthermal
processes. By further assuming that the cluster is in a state of
hydrostatic equilibrium, we can predict all observable quanti-
ties of interest.

3.1. Total Matter Density
We model the total matter density with the Navarro-Frenk-

White profile (NFW hereafter) (Navarro et al. 1995, 1996)

rtot(r) = rtot,0
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where rDref denotes the radius at which the average enclosed
density is D times some reference density. Two common ref-
erence densities that we will employ in this work are the criti-
cal density of the universe and the mean matter density of the
universe

rc(z) =
3H2

0
8pG

⇥
Wm(1+ z)3 +WL

⇤
, (4)

rm(z) =
3H2

0
8pG

Wm(1+ z)3 . (5)

• Modèle de densité totale de matière : Navarro-Frenk-White

• Reparamétrisation           masse totale de l’amas à un rayon de référence

• Modèle de densité de gaz donné par la somme de 2 modèles     :�

Premier modèle     modifié pour mieux décrire les amas de type cool-core�

Paramètre    contrôle la rapidité de transition entre les deux 
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The overdensity radius rDref is determined by solving the im-
plicit equation

Mtot, Dref =
4
3

pr3
DrefDrref . (6)

Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
r200c < r200m.

3.2. Gas Density
We model the gas density as

rgas(r) = rgas,0
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rgas
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, (7)

which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as

Pnth

Ptot

(r)⌘ F (r) = Fouter(r)+Finner(r) (10)

with

Fouter(r) =C
⇢

1�A
✓

1+ exp
✓

r/r200m

B

◆g�◆�
(11)

and

Finner(r) = D

 
1+
✓

r/r200m

E

◆4
!�z/4

. (12)

The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr


1

1�F (r)
rgas(r)kBT (r)

µmp

�
=�GMtot(r)rgas(r)

r2 , (14)

where G is the gravitational constant and kB is the Boltzmann

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

avec                et         : constantes connueskB , µ mp
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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with
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as
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where G is the gravitational constant and kB is the Boltzmann

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique

avec                et         : constantes connueskB , µ mp
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DrefDrref . (6)

Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
r200c < r200m.

3.2. Gas Density
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as

Pnth

Ptot

(r)⌘ F (r) = Fouter(r)+Finner(r) (10)

with
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr
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1�F (r)
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µmp
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=�GMtot(r)rgas(r)

r2 , (14)

where G is the gravitational constant and kB is the Boltzmann

• Pression totale dans un amas de galaxies : somme de la pression thermique et de la pression non-thermique
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr
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where G is the gravitational constant and kB is the Boltzmann
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The overdensity radius rDref is determined by solving the im-
plicit equation

Mtot, Dref =
4
3

pr3
DrefDrref . (6)

Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
r200c < r200m.

3.2. Gas Density
We model the gas density as
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)
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µmp
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where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as
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Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr


1

1�F (r)
rgas(r)kBT (r)

µmp

�
=�GMtot(r)rgas(r)

r2 , (14)

where G is the gravitational constant and kB is the Boltzmann
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr


1

1�F (r)
rgas(r)kBT (r)

µmp

�
=�GMtot(r)rgas(r)

r2 , (14)

where G is the gravitational constant and kB is the Boltzmann

4

The overdensity radius rDref is determined by solving the im-
plicit equation

Mtot, Dref =
4
3

pr3
DrefDrref . (6)

Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as
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where G is the gravitational constant and kB is the Boltzmann

• Hypothèse : ICM dans un état d’équilibre où l’attraction gravitationnelle est compensée par un gradient de pression

• Utilisation de la formule de            P
tot
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
inherent to the b -model (Pratt & Arnaud 2002). This is nec-
essary to describe cool-core clusters, which tend to exhibit a
nonzero logarithmic slope a ⇡ 0.5 in the cluster core (Sander-
son & Ponman 2010). The r�e factor allows for the logarith-
mic slope of the gas density to steepen by some amount e at
radius rgas,outer (with rgas,outer > rgas). The parameter d controls
how quickly the gas density transitions from the r�3b power-
law to the r�3b�e power-law; we fix d = 4 for this analysis.
Steepening of the gas density profile in the cluster outskirts
is observed in hydrodynamical simulations (Roncarelli et al.
2006), X-ray observations of individual clusters (Vikhlinin
et al. 1999; Neumann 2005; Vikhlinin et al. 2006; Croston
et al. 2008; Sanderson & Ponman 2010), and the stacked anal-
ysis of X-ray data from many clusters (Morandi et al. 2015).
The second b -model aids in the description of the core region
of the cluster. To ensure this role, we force rgas,core < 50 kpc
and fix bcore = 1. We note that our model differs from that pre-
sented in Vikhlinin et al. (2006) in two regards. First, we as-
sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as

Pnth

Ptot

(r)⌘ F (r) = Fouter(r)+Finner(r) (10)

with
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr
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1�F (r)
rgas(r)kBT (r)

µmp

�
=�GMtot(r)rgas(r)

r2 , (14)

where G is the gravitational constant and kB is the Boltzmann
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The overdensity radius rDref is determined by solving the im-
plicit equation

Mtot, Dref =
4
3

pr3
DrefDrref . (6)

Common overdensity radii that are used throughout the liter-
ature and will be referenced in this paper are r2500c < r500c <
r200c < r200m.
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which is inspired by the expression used in Vikhlinin et al.
(2006) to describe the X-ray surface brightness of nearby re-
laxed galaxy clusters. Equation (7) is the sum of two b -
models (Cavaliere & Fusco-Femiano 1978), with the first b -
model modified by two additional factors. The r�a power-
law factor allows for a central cusp instead of the flat core
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mic slope of the gas density to steepen by some amount e at
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sume a value d = 4 resulting in a slightly more rapid transition
than the Vikhlinin et al. (2006) model, which assumes a value
d = 3. This choice was motivated by a similar multiwave-
length analysis performed by Morandi et al. (2012). Second,
we model the gas density rgas whereas they model the X-ray
surface brightness, which is proportional to r2

gas. Therefore,
our prediction for the X-ray surface brightness will have a
cross-term between the first and second b -model that is not
present in their model. This will result in slightly different
gas density profiles for the same set of parameter values in
the region where the core b -model transitions to the primary
b -model.

3.3. Nonthermal Pressure Support

We assume that the total pressure is the sum of the thermal
pressure and the nonthermal pressure

Ptot = Pth +Pnth (8)

=
kBT rgas

µmp
+Pnth , (9)

where mp is the proton mass, µ is the mean molecular weight
of the ICM, and T is the temperature of the ICM. We model
the nonthermal pressure fraction as
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The Fouter term is a scaled version of the Nelson et al. (2014)
empirical fitting formula used to describe the mean non-
thermal pressure fraction observed in the region r & 0.1 ⇥
r200,m in a mass-limited sample of clusters from a high-
resolution hydrodynamical simulation. We fix the radial de-
pendence to that observed in the simulation by fixing the pa-
rameters [A, B, g] at the Nelson et al. (2014) best-fit values
[0.452, 0.841, 1.628], and allow only the normalization C to
float. The Finner term allows the nonthermal pressure fraction
to increase by some amount D in the cluster core. We require
that E < 0.1, which ensures that this inner term only describes
regions interior to those examined in the simulations, which
are well described by Fouter. There are a number of physical
processes that can strongly influence the thermodynamic state
of the ICM in the cluster core. Our goal in introducing the sec-
ond term is to decouple the nonthermal pressure in the outer
regions of the cluster, which is the quantity we would like to
constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where
the inward gravitational pull is balanced by a pressure gradi-
ent. This assumption of hydrostatic equilibrium is expressed
as the following differential equation:

—Ptot =�rgas—F , (13)

where F is the gravitational potential. We note that Equa-
tion (13) contains nonthermal pressure support as part of Ptot,
and it therefore differs from the standard definition of hydro-
static equilibrium that is commonly used in the literature and
implies entirely thermal pressure support. We are allowing
a nonthermal pressure component sourced by bulk and turbu-
lent motions of the gas to provide some fraction of the support
necessary to prevent gravitational collapse. For our model,
Equation (13) is written as

d
dr
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µmp
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=�GMtot(r)rgas(r)
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where G is the gravitational constant and kB is the Boltzmann

• Hypothèse : ICM dans un état d’équilibre où l’attraction gravitationnelle est compensée par un gradient de pression

• Utilisation de la formule de            P
tot

Calcul du profil de température sans introduire de modèle paramétrique supplémentaire :
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constant. Integration yields

kBT (r) = kBTtrunc+

(1�F (r))
µmp

rgas(r)

Z rtrunc

r

GMtot(x)rgas(x)
x2 dx , (15)

where Ttrunc is the temperature at some radius rtrunc that desig-
nates the outer boundary of the ICM. Our model does not as-
sume an explicit parameterization for the temperature, rather
it is an internal variable that is derived from the total den-
sity, gas density, and nonthermal pressure fraction assuming
hydrostatic equilibrium.

We must the model the metallicity of the ICM because it in-
fluences the X-ray cooling function and thus the X-ray emis-
sion. We describe the metallicity with the function

Z(r) = Z0

 
1+
✓

r
rZ

◆2
!�3bZ/2

, (16)

which allows for a central metallicity Z0 that transitions to
a power-law r�3bZ at radius rZ (Pizzolato et al. 2003). The
electron and hydrogen number density are given by

nH(r) =
X
mp

rgas(r) , ne(r) =
⌧

ne

nH

�
nH(r) , (17)

where X denotes the hydrogen mass fraction and < ne/nH >
the ion to hydrogen ratio. The mean molecular weight µ ,
which appears in several equations above, along with X and
< ne/nH >, are mild functions of the metallicity, and are cal-
culated using an absolute metallicity given by Equation (16)
with the relative abundances fixed on the photospheric values
given by Grevesse & Sauval (1998).

3.4. Observables
All observable quantities of interest can be predicted from

the above model. Let DA(z) denote the angular diameter dis-
tance, q the angular separation from the cluster center, and
R = DAq the radius from the cluster center projected on the
plane of the sky.

3.4.1. X-ray

The X-ray flux from the cluster measured at an energy hn
within an annulus of inner radius R1 and outer radius R2 is
given by

S =
1

4pD2
L

Z R2

R1
2pRdR

Z rtrunc

R
ne(r)nH(r)L

⇥
hn 0,T (r),Z(r)

⇤ 2rdrp
r2 �R2

,

(18)

where DL(z) is the luminosity distance, hn 0 = hn/(1+ z) is
the energy in the cluster rest frame, and L [hn 0,T (r),Z(r)] is
the X-ray cooling function. In addition to the X-ray flux from
the cluster our model includes X-ray flux from a uniform ther-
mal background:

Ssbkg = Asbkg L [n ,Tsbkg,Z�] . (19)

This accounts for galactic soft X-ray emission which varies
across the sky and therefore is not adequately subtracted using
a background observation (see Mahdavi et al. 2007 for more
details). Here Asbkg acts as an overall normalization and Tsbkg ⇠
0.5 keV is the temperature of the galactic, X-ray emitting gas.

3.4.2. Thermal SZ Effect

The thermal SZ effect results in a distortion of the CMB
blackbody spectrum. The change in the temperature of the
CMB measured at a frequency n and projected radius R is
given by

TSZ = TCMB f (x)y . (20)

The function f (x) encodes the frequency dependence of the
classical distortion

f (x) = x
ex +1
ex �1

�4 , (21)

where x ⌘ hn/kBTCMB. The Compton y parameter sets the
magnitude of the distortion and is proportional to the integral
of the thermal electron pressure along the line of sight

y =
sT

mec2

Z rtrunc

R
ne(r)kBT (r) [1+dR(x,T (r))]

2rdrp
r2 �R2

,

(22)

where sT is the Thomson cross section, c is the speed of light,
and me is the mass of the electron. The quantity dR(x,T (r))
is a correction for the relativistic motion of the electrons,
which we approximate using the expansion given in Itoh et al.
(1998).

