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Searching for non-gravitational evidence of DM

Most of our searches are motivated by the WIMP miracle

Production Annihilation Scattering
SM X X SM X X

™ b

SM X SM SM

in particle physics
Collider Indirect detection Direct detection

in cosmology

Relic abundance Energy injection Momentum transfer

Naturally there are many other models motivated by alternative observations
(sterile neutrinos, ALP, Primordial Black Holes...)
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Indirect detection i Cosmology

Energy injection following relic WIMP annihilations can affect our various probes

Destroy nuclei e .
S BR dti dbion Affect the recombination era Affect the 21cm signal
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Constraints from various cosmological probes

VP, Lesgourgues, Serpico; 1610.10051
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Energy injection impact recombination

dx.

[Rs(2) = Is(2)—Ix(2)

Is

1oy model: the « three levels atom »
developed by Peebles, 1969.
We use Recfast (seager et al. 1999)
and HyRec (Ali-Haimoud et al. 2012).

Key quantity dE/dVdtlgep,c:

« The energy deposition rate per unit volume in each channel: ionization,
excitation and heating.
o Difficulty: the plasma is not necessarily efficient at absorbing energy!
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What is in ExoCLLASS?

dFE dFE
TVt (2) = fc(z)dth (2)

dep,c inj

ExoCLASS calculates the energy deposited in each channel from:

an energy injection history dE/dVdtiy;.

a set of “energy deposition function per channel” f(z), which requires to convolute the
spectrum of electrons and photons with a set of transfer function T(z_inj,z_dep,E_inj)

encoding the calorimetric properties of the plasma. see Slatyer, 1506.03812

We have already implemented 4 energy injection histories:

annihilating DM including the effects of halo formation; Poulin et al., 1508.01370
decaying DM, allowing small fraction with high decay rate; Poulin et al., 1610.10051
low masses (~[1013,1017]g) evaporating PBH (Hawking radiation); Stoecker et al., 1801.01871
high masses (~[1,104] Msun) accreting PBH (disk or spherical). Poulin et al., 1707.04206
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DM annihilations

VP, Lesgourgues, Serpico; 1508.01370

d’E
dVdt

, . see also Slatyer, 1506.03811
= kp2c®Qepy (14 2)° (Tannt) ~ :

inj, smooth mpm
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DM annihilations delay the recombination and increase the freeze-out plateau
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CMB power spectra
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VP, Lesgourgues, Serpico;, 1508.01370
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Recombination delay: shifts of the peak, more diffusion damping.

Higher freeze-out plateau: reionisation bump higher, higher optical depth.
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Planck 2015 results

Planck TT,TE,EE+lowP
WMAP9

- CVL
Possible interpretations for:
AMS-02/Fermi/Pamela
Fermi GC

Planck 2015, 1502.01589

fort (ov) [ecm®s™!]

Thermal relic  _|
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Bounds in the effective “on the spot
approach: f(z) => 1(z=600)
see also Slatyer 1506.03811
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Higgs portal model

Stoecker, VP, et al., 1801.01871

1 1 1
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Constraints on (ov) in the scalar Higgs portal model

Qeamh? too large

10—29

10~
10! 10 10?

ms [GeV]
m A g|ven model essentlally flxes the value of feff

V Poulm ]HU LPSC 09/ 03/ 18




How does it compare to other probes’

All ID constraints Cirelli 2015
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.
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status circa 34th ICRC
(summer 2015)

Annihilation cross section (av) [cm®/s]

thermal cross section
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CMB is usually weaker except for: i) low masses (MeV); ii) pure electronic channels.
CMB is not affected by propagation or DM profile uncertainties.
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PBH evaporation

We explicitely show that the “on-the-spot” approximation is bad: f(z) has a too strong
z-dependence
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EGB constraints from Carr et al. 2010

