LPSC Journal Club, 17/03/10

Dark matter substructure modelling

and

sensitivity of the Cherenkov Telescope Array to Galactic dark halos

Hütten, M.; Combet, C.; Maier, G.; Maurin, D. JCAP09(2016)047, arXiv:1606.04898

What's the (dark) matter?

The Dark Matter ↔ γ-ray connection

The Dark Matter ↔ γ-ray connection

The Dark Matter ↔ γ-ray connection

DM particle mass

The higher the DM particle mass (yet unknown!), the more energetic the γ-ray spectrum

Astrophysical dark matter y-ray targets

Dark Matter in the Galaxy

Dark Matter in the Galaxy

Diemand, Kuhlen, Madau (2006) z=11.9 800 x 600 physical kpc - dark: survey - small: faint + close: brighter + clean: "Dark" $E^{2.00} \times Flux [\# GeV^{-1} cm^{-2} s^{-1}] \times GeV^{2.00}$ subhalos O 00.0 GeV CIRELLI11_EW: GAMMA [tau+tau-=1.00] z=0.00 ated flux Φ in [1.00e+00,1.00e+03] GeV: $\Phi = 1.28e-12 \text{ cm}^{-2} \text{ s}^{-1}$ in a contract. 10^{2} 10 10³ E [GeV]

Modelling the Galactic DM substructure distribution

Modelling the Galactic DM substructure distribution

The Galactic Dark Matter sky from Earth

log (γ -ray intensity from DM annihilation)

The Galactic Dark Matter sky from Earth

Matching DM only simulations (Via Lactea I + II, Aquarius,...)

The Galactic Dark Matter sky from Earth

Accounting for baryonic feedback, less subhalos surviving tidal disruption

Excursion: Source flux count distributions

> How many stars shine on Earth?

Back to Dark Matter

> Galactic Dark Matter subhalo brightness distribution

DM subhalos with the Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA)

CTA, G. Pérez, IAC, SMM

- > The next generation Earth-bound γ-ray telescope
- > Two arrays of 99 / 19 Cherenkov telescopes in Chile / La Palma.
- > γ -ray energy range: 20 GeV 300 TeV.
- > Angular resolution: $< 0.1^{\circ}$, $< 0.05^{\circ}$ above 1 TeV.
- > Point-source sensitivity: 1% Crab-flux in 1 h

Some remarks on Earth-bound y-ray astronomy

Some remarks on Earth-bound y-ray astronomy

> not only y-rays create atmospheric particle showers...

A model for the CTA extragalactic survey

Likelihood analysis to find the brightest subhalo

> Slightly extended, but very steep annihilation profile

Likelihood analysis to find the brightest subhalo

Unbinned likelihood function for Nobs recorded events

Likelihood analysis to find the brightest subhalo

Unbinned likelihood function for Nobs recorded events

Results

Results

Results

23