3.4.3. Gravitational Lensing

Based on the generally applicable assumption that the line
of sight extent of the mass distribution is small compared to
the distances between the observer, mass distribution, and
background galaxies, gravitational lensing of the light from
those galaxies is described by a lens equation � = ✓�↵(✓)
which maps the angular coordinates of the galaxy in the
source plane � = [b1,b2] to the coordinates in the lens plane
✓ = [q1,q2] through a deflection angle ↵= [a1,a2] (see, e.g.,
Bartelmann & Schneider 2001; Bartelmann 2010). We can
define a lensing potential

Y(✓) =
Dls

DlDs

2
c2

Z •

�•
F(R,`)d` , (23)

which is just the three-dimensional gravitational potential
projected along the line of sight and rescaled. In the
above equation Ds, Dl , and Dls denote the observer-source,
observer-lens, and lens-source angular diameter distances, re-
spectively. The deflection angle is then equal to the gradient
of the lensing potential

↵(✓) = —Y(✓) . (24)

The convergence k and complex shear � = [g1,g2] of the lens
are also related to the lensing potential through the equations

k(✓) = 1
2

✓
∂ 2

∂q 2
1
+

∂ 2

∂q 2
2

◆
Y(✓) =

S(✓)
Scrit

(25)

g1(✓) =
1
2

✓
∂ 2

∂q 2
1
� ∂ 2

∂q 2
2

◆
Y(✓) (26)

g2(✓) =
∂

∂q1

∂
∂q2

Y(✓) . (27)

Modèle d’amas entièrement défini
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constant. Integration yields

kBT (r) = kBTtrunc+

(1�F (r))
µmp

rgas(r)

Z rtrunc

r

GMtot(x)rgas(x)
x2 dx , (15)

where Ttrunc is the temperature at some radius rtrunc that desig-
nates the outer boundary of the ICM. Our model does not as-
sume an explicit parameterization for the temperature, rather
it is an internal variable that is derived from the total den-
sity, gas density, and nonthermal pressure fraction assuming
hydrostatic equilibrium.

We must the model the metallicity of the ICM because it in-
fluences the X-ray cooling function and thus the X-ray emis-
sion. We describe the metallicity with the function

Z(r) = Z0
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, (16)

which allows for a central metallicity Z0 that transitions to
a power-law r�3bZ at radius rZ (Pizzolato et al. 2003). The
electron and hydrogen number density are given by

nH(r) =
X
mp

rgas(r) , ne(r) =
⌧

ne

nH

�
nH(r) , (17)

where X denotes the hydrogen mass fraction and < ne/nH >
the ion to hydrogen ratio. The mean molecular weight µ ,
which appears in several equations above, along with X and
< ne/nH >, are mild functions of the metallicity, and are cal-
culated using an absolute metallicity given by Equation (16)
with the relative abundances fixed on the photospheric values
given by Grevesse & Sauval (1998).

3.4. Observables
All observable quantities of interest can be predicted from

the above model. Let DA(z) denote the angular diameter dis-
tance, q the angular separation from the cluster center, and
R = DAq the radius from the cluster center projected on the
plane of the sky.

3.4.1. X-ray

The X-ray flux from the cluster measured at an energy hn
within an annulus of inner radius R1 and outer radius R2 is
given by

S =
1

4pD2
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R1
2pRdR
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ne(r)nH(r)L

⇥
hn 0,T (r),Z(r)
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,

(18)

where DL(z) is the luminosity distance, hn 0 = hn/(1+ z) is
the energy in the cluster rest frame, and L [hn 0,T (r),Z(r)] is
the X-ray cooling function. In addition to the X-ray flux from
the cluster our model includes X-ray flux from a uniform ther-
mal background:

Ssbkg = Asbkg L [n ,Tsbkg,Z�] . (19)

This accounts for galactic soft X-ray emission which varies
across the sky and therefore is not adequately subtracted using
a background observation (see Mahdavi et al. 2007 for more
details). Here Asbkg acts as an overall normalization and Tsbkg ⇠
0.5 keV is the temperature of the galactic, X-ray emitting gas.

3.4.2. Thermal SZ Effect

The thermal SZ effect results in a distortion of the CMB
blackbody spectrum. The change in the temperature of the
CMB measured at a frequency n and projected radius R is
given by

TSZ = TCMB f (x)y . (20)

The function f (x) encodes the frequency dependence of the
classical distortion

f (x) = x
ex +1
ex �1

�4 , (21)

where x ⌘ hn/kBTCMB. The Compton y parameter sets the
magnitude of the distortion and is proportional to the integral
of the thermal electron pressure along the line of sight

y =
sT

mec2

Z rtrunc

R
ne(r)kBT (r) [1+dR(x,T (r))]

2rdrp
r2 �R2

,

(22)

where sT is the Thomson cross section, c is the speed of light,
and me is the mass of the electron. The quantity dR(x,T (r))
is a correction for the relativistic motion of the electrons,
which we approximate using the expansion given in Itoh et al.
(1998).

3.4.3. Gravitational Lensing

Based on the generally applicable assumption that the line
of sight extent of the mass distribution is small compared to
the distances between the observer, mass distribution, and
background galaxies, gravitational lensing of the light from
those galaxies is described by a lens equation � = ✓�↵(✓)
which maps the angular coordinates of the galaxy in the
source plane � = [b1,b2] to the coordinates in the lens plane
✓ = [q1,q2] through a deflection angle ↵= [a1,a2] (see, e.g.,
Bartelmann & Schneider 2001; Bartelmann 2010). We can
define a lensing potential

Y(✓) =
Dls

DlDs

2
c2

Z •

�•
F(R,`)d` , (23)

which is just the three-dimensional gravitational potential
projected along the line of sight and rescaled. In the
above equation Ds, Dl , and Dls denote the observer-source,
observer-lens, and lens-source angular diameter distances, re-
spectively. The deflection angle is then equal to the gradient
of the lensing potential

↵(✓) = —Y(✓) . (24)

The convergence k and complex shear � = [g1,g2] of the lens
are also related to the lensing potential through the equations
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• Signal : nombre de coups de photons X d’une énergie 
définie à une certaine position dans le plan du ciel

• L’ICM émet des rayons X par bremsstrahlung thermique 
(free-free) des électrons énergétiques sur les ions

• Flux X émis par l’amas mesuré à une énergie       dans un anneau de rayon interne       et de rayon externe        :h⌫ R1 R2

h⌫0 = h⌫/(1 + z) Z(r)avec                                   : énergie dans le référentiel de l’amas et           : profil de métallicité de l’amas (modélisé)

L’analyse d’une carte de surface de brillance X permet de contraindre la densité du gaz
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constant. Integration yields

kBT (r) = kBTtrunc+
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GMtot(x)rgas(x)
x2 dx , (15)

where Ttrunc is the temperature at some radius rtrunc that desig-
nates the outer boundary of the ICM. Our model does not as-
sume an explicit parameterization for the temperature, rather
it is an internal variable that is derived from the total den-
sity, gas density, and nonthermal pressure fraction assuming
hydrostatic equilibrium.

We must the model the metallicity of the ICM because it in-
fluences the X-ray cooling function and thus the X-ray emis-
sion. We describe the metallicity with the function

Z(r) = Z0

 
1+
✓

r
rZ

◆2
!�3bZ/2

, (16)

which allows for a central metallicity Z0 that transitions to
a power-law r�3bZ at radius rZ (Pizzolato et al. 2003). The
electron and hydrogen number density are given by

nH(r) =
X
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rgas(r) , ne(r) =
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where X denotes the hydrogen mass fraction and < ne/nH >
the ion to hydrogen ratio. The mean molecular weight µ ,
which appears in several equations above, along with X and
< ne/nH >, are mild functions of the metallicity, and are cal-
culated using an absolute metallicity given by Equation (16)
with the relative abundances fixed on the photospheric values
given by Grevesse & Sauval (1998).

3.4. Observables
All observable quantities of interest can be predicted from

the above model. Let DA(z) denote the angular diameter dis-
tance, q the angular separation from the cluster center, and
R = DAq the radius from the cluster center projected on the
plane of the sky.

3.4.1. X-ray

The X-ray flux from the cluster measured at an energy hn
within an annulus of inner radius R1 and outer radius R2 is
given by
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where DL(z) is the luminosity distance, hn 0 = hn/(1+ z) is
the energy in the cluster rest frame, and L [hn 0,T (r),Z(r)] is
the X-ray cooling function. In addition to the X-ray flux from
the cluster our model includes X-ray flux from a uniform ther-
mal background:

Ssbkg = Asbkg L [n ,Tsbkg,Z�] . (19)

This accounts for galactic soft X-ray emission which varies
across the sky and therefore is not adequately subtracted using
a background observation (see Mahdavi et al. 2007 for more
details). Here Asbkg acts as an overall normalization and Tsbkg ⇠
0.5 keV is the temperature of the galactic, X-ray emitting gas.

3.4.2. Thermal SZ Effect

The thermal SZ effect results in a distortion of the CMB
blackbody spectrum. The change in the temperature of the
CMB measured at a frequency n and projected radius R is
given by

TSZ = TCMB f (x)y . (20)

The function f (x) encodes the frequency dependence of the
classical distortion

f (x) = x
ex +1
ex �1

�4 , (21)

where x ⌘ hn/kBTCMB. The Compton y parameter sets the
magnitude of the distortion and is proportional to the integral
of the thermal electron pressure along the line of sight
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where sT is the Thomson cross section, c is the speed of light,
and me is the mass of the electron. The quantity dR(x,T (r))
is a correction for the relativistic motion of the electrons,
which we approximate using the expansion given in Itoh et al.
(1998).

3.4.3. Gravitational Lensing

Based on the generally applicable assumption that the line
of sight extent of the mass distribution is small compared to
the distances between the observer, mass distribution, and
background galaxies, gravitational lensing of the light from
those galaxies is described by a lens equation � = ✓�↵(✓)
which maps the angular coordinates of the galaxy in the
source plane � = [b1,b2] to the coordinates in the lens plane
✓ = [q1,q2] through a deflection angle ↵= [a1,a2] (see, e.g.,
Bartelmann & Schneider 2001; Bartelmann 2010). We can
define a lensing potential

Y(✓) =
Dls

DlDs

2
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Z •

�•
F(R,`)d` , (23)

which is just the three-dimensional gravitational potential
projected along the line of sight and rescaled. In the
above equation Ds, Dl , and Dls denote the observer-source,
observer-lens, and lens-source angular diameter distances, re-
spectively. The deflection angle is then equal to the gradient
of the lensing potential

↵(✓) = —Y(✓) . (24)

The convergence k and complex shear � = [g1,g2] of the lens
are also related to the lensing potential through the equations
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where Ttrunc is the temperature at some radius rtrunc that desig-
nates the outer boundary of the ICM. Our model does not as-
sume an explicit parameterization for the temperature, rather
it is an internal variable that is derived from the total den-
sity, gas density, and nonthermal pressure fraction assuming
hydrostatic equilibrium.

We must the model the metallicity of the ICM because it in-
fluences the X-ray cooling function and thus the X-ray emis-
sion. We describe the metallicity with the function

Z(r) = Z0

 
1+
✓

r
rZ

◆2
!�3bZ/2

, (16)

which allows for a central metallicity Z0 that transitions to
a power-law r�3bZ at radius rZ (Pizzolato et al. 2003). The
electron and hydrogen number density are given by

nH(r) =
X
mp

rgas(r) , ne(r) =
⌧

ne

nH

�
nH(r) , (17)

where X denotes the hydrogen mass fraction and < ne/nH >
the ion to hydrogen ratio. The mean molecular weight µ ,
which appears in several equations above, along with X and
< ne/nH >, are mild functions of the metallicity, and are cal-
culated using an absolute metallicity given by Equation (16)
with the relative abundances fixed on the photospheric values
given by Grevesse & Sauval (1998).

3.4. Observables
All observable quantities of interest can be predicted from

the above model. Let DA(z) denote the angular diameter dis-
tance, q the angular separation from the cluster center, and
R = DAq the radius from the cluster center projected on the
plane of the sky.

3.4.1. X-ray

The X-ray flux from the cluster measured at an energy hn
within an annulus of inner radius R1 and outer radius R2 is
given by

S =
1

4pD2
L

Z R2

R1
2pRdR

Z rtrunc

R
ne(r)nH(r)L

⇥
hn 0,T (r),Z(r)

⇤ 2rdrp
r2 �R2

,

(18)

where DL(z) is the luminosity distance, hn 0 = hn/(1+ z) is
the energy in the cluster rest frame, and L [hn 0,T (r),Z(r)] is
the X-ray cooling function. In addition to the X-ray flux from
the cluster our model includes X-ray flux from a uniform ther-
mal background:

Ssbkg = Asbkg L [n ,Tsbkg,Z�] . (19)

This accounts for galactic soft X-ray emission which varies
across the sky and therefore is not adequately subtracted using
a background observation (see Mahdavi et al. 2007 for more
details). Here Asbkg acts as an overall normalization and Tsbkg ⇠
0.5 keV is the temperature of the galactic, X-ray emitting gas.