Planck constraints w/ full treatment
0 CoRE-like experiment
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See Stoecker, VP, et al., 1801.01871 for all details on evaporation rate and spectra
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Direct Detection in Cosmology

Thomsown
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Direct detection i Cosmology
Boddy & Gluscevic, 1712.07133, 1801.08609

+ Temperature evolqtion
a
= Tb — 1) Rate of heat transfer

a 2,ubpx 244y
T == L=l R tE =1
ab+mpr b)—|_me i b)

+ Evolution of density and velocity perturbations

Rate of momentum

a
— g L B0, 1
2 o= a2 s transfer

- a
G, = ——0 226 0, — 0p)
b ~0p + ¢ b+ Ry +@ b)

1
=ik -V
<« The rates can be linked to the DD formalism:

dv, =
= S R
ZX = (14 )Ry (Vs - ) pbzmx+m3/ ‘

Slide taken from K. Boddy’s talk momentum-transfer cross section
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21 em as a probe of DM-b scattering

Higher energy Spin
state flip

Hyperfine transition from neutral hydrogen /

(
Very sensitive probes of the Epoch of Reionization (EoR) ® @
Key quantities : Spin temperature Ts and differential 1420 MH?IQ\
brightness temperature Tb il

_ 36—E10/kBTS f:>,

Exc. = Des-exc.

scattering with CMB collision within the gas

Compare patch of the sky with/without hydrogen clouds:

Ts o TCMB see e.g. Furlanetto et al.
1+ 2 (1 - eXP(—Tum)) Phys.Rept. 433 (2006) 181-301

Difficulty = Huge astrophysical uncertainty below z =20
Stars can emits UV, ionizing photons and X-ray (heating)

0Ty(v) =
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21em signal from EDGES

Bowman et al, nature25792

EDGES is a broadband antenna (50-100 MHz) located in Western Australia
The signal is much more (x2.5) in absorption than one expects.
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Have we discovered DM (again)?

Barkana, nature25791

The gas is cooler than the pure adiabatic expansion. Scattering on CDM?
requires a v dependence to avoid other constraints! e.g. milli-charged DM.

One subtlety: large DM-b relative velocity can heat the baryons.

1+2z

107!
104 1078 1072 107" 100 10° 102

m, (GeV)

favored DM properties are
¥ (MH?) _ __| delimited by the full lines.

Cosmic Cosmic
dawn reionization
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My next task: check the CMB/LL.SS

with K. Boddy and V. Gluscevic

Boddy & Gluscevic 1801.08609: constraints on positive power of velocities.
Xu et al, 1802.06788: Bad treatment of relative velocities and recombination

Currently | believe that such an interacting DM is still allowed
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Boddy & Gluscevic, 1712.07133, 1801.08609
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Conclusions

We can perform both direct and indirect detection with the CMB: ExoCLASS.
Constraints are competitive and/or complementary to galactic searches.

An interesting DM-b signal has been seen in the 21cm: it will probably die
(first experiment!) but it shows that data are coming! We ought to be ready.

Thank You!
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EFT Operator

Anand et al. (2014), Fitzpatrick et al. (2013), Fan et al. (2010)

e S‘ S‘ CTO t" (isospin basis)

Og_sx.(ﬁNx£>

F—=01=1

mn

Slide taken from K. Boddy’s talk
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Constraints on SIl and SD

. Boddy & Gluscevic, 1712.07133, 180108609

Planck 2015, spin-independent (this work)
Planck 2015, spin-dependent (this work) :
Spectral distortions (Ali-Haimoud et al, 2015) 7
Planck 2013 (Dvorkin et al, 2014)

Planck 2013 + Ly-oa (Dvorkin et al, 2014)
COBE + 2dF (Chen et al, 2002)
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Comparlson with DD

Emken and Koywaris 1802.04764

PR 1]
mDM[GeV]

Underground DD are shielded and insensitive to strongly interacting DM!
The CMB extends constraints down to the KeV scale.
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