94β-Decay Half-Lives of Neutron-Rich ₅₅Cs to ₆₇Ho: Experimental Feedback and Evaluation of the *r*-Process Rare-Earth Peak Formation

J. Wu,^{1,2,*} S. Nishimura,² G. Lorusso,^{2,3,4} P. Möller,⁵ E. Ideguchi,⁶ P.-H. Regan,^{3,4} G. S. Simpson,^{7,8,9} P.-A. Söderström,² etc.

How are heavy elements created? can't be just fusion

How are the heavy elements (Z>26) on Earth created?

- ~50 % r-process
- What are the necessary r-process astrophysical conditions?
- What is the important nuclear structure input (T_{1/2}, Q_β, P_n,)?

What is the r-process?

- Successive neutron captures by a seed nucleus in a very high neutron flux (10²⁴ n/cm³)
- (n, γ), (γ ,n) reactions
- β decay

Nucleosynthesis in the r-process

Astrophysical conditions

process	conditions	timescale	site
s-process	T~ 0.1 GK	10 ² yr	Massive stars (weak)
(n-capture,)	τ _n ~ 1-1000 yr, n _n ~10 ⁷⁻⁸ /cm ³	and 10 ⁵⁻⁶ yrs	Low mass AGB stars (main)
r-process	T~1-2 GK	< 1s	Type II Supernovae ?
(n-capture,)	τ _n ~ μs, n _n ~10 ²⁴ /cm ³		Neutron Star Mergers ?
p-process ((γ,n),)	T~2-3 GK	~1s	Type II Supernovae

- Recent articles cast doubt that the conditions for the r-process can be found in the core collapse of a Type-II supernovae
- Difficult to probe these astrophysical conditions (T, n_n, τ_n)
 but we can experimentally measure many parts of the nuclear structure input

• Nuclei will always try to maximise their binding energy, and can do so via radioactive $\beta^{+/-}$ decay

$$B = a_v A - a_s A^{2/3} - a_c Z(Z-1) A^{-1/3} - a_{sym} (A-2Z)^2 / A + \delta$$

Effect of Neutron Shell Closures

Effect of Neutron Shell Closures -creates reaction waiting point

e" decav

• The r-process path

• The r-process path

Provide nuclear structure input: T_{1/2}

- Produce neutron-rich nuclei with A~160 at RIBF RIKEN
- Participate in r-process
 "freeze out"
- Measure T_{1/2}, (β-decay properties, Pn, isomers)

Implant in to DSSSD stack (WAS3ABI)

• Allows identified ions and their subsequent β decays to be correlated

10000 pixels

 Fix known half lives of daughter, grand-daughter, etc. nuclei

Many new half-lives measured

 Differences between measured and predicted halflives are up to one order of magnitude

Half-lives depend on nuclear structure

Allowed unhindered β decays

¹⁵²Nd

Predicted Abundances

 Put the new exp.
 T_{1/2} data back into the r-process simulations

Predicted Abundances

- Compare exp. data and different predictions
- More exp. data needed to reduce uncertainties, including masses, β-strength distributions, Pn values, fission yields

Outstanding problems

Agreement between theory and exp. around A~130, A~100 nuclear structure measurements can help