3.4.2. Thermal SZ Effect

The thermal SZ effect results in a distortion of the CMB
blackbody spectrum. The change in the temperature of the
CMB measured at a frequency n and projected radius R is
given by

TSZ = TCMB f (x)y . (20)

The function f (x) encodes the frequency dependence of the
classical distortion

f (x) = x
ex +1
ex �1

�4 , (21)

where x ⌘ hn/kBTCMB. The Compton y parameter sets the
magnitude of the distortion and is proportional to the integral
of the thermal electron pressure along the line of sight

y =
sT

mec2

Z rtrunc

R
ne(r)kBT (r) [1+dR(x,T (r))]

2rdrp
r2 �R2

,

(22)

where sT is the Thomson cross section, c is the speed of light,
and me is the mass of the electron. The quantity dR(x,T (r))
is a correction for the relativistic motion of the electrons,
which we approximate using the expansion given in Itoh et al.
(1998).

3.4.3. Gravitational Lensing

Based on the generally applicable assumption that the line
of sight extent of the mass distribution is small compared to
the distances between the observer, mass distribution, and
background galaxies, gravitational lensing of the light from
those galaxies is described by a lens equation � = ✓�↵(✓)
which maps the angular coordinates of the galaxy in the
source plane � = [b1,b2] to the coordinates in the lens plane
✓ = [q1,q2] through a deflection angle ↵= [a1,a2] (see, e.g.,
Bartelmann & Schneider 2001; Bartelmann 2010). We can
define a lensing potential

Y(✓) =
Dls

DlDs

2
c2

Z •

�•
F(R,`)d` , (23)

which is just the three-dimensional gravitational potential
projected along the line of sight and rescaled. In the
above equation Ds, Dl , and Dls denote the observer-source,
observer-lens, and lens-source angular diameter distances, re-
spectively. The deflection angle is then equal to the gradient
of the lensing potential

↵(✓) = —Y(✓) . (24)

The convergence k and complex shear � = [g1,g2] of the lens
are also related to the lensing potential through the equations

k(✓) = 1
2

✓
∂ 2

∂q 2
1
+

∂ 2

∂q 2
2

◆
Y(✓) =

S(✓)
Scrit

(25)

g1(✓) =
1
2

✓
∂ 2

∂q 2
1
� ∂ 2

∂q 2
2

◆
Y(✓) (26)

g2(✓) =
∂

∂q1

∂
∂q2

Y(✓) . (27)

x = h⌫/kBTCMBavec

Caractérise la pression électronique thermique à l’intérieur de l’ICM
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Here S(✓) is the surface mass density and Scrit is the critical
surface mass density for lensing, given by

Scrit =
c2

4pG
Ds

DlsDl
, (28)

where G is the gravitational constant.
In the weak lensing regime the gravitational shear intro-

duces a complex ellipticity e to the images of background
galaxies which is approximately equal to � and is described
by the reduced shear

hei= �

1�k
, (29)

where hei denotes a local average necessary to mitigate the in-
trinsic ellipticity of the galaxies. In the strong lensing regime,
where multiple solutions to the lens equation are possible,
more than one image of a single source can be observed.
These multiple images straddle critical lines whose locations
are set by the relation

(1�k)2 � g2 = 0 . (30)

The combined strong and weak lensing analysis outlined in
the following section employs the location of the critical lines
and the ellipticity of background galaxies to measure the con-
vergence of the galaxy cluster. According to our model the
convergence measured at a projected radius R is given by

k =
1

Scrit

Z •

R
rtot(r)

2rdrp
r2 �R2

. (31)

4. DESCRIPTION OF THE MULTIWAVELENGTH DATASET

4.1. Chandra X-ray
The reduction of the CLASH X-ray data is described in de-

tail in Donahue et al. (2014) and we briefly summarize the
procedure below. The data is processed using CIAO 4.6.1 (re-
leased February 2014) and CALDB 4.5.9 (released Novem-
ber 2013). Flares are identified as time intervals with outlier
event rates in 0.5–7.0 keV light curves extracted from source-
free areas of the detector. Events coincident with a flare are
removed from the event lists. Bright point sources are iden-
tified using the CIAO wavdetect algorithm and a map of the
PSF size as a function of location on the detector. Regions
near the bright point sources are filtered from the event lists.
Each dataset is matched to a deep background file from a sim-
ilar observation epoch, which is used to subtract contamina-
tion from faint point sources, galactic soft X-ray emission,
and non-flaring particle events (Hickox & Markevitch 2007;
Markevitch et al. 2003). The background files are filtered, re-
projected, and rescaled to match the target observation. The
rescaling is done by adjusting the exposure time on the deep
background file so that the event rate between 10�12 keV is
equal to that in the cluster field. This particular energy range
is chosen because the effective area for X-ray photons is low
and the event rate is dominated by high-energy particle events.

X-ray spectra are generated in concentric annular bins cen-
tered on the coordinates given in Table 1. The boundaries of
the bins are selected so that at least 1500 photon counts from
the cluster are contained in each annulus and the width of each
annulus is at least a few times the width of the PSF. Compared
to the analysis of Donahue et al. (2014), we have added one
additional annulus to each cluster. This annulus is located be-
yond the radius of the outermost annulus used in that work.
The spectra are binned in energy from 0.5–11.0 keV with a

bin width of 38 eV. The same binning scheme is applied to
both the observation file and the deep background file. The
individual weighted redistribution matrix file (RMFs) and an-
cillary response file (ARFs) are then computed. The cluster
field spectra S obs, deep background spectra S bkg, RMFs, and
ARFs are all input to the multiwavelength analysis.

The spectra generated from the deep background file are
eventually subtracted from the spectra generated from the tar-
get observation file. Consider the energy bin hn j and the an-
nulus with inner radius Ri and outer radius Ri+1. The resulting
X-ray measurement is

Si j = S obs
i j �S bkg

i j (32)

and the associated Poisson error is

sSi j =
q

S obs
i j +S bkg

i j (33)

with units of counts sec�1 keV�1.

4.2. Bolocam Thermal SZ Effect
The thermal SZ effect has been measured at 140 GHz for

the six clusters in our sample using Bolocam, a 144-element
bolometric imaging camera at the Caltech Submillimeter Ob-
servatory (Glenn et al. 1998; Haig et al. 2004). Bolocam
has an 8 arcmin diameter circular field of view (FOV) and
a 58 arcsec full width at half maximum point spread function
(PSF). The measurements were made over the course of 14
observing runs between 2006 and 2012 as part of a larger cam-
paign that resulted in the creation of the Bolocam X-ray SZ
(BOXSZ) sample of 45 galaxy clusters (Sayers et al. 2013b;
Czakon et al. 2015). We summarize the general properties of
the SZ data products here, and direct the interested reader to
Sayers et al. (2011) for a description of the data reduction, flux
calibration, and noise estimation, and Czakon et al. (2015) for
a description of the BOXSZ sample. The SZ data products
for all of the clusters in the BOXSZ sample are publicly avail-
able. 15

Noise sourced by fluctuations in atmospheric emission
dominates the raw detector timestreams at long timescales.
The atmospheric noise is mitigated by subtracting the
response-weighted mean detector signal and applying a
250 mHz high-pass filter (Sayers et al. 2011). This data pro-
cessing attenuates the cluster signal in a way that is mildly
dependent on the cluster shape and also results in the loss of
the image’s mean signal. To account for the attenuation of the
cluster signal, a complex-valued two-dimensional map space
Fourier transfer function is calibrated for each cluster. The
mean signal of the image is included as a free parameter T̄SZ

in our model fits.
Non-astronomical noise is estimated from 1000 jackknife

realizations of the cluster image. To account for astronomi-
cal noise sourced by CMB anisotropies and unresolved point
sources, Gaussian random realizations of the 140 GHz sky are
generated from SPT power spectrum measurements (Keisler
et al. 2011; Reichardt et al. 2012), passed through the data
processing pipeline, and added to each of the 1000 jackknife
realizations. Note that the SPT power spectrum measure-
ments cover the full range of angular scales probed by the
Bolocam images. Known radio point sources have been sub-
tracted from the Bolocam images, and random realizations of

15
http://irsa.ipac.caltech.edu/data/Planck/release_2/

ancillary-data/bolocam/
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Here S(✓) is the surface mass density and Scrit is the critical
surface mass density for lensing, given by

Scrit =
c2

4pG
Ds

DlsDl
, (28)

where G is the gravitational constant.
In the weak lensing regime the gravitational shear intro-

duces a complex ellipticity e to the images of background
galaxies which is approximately equal to � and is described
by the reduced shear

hei= �

1�k
, (29)

where hei denotes a local average necessary to mitigate the in-
trinsic ellipticity of the galaxies. In the strong lensing regime,
where multiple solutions to the lens equation are possible,
more than one image of a single source can be observed.
These multiple images straddle critical lines whose locations
are set by the relation

(1�k)2 � g2 = 0 . (30)

The combined strong and weak lensing analysis outlined in
the following section employs the location of the critical lines
and the ellipticity of background galaxies to measure the con-
vergence of the galaxy cluster. According to our model the
convergence measured at a projected radius R is given by

k =
1

Scrit

Z •

R
rtot(r)

2rdrp
r2 �R2

. (31)

4. DESCRIPTION OF THE MULTIWAVELENGTH DATASET

4.1. Chandra X-ray
The reduction of the CLASH X-ray data is described in de-

tail in Donahue et al. (2014) and we briefly summarize the
procedure below. The data is processed using CIAO 4.6.1 (re-
leased February 2014) and CALDB 4.5.9 (released Novem-
ber 2013). Flares are identified as time intervals with outlier
event rates in 0.5–7.0 keV light curves extracted from source-
free areas of the detector. Events coincident with a flare are
removed from the event lists. Bright point sources are iden-
tified using the CIAO wavdetect algorithm and a map of the
PSF size as a function of location on the detector. Regions
near the bright point sources are filtered from the event lists.
Each dataset is matched to a deep background file from a sim-
ilar observation epoch, which is used to subtract contamina-
tion from faint point sources, galactic soft X-ray emission,
and non-flaring particle events (Hickox & Markevitch 2007;
Markevitch et al. 2003). The background files are filtered, re-
projected, and rescaled to match the target observation. The
rescaling is done by adjusting the exposure time on the deep
background file so that the event rate between 10�12 keV is
equal to that in the cluster field. This particular energy range
is chosen because the effective area for X-ray photons is low
and the event rate is dominated by high-energy particle events.

X-ray spectra are generated in concentric annular bins cen-
tered on the coordinates given in Table 1. The boundaries of
the bins are selected so that at least 1500 photon counts from
the cluster are contained in each annulus and the width of each
annulus is at least a few times the width of the PSF. Compared
to the analysis of Donahue et al. (2014), we have added one
additional annulus to each cluster. This annulus is located be-
yond the radius of the outermost annulus used in that work.
The spectra are binned in energy from 0.5–11.0 keV with a

bin width of 38 eV. The same binning scheme is applied to
both the observation file and the deep background file. The
individual weighted redistribution matrix file (RMFs) and an-
cillary response file (ARFs) are then computed. The cluster
field spectra S obs, deep background spectra S bkg, RMFs, and
ARFs are all input to the multiwavelength analysis.

The spectra generated from the deep background file are
eventually subtracted from the spectra generated from the tar-
get observation file. Consider the energy bin hn j and the an-
nulus with inner radius Ri and outer radius Ri+1. The resulting
X-ray measurement is

Si j = S obs
i j �S bkg

i j (32)

and the associated Poisson error is

sSi j =
q

S obs
i j +S bkg

i j (33)

with units of counts sec�1 keV�1.

4.2. Bolocam Thermal SZ Effect
The thermal SZ effect has been measured at 140 GHz for

the six clusters in our sample using Bolocam, a 144-element
bolometric imaging camera at the Caltech Submillimeter Ob-
servatory (Glenn et al. 1998; Haig et al. 2004). Bolocam
has an 8 arcmin diameter circular field of view (FOV) and
a 58 arcsec full width at half maximum point spread function
(PSF). The measurements were made over the course of 14
observing runs between 2006 and 2012 as part of a larger cam-
paign that resulted in the creation of the Bolocam X-ray SZ
(BOXSZ) sample of 45 galaxy clusters (Sayers et al. 2013b;
Czakon et al. 2015). We summarize the general properties of
the SZ data products here, and direct the interested reader to
Sayers et al. (2011) for a description of the data reduction, flux
calibration, and noise estimation, and Czakon et al. (2015) for
a description of the BOXSZ sample. The SZ data products
for all of the clusters in the BOXSZ sample are publicly avail-
able. 15

Noise sourced by fluctuations in atmospheric emission
dominates the raw detector timestreams at long timescales.
The atmospheric noise is mitigated by subtracting the
response-weighted mean detector signal and applying a
250 mHz high-pass filter (Sayers et al. 2011). This data pro-
cessing attenuates the cluster signal in a way that is mildly
dependent on the cluster shape and also results in the loss of
the image’s mean signal. To account for the attenuation of the
cluster signal, a complex-valued two-dimensional map space
Fourier transfer function is calibrated for each cluster. The
mean signal of the image is included as a free parameter T̄SZ

in our model fits.
Non-astronomical noise is estimated from 1000 jackknife

realizations of the cluster image. To account for astronomi-
cal noise sourced by CMB anisotropies and unresolved point
sources, Gaussian random realizations of the 140 GHz sky are
generated from SPT power spectrum measurements (Keisler
et al. 2011; Reichardt et al. 2012), passed through the data
processing pipeline, and added to each of the 1000 jackknife
realizations. Note that the SPT power spectrum measure-
ments cover the full range of angular scales probed by the
Bolocam images. Known radio point sources have been sub-
tracted from the Bolocam images, and random realizations of

15
http://irsa.ipac.caltech.edu/data/Planck/release_2/

ancillary-data/bolocam/

avec Contraint la masse totale de l’amas de galaxies (potentiel gravitationnel)
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the estimated residual from the subtraction are injected into
the each of the 1000 jackknife realizations as well. It has
been confirmed that the resulting 1000 noise realizations are
statistically indistinguishable from observations of blank sky
(Sayers et al. 2011).

The pixel-to-pixel covariance matrix of the SZ image is es-
timated as

(CTSZ)i j =

8
<

:

(sensitivity)2

ti
i = j

0 i 6= j ,

where ti is the (known) integration time for pixel i. The sen-
sitivity is determined by fitting a Gaussian to a histogram of
the product of the pixel value and the square root of the pixel
integration time for all pixels in all 1000 noise realizations.
The assumption that the off-diagonal elements are zero is a
good but not perfect description of the data. The set of ob-
servations do not contain enough information to estimate the
off-diagonal elements of the covariance matrix, and simplify-
ing assumptions about the structure of the covariance matrix
(e.g., that it is only a function of pixel separation) have proven
false. Instead, we carry out a test (described in Section 5.3) to
determine what effect the small inter-pixel correlations in the
SZ image have on the resulting parameter constraints. We find
that the effect is not significant, and therefore ignore the off-
diagonal noise terms throughout our analysis. We also note
that Sayers et al. (2011) demonstrates that the distribution of
c2 values obtained from fitting a model to the Bolocam SZ
data accounting for inter-pixel correlations using the noise re-
alizations is nearly identical to the theoretical c2 distribution
for the diagonal covariance matrix assumption.

The SZ images are 14 arcmin⇥ 14 arcmin with 20 arcsec
square pixels. For our analysis we only fit pixels with an angu-
lar separation q  6.33 arcmin from the center of the image.
This is the largest aperture wherein all pixels have an integra-
tion time t > 0.25⇥tmax, where tmax is the maximum integration
time achieved in the center of the image. The input to the mul-
tiwavelength analysis is the image TSZ in units of µKCMB, the
diagonal covariance matrix CTSZ , and the transfer function of
the data processing pipeline.

4.3. HST and Subaru Gravitational Lensing
The vast majority of the CLASH clusters have HST strong

lensing, HST weak lensing, and Subaru Suprime-Cam weak
lensing constraints. Merten et al. (2015) outlines the proce-
dure used to self-consistently combine these constraints into
a nonparametric estimate of the lensing convergence profile.
We summarize the main steps of this procedure.

The strong lensing reduction begins by identifying
multiple-image systems in the 16-band HST images using the
method outlined in Zitrin et al. (2009, 2015). The redshift
associated to each multiple-image system is either a spec-
troscopic redshift from the CLASH VLT-VIMOS program
(Balestra et al. 2013), a Bayesian photometric redshift deter-
mined from HST photometry (Benı́tez 2000), or a value culled
from the literature. Using the method outlined in Merten et al.
(2009), the multiple-image systems are used to infer the loca-
tion of the critical lines. The locations of the critical lines are
inputs to the reconstruction algorithm.

The weak lensing input takes the form of a shear catalog
that lists the coordinates, redshift, and complex ellipticity of
background galaxies in the cluster field. The creation of the
HST shear catalog is outlined in Section 3.2 of Merten et al.

(2015) and the creation of the Subaru shear catalog is outlined
in Section 4 of Umetsu et al. (2014). The HST and Subaru
catalogs are combined into a single catalog. Before doing
so, the HST complex ellipticity measurements are multiplied
by a scale factor to refer them to the effective redshift of the
Subaru catalog. The catalogs are concatenated and the signal-
to-noise-weighted mean is computed for sources that appear
in both catalogs.

The SaWLens algorithm (Merten et al. 2009) is used to per-
form a nonparametric reconstruction of the lensing potential
y(✓) on an adaptively refined two-dimensional grid from the
strong lensing critical lines and the weak lensing shear cata-
log. Three different grid sizes are employed: a coarse reso-
lution grid (25� 36 arcsec pixel), which is applicable to the
wide field Subaru weak lensing data, an intermediate resolu-
tion grid (8�13 arcsec pixel), which is applicable to the HST
weak lensing data, and a fine resolution grid (6� 10 arcsec
pixel), which is applicable to the HST strong lensing data.
The lensing potential at each pixel of the grid is estimated by
minimizing a c2 function that accounts for measurements of
the average ellipticity of nearby background galaxies and the
location of nearby critical lines. The assumption of spherical
symmetry is not used in this reconstruction, nor are any other
prior assumptions about the mass distribution of the cluster.
The convergence of the lens k(✓) is then obtained by taking
second-order numerical derivatives of the reconstructed lens-
ing potential as prescribed by Equation (25). The SaWLens
algorithm has been shown to recover the convergence (or,
equivalently, surface mass density) of simulated clusters over
a wide range of scales (50 kpc� several Mpc) with an accu-
racy of 10% (Meneghetti et al. 2010).

The convergence map is azimuthally binned about the co-
ordinates given in Table 1. The inner boundary is set by the
resolution of the highest refinement level of the adaptive grid.
The outer boundary is fixed at the angular scale corresponding
to 2 Mpc h�1 ⇡ 2.85 Mpc h�1

70 . The radial range defined by
these two boundaries is split into 15 bins, with the bin width
decreasing as the level of refinement is increased.

Errors are estimated from 1000 resampled realizations of
the k(✓) map. Each realization is created by taking a boot-
strap resampling of the shear catalog in the case of weak lens-
ing and a random sampling of the allowed redshift range of
the multiple-image systems in the case of strong lensing. The
full reconstruction process and azimuthal binning is carried
out on the 1000 realizations. The set is used to estimate the
covariance matrix Ck of the 15 radial bins. The convergence
profile  and associated covariance matrix Ck then act as in-
puts to the multiwavelength analysis.

The only difference in the procedure outlined above and
that presented in Merten et al. (2015) is that we center the
convergence profile on the peak of the X-ray emission rather
than the peak of the convergence map. As a result, we mea-
sure a lower convergence in the innermost bin than what is
presented in that work. The choice of center does not have a
significant effect on the convergence profile beyond the inner-
most bin.

5. METHOD

5.1. Joint Analysis of Cluster Observations (JACO)
We use the Joint Analysis of Cluster Observations (JACO)

software package to fit the model outlined in Section 3 to the
X-ray, SZ, and lensing data described in Section 4. JACO
provides a self-consistent framework for modeling and fit-

• Bolocam :

Mesure SZ donnée par la carte de surface de brillance SZ et par la matrice de covariance : 

Sensibilité calculée en utilisant 1000 réalisations 
de cartes de bruit à partir de cartes de jackknife

• HST et Subaru :

Rééchantillonnage du catalogue de shear par bootstrap (weak lensing) et variation gaussienne du 
redshift des images multiples (strong lensing)             estimation de la matrice de covariance C

Combinaison des mesures de weak et strong lensing pour estimer un profil de convergence (r)
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Table 2

Model parameters and their priors.

Parameter Lower Boundary Upper Boundary Units Description

Total Density

Mtot(0.5 Mpc) 0.05 100.0 1014 M� NFW normalization. Total mass within 0.5 Mpc.
rs 0.05 25.0 Mpc NFW scale radius.

Gas Density

Mgas(0.5 Mpc) 0.0001 1.0 1014 M� Total gas mass within 0.5 Mpc.
rgas 0.0005 2.0 Mpc Scale radius of the modified b -model.
b 0.30 5.0 · · · Power-law slope (�3b ) of the modified b -model.
rgas, outer 0.20 5.0 Mpc Scale radius of the outer portion of the modified b -model.
e 0.20 5.0 · · · Power-law slope (�e) of the outer portion of the modified b -model.
a 0 1.5 · · · Power-law slope (�a) of the inner portion of the modified b -model.
[Mgas, core/Mgas](0.5 Mpc) 0 0.50 · · · Fraction of the total gas mass within 0.5 Mpc that is attributed to the

secondary, core b -model.
rgas, core 0.05 50 kpc Scale radius of the secondary, core b -model.

Nonthermal Pressure Fraction

C 0.00 1.825 · · · Normalization of the mean nonthermal pressure fraction profile ob-
served in simulation.

D 0.00 0.50 · · · Normalization of the core nonthermal pressure fraction profile.
E 0.001 0.10 r200m Scale radius of the core nonthermal pressure fraction profile.
z 0.5 3.00 · · · Power law slope (�z ) of the core nonthermal pressure fraction profile.

Nuisance Parameters

Ttrunc 0.00 15.0 keV Temperature of the ICM at the truncation radius.
Z0 0.1 2.90 Z� Metallicity in the center of the cluster.
rZ 0.005 1.00 Mpc Metallicity scale radius.
bZ 0.00 0.80 · · · Metallicity power-law slope (�3bZ ).
T̄SZ -1000 1000 µKCMB Mean value of the SZ image.
Tsbkg 0.1 0.50 K Temperature of the soft X-ray background.
Asbkg -0.001 0.001 · · · Normalization of the soft X-ray background.

Note. — Only a subset of these parameters are allowed to float for a given cluster, as determined by the F-test decision tree described in Section 5.2. We
assume a uniform prior between the lower and upper boundaries.

ting multiwavelength observations of galaxy clusters (Mah-
davi et al. 2007). The general principle underlying JACO is
“forward model fitting”. The candidate model is projected,
convolved, and filtered so that it can be compared to the data
directly. The software is well tested; JACO has been used
to examine X-ray and weak lensing scaling relations for a
sample of 50 massive galaxy clusters in the Canadian Cluster
Comparison Project (Mahdavi et al. 2013). It has also been
used to estimate the hydrostatic mass, gas mass fraction, and
ICM temperature from Chandra and XMM observations of
the CLASH sample (Donahue et al. 2014).

As part of this work, we have expanded and modified the
version of JACO described in Mahdavi et al. (2007, 2013) in
the following ways. We have added the ability to fit Bolocam
SZ images. We use the convergence rather than the tangential
shear as the lensing observable. We use a slightly different
parameterization for the gas density. We include nonthermal
pressure support in our model. Finally, although not a change
to the underlying JACO package, we include constraints from
both weak and strong lensing rather than the weak lensing-
only constraints used in previous analyses.

JACO employs a Markov Chain Monte Carlo (MCMC) al-
gorithm to perform Metropolis-Hastings sampling of the joint
posterior distribution

p(✓p|S,TSZ,) µ L (S,TSZ,|✓p)p(✓p) , (34)

where ✓p is the set of all model parameters, L (✓p|S,TSZ,)
is the likelihood function, and p(✓p) is the set of prior con-
straints for the model parameters. The likelihood function is,
up to an overall normalization, given by

L (✓p|S,TSZ,) µ exp
�
�c2�, (35)

where

c2 = c2
XR +c2

SZ +c2
GL . (36)

That is, we assume that the X-ray, SZ, and lensing measure-
ments are independent, and therefore the total c2 is the sum
of the c2 of the individual datasets. We now describe how the
c2 of each dataset is calculated for a candidate model.

For a given set of parameters, JACO generates a set of syn-
thetic X-ray event spectra bS(✓p) using Equation (18) and the
input ARF and RMF files. The cooling function is computed
using the MEKAL plasma code. The model spectra are con-
volved with the energy-dependent instrument PSF. The details
of how the PSF is calculated for a given set of annular bins can
be found in Mahdavi et al. (2007). The X-ray contribution to
c2 is then given by

c2
XR = Â

i, j

(Si j � bSi j(✓p))2

s2
Si j

, (37)
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Table 2

Model parameters and their priors.

Parameter Lower Boundary Upper Boundary Units Description

Total Density

Mtot(0.5 Mpc) 0.05 100.0 1014 M� NFW normalization. Total mass within 0.5 Mpc.
rs 0.05 25.0 Mpc NFW scale radius.

Gas Density

Mgas(0.5 Mpc) 0.0001 1.0 1014 M� Total gas mass within 0.5 Mpc.
rgas 0.0005 2.0 Mpc Scale radius of the modified b -model.
b 0.30 5.0 · · · Power-law slope (�3b ) of the modified b -model.
rgas, outer 0.20 5.0 Mpc Scale radius of the outer portion of the modified b -model.
e 0.20 5.0 · · · Power-law slope (�e) of the outer portion of the modified b -model.
a 0 1.5 · · · Power-law slope (�a) of the inner portion of the modified b -model.
[Mgas, core/Mgas](0.5 Mpc) 0 0.50 · · · Fraction of the total gas mass within 0.5 Mpc that is attributed to the

secondary, core b -model.
rgas, core 0.05 50 kpc Scale radius of the secondary, core b -model.

Nonthermal Pressure Fraction

C 0.00 1.825 · · · Normalization of the mean nonthermal pressure fraction profile ob-
served in simulation.

D 0.00 0.50 · · · Normalization of the core nonthermal pressure fraction profile.
E 0.001 0.10 r200m Scale radius of the core nonthermal pressure fraction profile.
z 0.5 3.00 · · · Power law slope (�z ) of the core nonthermal pressure fraction profile.

Nuisance Parameters

Ttrunc 0.00 15.0 keV Temperature of the ICM at the truncation radius.
Z0 0.1 2.90 Z� Metallicity in the center of the cluster.
rZ 0.005 1.00 Mpc Metallicity scale radius.
bZ 0.00 0.80 · · · Metallicity power-law slope (�3bZ ).
T̄SZ -1000 1000 µKCMB Mean value of the SZ image.
Tsbkg 0.1 0.50 K Temperature of the soft X-ray background.
Asbkg -0.001 0.001 · · · Normalization of the soft X-ray background.

Note. — Only a subset of these parameters are allowed to float for a given cluster, as determined by the F-test decision tree described in Section 5.2. We
assume a uniform prior between the lower and upper boundaries.
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SZ images. We use the convergence rather than the tangential
shear as the lensing observable. We use a slightly different
parameterization for the gas density. We include nonthermal
pressure support in our model. Finally, although not a change
to the underlying JACO package, we include constraints from
both weak and strong lensing rather than the weak lensing-
only constraints used in previous analyses.

JACO employs a Markov Chain Monte Carlo (MCMC) al-
gorithm to perform Metropolis-Hastings sampling of the joint
posterior distribution

p(✓p|S,TSZ,) µ L (S,TSZ,|✓p)p(✓p) , (34)

where ✓p is the set of all model parameters, L (✓p|S,TSZ,)
is the likelihood function, and p(✓p) is the set of prior con-
straints for the model parameters. The likelihood function is,
up to an overall normalization, given by
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�c2�, (35)

where
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That is, we assume that the X-ray, SZ, and lensing measure-
ments are independent, and therefore the total c2 is the sum
of the c2 of the individual datasets. We now describe how the
c2 of each dataset is calculated for a candidate model.

For a given set of parameters, JACO generates a set of syn-
thetic X-ray event spectra bS(✓p) using Equation (18) and the
input ARF and RMF files. The cooling function is computed
using the MEKAL plasma code. The model spectra are con-
volved with the energy-dependent instrument PSF. The details
of how the PSF is calculated for a given set of annular bins can
be found in Mahdavi et al. (2007). The X-ray contribution to
c2 is then given by
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where the summation runs over the desired annular bins and
energy bins.

For a given set of parameters, JACO generates a model
SZ image bTSZ(✓p) using Equations (20)�(22). Prior to cal-
culating c2

SZ, it accounts for instrumental effects by simu-
lating the act of observing the model SZ image with Bolo-
cam. The model image is generated to have a larger size
(25 arcmin ⇥ 25 arcmin) and a finer resolution (10 arcsec)
than the data to avoid edge effects and sampling effects dur-
ing convolution. It is is convolved with a Gaussian kernel
with a 60.33 arcsec FWHM in order to account for the in-
strument PSF (59.17 arcsec FWHM) and pointing uncertainty
(5 arcsec RMS). Afterwards it is rebinned and resized to an
identical grid as that of the data. It is then convolved with the
transfer function of the data processing pipeline. Finally, the
parameter T̄SZ is added to the image to represent the unknown
mean signal offset. The SZ contribution to c2 is calculated as

c2
SZ = Â

i

(TSZ, i � bTSZ, i(✓p))2

(CTSZ)ii
, (38)

where the summation runs over all pixels with an angular sep-
aration q  6.33 arcmin.

Finally, for a given set of parameters, JACO generates a
convergence profile b(✓p) using Equation (31). This is com-
pared directly to the convergence profile determined by the
SaWLens algorithm. The lensing contribution to c2 is calcu-
lated as

c2
GL = (� b(✓p))

| C�1
k (� b(✓p)) , (39)

which accounts for the nonzero covariance between the radial
bins that has been calculated using the SaWLens bootstraps.

We place a uniform prior on each parameter with the lower
and upper boundaries chosen so that the prior is uninforma-
tive. Specifically, the lower and upper boundaries are cho-
sen so that they eliminate regions of parameter space where
the likelihood function is already small. This is not always
possible, and in these cases we choose physically reason-
able lower and upper boundaries (e.g., the boundaries for the
normalization of the nonthermal pressure fraction C are cho-
sen to ensure that 0  F (r)  1). The model parameters
and their priors are summarized in Table 2. We marginal-
ize over the nuisance parameters to obtain constraints on the
parameters of interest. Figure 1 shows an example of the
marginalized two-dimensional joint posterior distributions re-
sulting from a JACO fit to the full multiwavelength dataset for
MACS J1532.8+3021.

5.2. Model Determination
The model presented in Section 3 assumes that there is a

discrete boundary at which the ICM ends, which we call the
truncation radius rtrunc. We fix the truncation radius at a dis-
tinct physical radius for each cluster that is chosen to be large
enough that increasing it further does not have an effect on the
model fit. This is accomplished through the following proce-
dure. First, we use JACO to fit the NFW model for the total
density to the lensing data only. From these fits, we obtain
an estimate of r500c. We then refit the full multiwavelength
dataset with the value of rtrunc fixed at integer multiples of r500c
between 3 and 10. In all cases, it was found that the result-
ing constraints on the thermodynamic properties of the ICM
converged for values of rtrunc � 7⇥ r500c. We fix the radius at

Table 3

Maximally restricted model for each cluster as
determined by the F-test decision trees.

Name Gas Nonthermal
Density Pressure Fraction

Abell 383 G-1b F-1a
Abell 611 G-1a F-0
MACS J0429.6-0253 G-1a F-0
MACS J1311.0-0310 G-0 F-0
MACS J1423.8+2404 G-1b F-0
MACS J1532.8+3021 G-1b F-1b

which we truncate the ICM to the physical radius correspond-
ing to rtrunc = 7⇥ r500c for all further analysis.

The data does not warrant the full complexity of the model
presented in Section 3 for any of the clusters in our sample.
We perform a series of F-test decision trees in order to de-
termine the maximally restricted model that provides an ade-
quate fit to the data. The F-test is a statistical test that can be
used to quantify whether adding additional model parameters
results in a significantly better fit to the data. The test statistic
is the fractional increase in the minimum c2 that results from
restricting the additional parameters divided by the fractional
change in the number of degrees of freedom

F =

�
c2

restricted �c2
unrestricted

�
/c2

unrestricted

(nrestricted �nunrestricted)/nunrestricted

. (40)

The test statistic will follow an F-distribution, F(nrestricted �
nunrestricted,nunrestricted), under the null hypothesis that the unre-
stricted model does not provide a significantly better fit than
the restricted model. We reject the null hypothesis and add
the additional model parameters if the probability of observ-
ing the measured value of F is less than 0.02. We apply the
F-test a total of 48 times in the process of determining the
maximally restricted model for all 6 clusters. The 0.02 cutoff
implies that we will add additional model parameters unnec-
essarily approximately one time.

The first F-test decision tree is used to determine if the r�a

power-law and the second b -model are necessary to describe
the gas density in the cluster core. We construct the following
hierarchy of models ordered by the number of free parame-
ters:

G-0 We fix a = 0 and rgas,c = 0.

G-1a We let a float, but fix rgas,c = 0.

G-1b We let rgas,c and rc float (recall that bc = 1), but fix a =
0.

G-2 We let a , rgas,c, and rc float.

We fit all four models to the data. Since constraints on rgas

originate from the X-ray and SZ data, we perform this test
without the lensing data and assume entirely thermal pressure
support. Since the various models differ only in their treat-
ment of the cluster core, the results of the test are driven al-
most entirely by the X-ray data. We examine the two branches
of the tree: 0!1a!2 and 0!1b!2. We move along each
branch, applying the F-test at each step, and stop when we ei-
ther accept the restricted model or reach the end of the branch.
We then compare the stopping points on each branch and
choose the model that yields an acceptable fit to the data with
the fewest parameters.
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where the summation runs over the desired annular bins and
energy bins.

For a given set of parameters, JACO generates a model
SZ image bTSZ(✓p) using Equations (20)�(22). Prior to cal-
culating c2

SZ, it accounts for instrumental effects by simu-
lating the act of observing the model SZ image with Bolo-
cam. The model image is generated to have a larger size
(25 arcmin ⇥ 25 arcmin) and a finer resolution (10 arcsec)
than the data to avoid edge effects and sampling effects dur-
ing convolution. It is is convolved with a Gaussian kernel
with a 60.33 arcsec FWHM in order to account for the in-
strument PSF (59.17 arcsec FWHM) and pointing uncertainty
(5 arcsec RMS). Afterwards it is rebinned and resized to an
identical grid as that of the data. It is then convolved with the
transfer function of the data processing pipeline. Finally, the
parameter T̄SZ is added to the image to represent the unknown
mean signal offset. The SZ contribution to c2 is calculated as

c2
SZ = Â

i

(TSZ, i � bTSZ, i(✓p))2

(CTSZ)ii
, (38)

where the summation runs over all pixels with an angular sep-
aration q  6.33 arcmin.

Finally, for a given set of parameters, JACO generates a
convergence profile b(✓p) using Equation (31). This is com-
pared directly to the convergence profile determined by the
SaWLens algorithm. The lensing contribution to c2 is calcu-
lated as

c2
GL = (� b(✓p))

| C�1
k (� b(✓p)) , (39)

which accounts for the nonzero covariance between the radial
bins that has been calculated using the SaWLens bootstraps.

We place a uniform prior on each parameter with the lower
and upper boundaries chosen so that the prior is uninforma-
tive. Specifically, the lower and upper boundaries are cho-
sen so that they eliminate regions of parameter space where
the likelihood function is already small. This is not always
possible, and in these cases we choose physically reason-
able lower and upper boundaries (e.g., the boundaries for the
normalization of the nonthermal pressure fraction C are cho-
sen to ensure that 0  F (r)  1). The model parameters
and their priors are summarized in Table 2. We marginal-
ize over the nuisance parameters to obtain constraints on the
parameters of interest. Figure 1 shows an example of the
marginalized two-dimensional joint posterior distributions re-
sulting from a JACO fit to the full multiwavelength dataset for
MACS J1532.8+3021.

5.2. Model Determination
The model presented in Section 3 assumes that there is a

discrete boundary at which the ICM ends, which we call the
truncation radius rtrunc. We fix the truncation radius at a dis-
tinct physical radius for each cluster that is chosen to be large
enough that increasing it further does not have an effect on the
model fit. This is accomplished through the following proce-
dure. First, we use JACO to fit the NFW model for the total
density to the lensing data only. From these fits, we obtain
an estimate of r500c. We then refit the full multiwavelength
dataset with the value of rtrunc fixed at integer multiples of r500c
between 3 and 10. In all cases, it was found that the result-
ing constraints on the thermodynamic properties of the ICM
converged for values of rtrunc � 7⇥ r500c. We fix the radius at
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Maximally restricted model for each cluster as
determined by the F-test decision trees.

Name Gas Nonthermal
Density Pressure Fraction
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MACS J1311.0-0310 G-0 F-0
MACS J1423.8+2404 G-1b F-0
MACS J1532.8+3021 G-1b F-1b

which we truncate the ICM to the physical radius correspond-
ing to rtrunc = 7⇥ r500c for all further analysis.

The data does not warrant the full complexity of the model
presented in Section 3 for any of the clusters in our sample.
We perform a series of F-test decision trees in order to de-
termine the maximally restricted model that provides an ade-
quate fit to the data. The F-test is a statistical test that can be
used to quantify whether adding additional model parameters
results in a significantly better fit to the data. The test statistic
is the fractional increase in the minimum c2 that results from
restricting the additional parameters divided by the fractional
change in the number of degrees of freedom

F =
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restricted �c2
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The test statistic will follow an F-distribution, F(nrestricted �
nunrestricted,nunrestricted), under the null hypothesis that the unre-
stricted model does not provide a significantly better fit than
the restricted model. We reject the null hypothesis and add
the additional model parameters if the probability of observ-
ing the measured value of F is less than 0.02. We apply the
F-test a total of 48 times in the process of determining the
maximally restricted model for all 6 clusters. The 0.02 cutoff
implies that we will add additional model parameters unnec-
essarily approximately one time.

The first F-test decision tree is used to determine if the r�a

power-law and the second b -model are necessary to describe
the gas density in the cluster core. We construct the following
hierarchy of models ordered by the number of free parame-
ters:

G-0 We fix a = 0 and rgas,c = 0.

G-1a We let a float, but fix rgas,c = 0.

G-1b We let rgas,c and rc float (recall that bc = 1), but fix a =
0.

G-2 We let a , rgas,c, and rc float.

We fit all four models to the data. Since constraints on rgas

originate from the X-ray and SZ data, we perform this test
without the lensing data and assume entirely thermal pressure
support. Since the various models differ only in their treat-
ment of the cluster core, the results of the test are driven al-
most entirely by the X-ray data. We examine the two branches
of the tree: 0!1a!2 and 0!1b!2. We move along each
branch, applying the F-test at each step, and stop when we ei-
ther accept the restricted model or reach the end of the branch.
We then compare the stopping points on each branch and
choose the model that yields an acceptable fit to the data with
the fewest parameters.
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where the summation runs over the desired annular bins and
energy bins.
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culating c2

SZ, it accounts for instrumental effects by simu-
lating the act of observing the model SZ image with Bolo-
cam. The model image is generated to have a larger size
(25 arcmin ⇥ 25 arcmin) and a finer resolution (10 arcsec)
than the data to avoid edge effects and sampling effects dur-
ing convolution. It is is convolved with a Gaussian kernel
with a 60.33 arcsec FWHM in order to account for the in-
strument PSF (59.17 arcsec FWHM) and pointing uncertainty
(5 arcsec RMS). Afterwards it is rebinned and resized to an
identical grid as that of the data. It is then convolved with the
transfer function of the data processing pipeline. Finally, the
parameter T̄SZ is added to the image to represent the unknown
mean signal offset. The SZ contribution to c2 is calculated as

c2
SZ = Â

i

(TSZ, i � bTSZ, i(✓p))2

(CTSZ)ii
, (38)
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aration q  6.33 arcmin.
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pared directly to the convergence profile determined by the
SaWLens algorithm. The lensing contribution to c2 is calcu-
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| C�1
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which accounts for the nonzero covariance between the radial
bins that has been calculated using the SaWLens bootstraps.

We place a uniform prior on each parameter with the lower
and upper boundaries chosen so that the prior is uninforma-
tive. Specifically, the lower and upper boundaries are cho-
sen so that they eliminate regions of parameter space where
the likelihood function is already small. This is not always
possible, and in these cases we choose physically reason-
able lower and upper boundaries (e.g., the boundaries for the
normalization of the nonthermal pressure fraction C are cho-
sen to ensure that 0  F (r)  1). The model parameters
and their priors are summarized in Table 2. We marginal-
ize over the nuisance parameters to obtain constraints on the
parameters of interest. Figure 1 shows an example of the
marginalized two-dimensional joint posterior distributions re-
sulting from a JACO fit to the full multiwavelength dataset for
MACS J1532.8+3021.

5.2. Model Determination
The model presented in Section 3 assumes that there is a

discrete boundary at which the ICM ends, which we call the
truncation radius rtrunc. We fix the truncation radius at a dis-
tinct physical radius for each cluster that is chosen to be large
enough that increasing it further does not have an effect on the
model fit. This is accomplished through the following proce-
dure. First, we use JACO to fit the NFW model for the total
density to the lensing data only. From these fits, we obtain
an estimate of r500c. We then refit the full multiwavelength
dataset with the value of rtrunc fixed at integer multiples of r500c
between 3 and 10. In all cases, it was found that the result-
ing constraints on the thermodynamic properties of the ICM
converged for values of rtrunc � 7⇥ r500c. We fix the radius at
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which we truncate the ICM to the physical radius correspond-
ing to rtrunc = 7⇥ r500c for all further analysis.

The data does not warrant the full complexity of the model
presented in Section 3 for any of the clusters in our sample.
We perform a series of F-test decision trees in order to de-
termine the maximally restricted model that provides an ade-
quate fit to the data. The F-test is a statistical test that can be
used to quantify whether adding additional model parameters
results in a significantly better fit to the data. The test statistic
is the fractional increase in the minimum c2 that results from
restricting the additional parameters divided by the fractional
change in the number of degrees of freedom
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stricted model does not provide a significantly better fit than
the restricted model. We reject the null hypothesis and add
the additional model parameters if the probability of observ-
ing the measured value of F is less than 0.02. We apply the
F-test a total of 48 times in the process of determining the
maximally restricted model for all 6 clusters. The 0.02 cutoff
implies that we will add additional model parameters unnec-
essarily approximately one time.

The first F-test decision tree is used to determine if the r�a

power-law and the second b -model are necessary to describe
the gas density in the cluster core. We construct the following
hierarchy of models ordered by the number of free parame-
ters:

G-0 We fix a = 0 and rgas,c = 0.

G-1a We let a float, but fix rgas,c = 0.

G-1b We let rgas,c and rc float (recall that bc = 1), but fix a =
0.

G-2 We let a , rgas,c, and rc float.

We fit all four models to the data. Since constraints on rgas

originate from the X-ray and SZ data, we perform this test
without the lensing data and assume entirely thermal pressure
support. Since the various models differ only in their treat-
ment of the cluster core, the results of the test are driven al-
most entirely by the X-ray data. We examine the two branches
of the tree: 0!1a!2 and 0!1b!2. We move along each
branch, applying the F-test at each step, and stop when we ei-
ther accept the restricted model or reach the end of the branch.
We then compare the stopping points on each branch and
choose the model that yields an acceptable fit to the data with
the fewest parameters.
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where the summation runs over the desired annular bins and
energy bins.

For a given set of parameters, JACO generates a model
SZ image bTSZ(✓p) using Equations (20)�(22). Prior to cal-
culating c2

SZ, it accounts for instrumental effects by simu-
lating the act of observing the model SZ image with Bolo-
cam. The model image is generated to have a larger size
(25 arcmin ⇥ 25 arcmin) and a finer resolution (10 arcsec)
than the data to avoid edge effects and sampling effects dur-
ing convolution. It is is convolved with a Gaussian kernel
with a 60.33 arcsec FWHM in order to account for the in-
strument PSF (59.17 arcsec FWHM) and pointing uncertainty
(5 arcsec RMS). Afterwards it is rebinned and resized to an
identical grid as that of the data. It is then convolved with the
transfer function of the data processing pipeline. Finally, the
parameter T̄SZ is added to the image to represent the unknown
mean signal offset. The SZ contribution to c2 is calculated as
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where the summation runs over all pixels with an angular sep-
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Finally, for a given set of parameters, JACO generates a
convergence profile b(✓p) using Equation (31). This is com-
pared directly to the convergence profile determined by the
SaWLens algorithm. The lensing contribution to c2 is calcu-
lated as
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which accounts for the nonzero covariance between the radial
bins that has been calculated using the SaWLens bootstraps.

We place a uniform prior on each parameter with the lower
and upper boundaries chosen so that the prior is uninforma-
tive. Specifically, the lower and upper boundaries are cho-
sen so that they eliminate regions of parameter space where
the likelihood function is already small. This is not always
possible, and in these cases we choose physically reason-
able lower and upper boundaries (e.g., the boundaries for the
normalization of the nonthermal pressure fraction C are cho-
sen to ensure that 0  F (r)  1). The model parameters
and their priors are summarized in Table 2. We marginal-
ize over the nuisance parameters to obtain constraints on the
parameters of interest. Figure 1 shows an example of the
marginalized two-dimensional joint posterior distributions re-
sulting from a JACO fit to the full multiwavelength dataset for
MACS J1532.8+3021.

5.2. Model Determination
The model presented in Section 3 assumes that there is a

discrete boundary at which the ICM ends, which we call the
truncation radius rtrunc. We fix the truncation radius at a dis-
tinct physical radius for each cluster that is chosen to be large
enough that increasing it further does not have an effect on the
model fit. This is accomplished through the following proce-
dure. First, we use JACO to fit the NFW model for the total
density to the lensing data only. From these fits, we obtain
an estimate of r500c. We then refit the full multiwavelength
dataset with the value of rtrunc fixed at integer multiples of r500c
between 3 and 10. In all cases, it was found that the result-
ing constraints on the thermodynamic properties of the ICM
converged for values of rtrunc � 7⇥ r500c. We fix the radius at

Table 3

Maximally restricted model for each cluster as
determined by the F-test decision trees.

Name Gas Nonthermal
Density Pressure Fraction

Abell 383 G-1b F-1a
Abell 611 G-1a F-0
MACS J0429.6-0253 G-1a F-0
MACS J1311.0-0310 G-0 F-0
MACS J1423.8+2404 G-1b F-0
MACS J1532.8+3021 G-1b F-1b

which we truncate the ICM to the physical radius correspond-
ing to rtrunc = 7⇥ r500c for all further analysis.

The data does not warrant the full complexity of the model
presented in Section 3 for any of the clusters in our sample.
We perform a series of F-test decision trees in order to de-
termine the maximally restricted model that provides an ade-
quate fit to the data. The F-test is a statistical test that can be
used to quantify whether adding additional model parameters
results in a significantly better fit to the data. The test statistic
is the fractional increase in the minimum c2 that results from
restricting the additional parameters divided by the fractional
change in the number of degrees of freedom

F =

�
c2

restricted �c2
unrestricted

�
/c2

unrestricted

(nrestricted �nunrestricted)/nunrestricted

. (40)

The test statistic will follow an F-distribution, F(nrestricted �
nunrestricted,nunrestricted), under the null hypothesis that the unre-
stricted model does not provide a significantly better fit than
the restricted model. We reject the null hypothesis and add
the additional model parameters if the probability of observ-
ing the measured value of F is less than 0.02. We apply the
F-test a total of 48 times in the process of determining the
maximally restricted model for all 6 clusters. The 0.02 cutoff
implies that we will add additional model parameters unnec-
essarily approximately one time.

The first F-test decision tree is used to determine if the r�a

power-law and the second b -model are necessary to describe
the gas density in the cluster core. We construct the following
hierarchy of models ordered by the number of free parame-
ters:

G-0 We fix a = 0 and rgas,c = 0.

G-1a We let a float, but fix rgas,c = 0.

G-1b We let rgas,c and rc float (recall that bc = 1), but fix a =
0.

G-2 We let a , rgas,c, and rc float.

We fit all four models to the data. Since constraints on rgas

originate from the X-ray and SZ data, we perform this test
without the lensing data and assume entirely thermal pressure
support. Since the various models differ only in their treat-
ment of the cluster core, the results of the test are driven al-
most entirely by the X-ray data. We examine the two branches
of the tree: 0!1a!2 and 0!1b!2. We move along each
branch, applying the F-test at each step, and stop when we ei-
ther accept the restricted model or reach the end of the branch.
We then compare the stopping points on each branch and
choose the model that yields an acceptable fit to the data with
the fewest parameters.

9
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energy bins.
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i
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(CTSZ)ii
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| C�1
k (� b(✓p)) , (39)
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tive. Specifically, the lower and upper boundaries are cho-
sen so that they eliminate regions of parameter space where
the likelihood function is already small. This is not always
possible, and in these cases we choose physically reason-
able lower and upper boundaries (e.g., the boundaries for the
normalization of the nonthermal pressure fraction C are cho-
sen to ensure that 0  F (r)  1). The model parameters
and their priors are summarized in Table 2. We marginal-
ize over the nuisance parameters to obtain constraints on the
parameters of interest. Figure 1 shows an example of the
marginalized two-dimensional joint posterior distributions re-
sulting from a JACO fit to the full multiwavelength dataset for
MACS J1532.8+3021.

5.2. Model Determination
The model presented in Section 3 assumes that there is a

discrete boundary at which the ICM ends, which we call the
truncation radius rtrunc. We fix the truncation radius at a dis-
tinct physical radius for each cluster that is chosen to be large
enough that increasing it further does not have an effect on the
model fit. This is accomplished through the following proce-
dure. First, we use JACO to fit the NFW model for the total
density to the lensing data only. From these fits, we obtain
an estimate of r500c. We then refit the full multiwavelength
dataset with the value of rtrunc fixed at integer multiples of r500c
between 3 and 10. In all cases, it was found that the result-
ing constraints on the thermodynamic properties of the ICM
converged for values of rtrunc � 7⇥ r500c. We fix the radius at
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MACS J1423.8+2404 G-1b F-0
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which we truncate the ICM to the physical radius correspond-
ing to rtrunc = 7⇥ r500c for all further analysis.

The data does not warrant the full complexity of the model
presented in Section 3 for any of the clusters in our sample.
We perform a series of F-test decision trees in order to de-
termine the maximally restricted model that provides an ade-
quate fit to the data. The F-test is a statistical test that can be
used to quantify whether adding additional model parameters
results in a significantly better fit to the data. The test statistic
is the fractional increase in the minimum c2 that results from
restricting the additional parameters divided by the fractional
change in the number of degrees of freedom
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. (40)

The test statistic will follow an F-distribution, F(nrestricted �
nunrestricted,nunrestricted), under the null hypothesis that the unre-
stricted model does not provide a significantly better fit than
the restricted model. We reject the null hypothesis and add
the additional model parameters if the probability of observ-
ing the measured value of F is less than 0.02. We apply the
F-test a total of 48 times in the process of determining the
maximally restricted model for all 6 clusters. The 0.02 cutoff
implies that we will add additional model parameters unnec-
essarily approximately one time.

The first F-test decision tree is used to determine if the r�a

power-law and the second b -model are necessary to describe
the gas density in the cluster core. We construct the following
hierarchy of models ordered by the number of free parame-
ters:

G-0 We fix a = 0 and rgas,c = 0.

G-1a We let a float, but fix rgas,c = 0.

G-1b We let rgas,c and rc float (recall that bc = 1), but fix a =
0.

G-2 We let a , rgas,c, and rc float.

We fit all four models to the data. Since constraints on rgas

originate from the X-ray and SZ data, we perform this test
without the lensing data and assume entirely thermal pressure
support. Since the various models differ only in their treat-
ment of the cluster core, the results of the test are driven al-
most entirely by the X-ray data. We examine the two branches
of the tree: 0!1a!2 and 0!1b!2. We move along each
branch, applying the F-test at each step, and stop when we ei-
ther accept the restricted model or reach the end of the branch.
We then compare the stopping points on each branch and
choose the model that yields an acceptable fit to the data with
the fewest parameters.
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After we have settled on a model for the gas density, we
carry out a second F-test decision tree to determine if a non-
thermal pressure component is necessary. In this case, the
hierarchy of models is

F-0 We assume completely thermal pressure support by fix-
ing C = 0 and D = 0.

F-1a We allow for an outer nonthermal pressure component
by floating C, but fix D = 0.

F-1b We allow for an inner nonthermal pressure component
by floating D, E, and z , but fix C = 0.

F-2 We allow for both outer and inner nonthermal pressure
components by floating C, D, E, and z .

We fit all four models to the full multiwavelength dataset and
apply the F-test decision tree in an identical manner as was
carried out for the gas density. Table 3 lists the maximally re-
stricted model for both the gas density and nonthermal pres-
sure fraction that was chosen for each cluster. We have com-
pared the constraints on C obtained when fitting model F-1a
and model F-2 and find that they are nearly identical. This
suggests that the constraints on C are not driven by the core
region of the cluster.

5.3. SZ Covariance
In order to determine the effect that the small inter-pixel

correlations in the SZ image have on our results, we have
carried out the following simulation for the galaxy cluster
Abell 611. We take the best-fit maximally restricted model
and generate 100 model-plus-noise realizations. In the case of
the X-ray data, this is accomplished by perturbing the model
prediction for each X-ray spectral bin Ŝi j(✓p) by a random
draw from a Gaussian with mean equal to zero and standard
deviation equal to sSi j . In the case of the lensing data, this
is accomplished by perturbing the model prediction for the
convergence profile ̂(✓p) by a random draw from a multi-
variate Gaussian distribution with mean equal to zero and co-
variance equal to Ck . Finally, in the case of the SZ data, this
is accomplished by adding a random noise realization to the
model prediction for the SZ image T̂SZ(✓p). The SZ noise
realizations are described in Section 4.2; recall that they con-
tain the inter-pixel correlations that this simulation aims to un-
derstand. For each of the 100 model-plus-noise realizations,
we repeat the full JACO fit. We then compare the resulting
distribution of best-fit parameter values to the marginalized
posterior distribution obtained from the original fit to the data
(which assumes a diagonal covariance matrix for the SZ data).
We find no significant bias in the center of the distribution for
the parameters of interest. More specifically, for each param-
eter of interest, the center of the distribution of best-fit values
obtained from fitting the 100 model-plus-noise realizations,
which contain the inter-pixel SZ correlations, differs from the
center of the marginalized posterior distribution of the orig-
inal fit to the data, which assumes a diagonal SZ covariance
matrix, at roughly 10% of the width of the marginalized pos-
terior distribution. This is consistent with our uncertainty on
the quantity due to the fact that we have a sample size of 100.
Similarly, we find no significant change in the width of the
distribution for the parameters of interest. The widths esti-
mated with and without SZ correlations differ at roughly the
10% level, again consistent with how well we can measure

this quantity as estimated by bootstrap resampling the 100
samples. Note that the choice of 100 samples was a balance
between computation time and resulting sensitivity. We have
assumed that the conclusions drawn from this simulation gen-
eralize to the other clusters in our sample, and thus we assume
a diagonal SZ covariance matrix for the results presented in
the following section.

6. RESULTS

In order to investigate the interplay between the various
datasets, we fit lensing only (GL), X-ray only (XR), joint X-
ray and SZ (XR+SZ), and the full dataset (XR+SZ+GL). We
do not perform an SZ only fit because the SZ data alone is not
sufficient to fully constrain the thermodynamic properties of
the ICM. When we fit the full dataset, we use the maximally
restricted model determined in Section 5.2 for each cluster.
When we fit subsets of the full dataset we use restricted ver-
sions of this model. In the case of GL, the model reduces to
an NFW density profile fully described by two parameters. In
the case of XR and XR+SZ, we assume entirely thermal pres-
sure support (by fixing C = 0 and D = 0) because our ability
to constrain the nonthermal pressure component relies on a
comparison of the lensing and X-ray/SZ data. We note that
the GL fits use data that are identical to those used by Merten
et al. (2015), other than the choice of cluster center, and our
derived parameters from the GL fits are fully consistent with
those derived by Merten et al. (2015). Furthermore, the XR
fits use data that are identical to those used by Donahue et al.
(2014), other than the addition of one more annulus at large
radius, and the derived parameters from our XR fits are con-
sistent with those derived in Donahue et al. (2014).

For each fit, we first employ a Levenberg–Marquardt (LM)
minimization algorithm to search for the global maximum of
the likelihood function. We then run 8 MCMC chains in par-
allel all starting from the best-fit parameter values determined
by the LM algorithm. Each chain is run for 22,500⇥Nparam

total iterations. The first 10% of the iterations are discarded
as burn-in and the chains are concatenated. This yields 2–3
million draws from the joint posterior distribution. The ac-
ceptance rate of the MCMC algorithm is close to optimal with
approximately 25% of the proposed steps accepted (Roberts
& Rosenthal 2001). However, the chains have significant se-
rial correlation; we observe an exponential decay in the au-
tocorrelation function with an e-folding time t ⇠ 1000 iter-
ations. We thin the chains by t when calculating statistics,
which results in an effective sample size of 2,000–3,000. We
apply the Geweke diagnostic (Geweke 1992), Heidelberger-
Welch diagnostic (Heidelberger & Welch 1983, 1981), and
Raftery-Lewis diagnostic (Raftery et al. 1992) to the individ-
ual parameter chains to confirm that they have converged at
an acceptable level.

The minimum c2 for each fit is presented in Table 4 along
with the number of model parameters, number of degrees of
freedom, and the probability to exceed (PTE). All of the clus-
ters have an acceptable quality of fit for all of the data combi-
nations, with the exception of Abell 383. There is modest ten-
sion between the X-ray and SZ data for MACS J0429.6-0253
and MACS J1532.8+3021, which is evident in the decrease in
PTE when including the SZ data (XR ! XR+SZ). We address
this tension in the subsections below where we discuss each
cluster individually. The best-fit models corresponding to the
XR+SZ+GL rows are compared to the data in Appendix A
(Figures 4–8).

We present the resulting constraints on the total mass Mtot,

• Utilisation du F-test pour sélectionner le modèle le plus restreint permettant un ajustement adéquat des données :

augmentation de la valeur du        minimum résultant de la 
suppression d’un paramètre libre sur l’augmentation du ndf

�2

• Test statistique suivant une F-distribution sous l’hypothèse        que le modèle non-contraint n’améliore pas l’ajustementH0

Densité de gas Fraction de pression non-thermique

 - Aucun amas du sous-échantillon ne nécessite 
un modèle totalement non-contraint

 - Deux amas nécessitent un terme de pression 
non-thermique pour décrire les données observées
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Figure 2. Constraints on the concentration and total mass at r500c for the six galaxy clusters in our sample. Contours denote 68% and 95% credible regions. The
colors denote fits to different combinations of datasets. Blue denotes a fit to the lensing data only (GL), green the X-ray data only (XR), red the X-ray and SZ
data (XR+SZ), and gold the full multiwavelength dataset using the maximally restricted model (XR+SZ+GL). Note that the range of the y-axis is different for
each row. In the case of MACS J1532.8+3021, the model employed in the XR+SZ+GL fit includes an inner nonthermal pressure component that was omitted
from the other three analyses (because it cannot be constrained without the full multiwavelength dataset) and results in the seemingly conflicting constraints on
the concentration.

• Ajustement d’un sous-ensemble des données pour 
identifier les améliorations apportées par l’analyse jointe

Incertitude sur la mesure de la masse totale par le 
lensing (non-biaisée) significativement réduite par 
l’analyse jointe X-SZ-lensing

• Amas Abell 383 : mauvaise description par un modèle 
sphérique car vraisemblablement étiré le long de la 
ligne de visée (modèle triaxial de Morandi et al. (2012))

⌘DM,a = 0.55± 0.06

⌘DM,b = 0.71± 0.10

✓
l.o.s = 21.1� ± 10.1�

• MACS J1532.8+3021 contient un AGN puissant qui 
induit certainement l’importante fraction de pression 
non-thermique observée dans le coeur de l’amas
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Figure 3. Posterior distribution of the normalization C of the best-fit non-
thermal pressure fraction profile from Nelson et al. (2014). The different
colors denote the different galaxy clusters in the spherical sample (exclud-
ing Abell 383). Black denotes the combined posterior distribution obtained
by multiplying the posterior distributions from the individual clusters. The
shading denotes the 95% credible region determined from the combined pos-
terior distribution. The dashed gray line at C = 1.0 corresponds to the mean
value observed in simulation.

concentration c, and gas mass fraction fgas(r) =Mgas(r)/Mtot(r)
at several overdensity radii in Table 5. The quoted value and
error correspond to the center and half of the span of the
smallest 68% credible region determined from the marginal-
ized posterior distribution for that parameter. We also plot the
two-dimensional constraints on Mtot,500c–c500c in Figure 2.

As mentioned in Section 5.2, Abell 383 is the only cluster
that requires an outer nonthermal pressure component based
on our F-test decision tree. For this cluster, the total mass
inferred from the GL analysis is 2–3 times larger than that
inferred from the XR or XR+SZ analysis. This forces the
nonthermal pressure fraction to very large values when per-
forming the XR+SZ+GL analysis, and even that does not re-
solve the discrepancy, as evidenced by the poor quality of fit.
We do not believe that a spherically symmetric model is a
reasonable approximation for Abell 383, for reasons that will
be outlined in Section 6.1. Both nonthermal pressure support
and an elongation of the cluster along the line-of-sight direc-
tion will elevate the lensing inferred mass compared to the X-
ray/SZ inferred mass. Hence, if the cluster is elongated along
the line-of-sight direction, the nonthermal pressure fraction
inferred from a spherical fit will be overestimated. We do not
include Abell 383 in our analysis of the nonthermal pressure
support for this reason and stress caution in interpreting the
resulting mass estimates.

We use the other five clusters to test for the nonthermal
pressure support predicted by simulations. We perform a
second fit to the full multiwavelength dataset allowing the
normalization C of the nonthermal pressure fraction pro-
file calibrated from simulation to vary. This fit is labeled
“XR+SZ+GL (Nonthermal)” in Table 4 and Table 5. Note that
a uniform prior U(0, 1.825) is placed on C. The lower bound
C = 0 corresponds to entirely thermal pressure support at all
radii. The upper bound C = 1.825 corresponds to zero ther-
mal pressure support at the cluster outskirts (r & r200m). The
marginalized posterior distribution for C is shown in Figure 3
for each of the five clusters. We find that MACS J0429.6-

Table 6

Upper bound on the nonthermal pressure fraction at several overdensity radii.

Parameter Ncluster
a 95% Upper Bound Expectation from Simulation b

C 5 0.44 1.00
F (r2500c) 5 0.06 0.15
F (r500c) 4 0.11 0.26
F (r200c) 1 0.29 0.35
F (r200m) 1 0.35 0.43

a Number of galaxy clusters used to construct the 95% upper bound.
b Median value from the simulation of Nelson et al. (2014) for clusters with
the mass/redshift as those used to construct the upper bound.

0253, MACS J1311.0-0310, and MACS J1423.8+2404 have
fairly flat posterior distributions, although there is a prefer-
ence for C less than 1.0 over C greater than 1.0. Abell 611
and MACSJ1532.8+3021 have higher quality X-ray data and
as a result are able to place meaningful upper bounds on the
nonthermal pressure fraction. Since constraints from the indi-
vidual clusters are consistent with a common value of C, we
multiply the individual posterior distributions together to ob-
tain a combined constraint. The resulting 95% credible inter-
val on the normalization C is (0, 0.43). Hence, the universal
nonthermal pressure fraction profile observed in simulations
(C = 1.0) is an extremely unlikely description of this sample
of five clusters. We also derive the combined constraint on
the nonthermal pressure fraction F (r) at several over-density
radii r = [r2500c, r500c, r200c, r200m] using the same procedure.
These are presented in Table 6.

While the GL and SZ data are quite uniform over the sam-
ple, the radii over which we have X-ray constraints varies
significantly from cluster to cluster, depending on the clus-
ter redshift and the total integration time achieved by Chan-
dra. The X-ray data is necessary to constrain the gas density
and fully characterize the thermodynamic state of the ICM.
In order to determine the maximum radius where our model
provides reliable results, we perform the following test using
the two clusters with the highest quality X-ray data, Abell 611
and MACS J1532.8+3021. We repeat the XR+SZ+GL (Non-
thermal) fit multiple times, each time discarding the outer-
most X-ray annulus. We compare the thermodynamic profiles
obtained from fits to the reduced X-ray datasets to those ob-
tained from the fits to the full X-ray dataset. Specifically, we
examine the total density, gas density, temperature, entropy,
pressure, and nonthermal pressure fraction as a function of
the ratio of the outer radius of the reduced dataset to the outer
radius of the full dataset. In examining these fits, we find that
none of the results change by more than their 1-s uncertain-
ties as long as the reduced X-ray data cover at least half of
the original radial range. We therefore assume that our results
our reliable to a radius a factor of two beyond the outermost
X-ray annulus. In Table 5 we only quote contraints at a given
overdensity radius rDref for those clusters whose X-ray data ex-
tends past 1

2 rDref. The same criteria is used to determine what
clusters are included in the combined constraint on the non-
thermal pressure fraction presented in Table 6.

In order to test the robustness of our result to the particular
parameterization of the nonthermal pressure fraction profile,
we have repeated the above analysis using a simple piecewise
linear function

Fouter(r) =

(
a+b

⇣
r

r200m

⌘
r < r200m

a+b r � r200m
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Figure 3. Posterior distribution of the normalization C of the best-fit non-
thermal pressure fraction profile from Nelson et al. (2014). The different
colors denote the different galaxy clusters in the spherical sample (exclud-
ing Abell 383). Black denotes the combined posterior distribution obtained
by multiplying the posterior distributions from the individual clusters. The
shading denotes the 95% credible region determined from the combined pos-
terior distribution. The dashed gray line at C = 1.0 corresponds to the mean
value observed in simulation.

concentration c, and gas mass fraction fgas(r) =Mgas(r)/Mtot(r)
at several overdensity radii in Table 5. The quoted value and
error correspond to the center and half of the span of the
smallest 68% credible region determined from the marginal-
ized posterior distribution for that parameter. We also plot the
two-dimensional constraints on Mtot,500c–c500c in Figure 2.

As mentioned in Section 5.2, Abell 383 is the only cluster
that requires an outer nonthermal pressure component based
on our F-test decision tree. For this cluster, the total mass
inferred from the GL analysis is 2–3 times larger than that
inferred from the XR or XR+SZ analysis. This forces the
nonthermal pressure fraction to very large values when per-
forming the XR+SZ+GL analysis, and even that does not re-
solve the discrepancy, as evidenced by the poor quality of fit.
We do not believe that a spherically symmetric model is a
reasonable approximation for Abell 383, for reasons that will
be outlined in Section 6.1. Both nonthermal pressure support
and an elongation of the cluster along the line-of-sight direc-
tion will elevate the lensing inferred mass compared to the X-
ray/SZ inferred mass. Hence, if the cluster is elongated along
the line-of-sight direction, the nonthermal pressure fraction
inferred from a spherical fit will be overestimated. We do not
include Abell 383 in our analysis of the nonthermal pressure
support for this reason and stress caution in interpreting the
resulting mass estimates.

We use the other five clusters to test for the nonthermal
pressure support predicted by simulations. We perform a
second fit to the full multiwavelength dataset allowing the
normalization C of the nonthermal pressure fraction pro-
file calibrated from simulation to vary. This fit is labeled
“XR+SZ+GL (Nonthermal)” in Table 4 and Table 5. Note that
a uniform prior U(0, 1.825) is placed on C. The lower bound
C = 0 corresponds to entirely thermal pressure support at all
radii. The upper bound C = 1.825 corresponds to zero ther-
mal pressure support at the cluster outskirts (r & r200m). The
marginalized posterior distribution for C is shown in Figure 3
for each of the five clusters. We find that MACS J0429.6-

Table 6

Upper bound on the nonthermal pressure fraction at several overdensity radii.

Parameter Ncluster
a 95% Upper Bound Expectation from Simulation b

C 5 0.44 1.00
F (r2500c) 5 0.06 0.15
F (r500c) 4 0.11 0.26
F (r200c) 1 0.29 0.35
F (r200m) 1 0.35 0.43

a Number of galaxy clusters used to construct the 95% upper bound.
b Median value from the simulation of Nelson et al. (2014) for clusters with
the mass/redshift as those used to construct the upper bound.

0253, MACS J1311.0-0310, and MACS J1423.8+2404 have
fairly flat posterior distributions, although there is a prefer-
ence for C less than 1.0 over C greater than 1.0. Abell 611
and MACSJ1532.8+3021 have higher quality X-ray data and
as a result are able to place meaningful upper bounds on the
nonthermal pressure fraction. Since constraints from the indi-
vidual clusters are consistent with a common value of C, we
multiply the individual posterior distributions together to ob-
tain a combined constraint. The resulting 95% credible inter-
val on the normalization C is (0, 0.43). Hence, the universal
nonthermal pressure fraction profile observed in simulations
(C = 1.0) is an extremely unlikely description of this sample
of five clusters. We also derive the combined constraint on
the nonthermal pressure fraction F (r) at several over-density
radii r = [r2500c, r500c, r200c, r200m] using the same procedure.
These are presented in Table 6.

While the GL and SZ data are quite uniform over the sam-
ple, the radii over which we have X-ray constraints varies
significantly from cluster to cluster, depending on the clus-
ter redshift and the total integration time achieved by Chan-
dra. The X-ray data is necessary to constrain the gas density
and fully characterize the thermodynamic state of the ICM.
In order to determine the maximum radius where our model
provides reliable results, we perform the following test using
the two clusters with the highest quality X-ray data, Abell 611
and MACS J1532.8+3021. We repeat the XR+SZ+GL (Non-
thermal) fit multiple times, each time discarding the outer-
most X-ray annulus. We compare the thermodynamic profiles
obtained from fits to the reduced X-ray datasets to those ob-
tained from the fits to the full X-ray dataset. Specifically, we
examine the total density, gas density, temperature, entropy,
pressure, and nonthermal pressure fraction as a function of
the ratio of the outer radius of the reduced dataset to the outer
radius of the full dataset. In examining these fits, we find that
none of the results change by more than their 1-s uncertain-
ties as long as the reduced X-ray data cover at least half of
the original radial range. We therefore assume that our results
our reliable to a radius a factor of two beyond the outermost
X-ray annulus. In Table 5 we only quote contraints at a given
overdensity radius rDref for those clusters whose X-ray data ex-
tends past 1

2 rDref. The same criteria is used to determine what
clusters are included in the combined constraint on the non-
thermal pressure fraction presented in Table 6.

In order to test the robustness of our result to the particular
parameterization of the nonthermal pressure fraction profile,
we have repeated the above analysis using a simple piecewise
linear function

Fouter(r) =

(
a+b

⇣
r

r200m

⌘
r < r200m

a+b r � r200m

Profil universel de fraction de pression  
non-thermique observé dans les simulations (          ) : 
mauvaise descritption de l’échantillon

C = 1

• Nouvel ajustement des 5 amas bien décrits par un 
modèle sphérique en laissant le paramètre       variable C

• Distribution postérieure marginalisée         paramètre C

• Postérieures multipliées entre-elles pour obtenir une 
contrainte combinée

• L’intervalle de crédibilité à 95% sur       est donné par    C [0, 0.43]

• Comparaison de la limite supérieure obtenue avec 
les résultats des simulations numériques
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• Modèle sphérique avec équilibre hydrostatique et 100% de pression thermique adapté pour 
décrire 4 des 6 amas de l’échantillon sélectionné

• Contraintes sur la masse totale améliorées de 50 à 70% par l’analyse multi-sonde X-SZ-lensing 
vis-à-vis de celles obtenues par le lensing uniquement

• La fraction de pression non-thermique à              est inférieure à 11% à 95% de niveau de 
confiance pour cet échantillon

r500c

Tension avec les simulations numériques qui 
suggèrent une fraction de 26% à              pour 
des amas de masse et redshift équivalents

r500c

• Explication la plus probable : effet de sélection de 
l’échantillon (amas sphériques et relaxés)

• Perspective des auteurs : effectuer la même analyse 
sur les 25 amas de CLASH avec un modèle triaxial
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