Error matrix, Lagrange multiplier, data selection, and
estimates of contours in global analysis of data

PRD 65, [014011,014012,014013] (2002)

Two issues we want to clarify (related to issues we face in CR studies):

— Can we always rely on Minuit for the estimate of contours, or,
equivalently, can we always rely on the error matrix for the
contours?

— How to deal with global fits when many data sets are
inconsistent with one another?

1) Error/Hessian/Fisher/Information matrix approach: a reminder

2) Error estimate: Fisher matrix vs Lagrange multiplier (to avoid linear
approximations)

3) Numerical accuracy and the iterative procedure for the Hessian
4) Global fit and tolerance parameter
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1) Error matrix approach: a reminder

— Standard approach in cosmology
- * The Dark Energy Task Force report (starting p.94)

' * The Joint Dark Energy Mission Figure of Merit ScienceWorking Group (starting
p.4, similar, but adds cautionary notes on numerical instabilities to watch for)

1.1 Fisher Matrix Overview

Here we review the Fisher Matrix methods used by the DETF. These methods are
standard in many fields. First we consider a statistically simple case of a series of
measurements with Gaussian error distributions. Suppose we measure the quantity ¥
when the remaining observables have the values x and suppose we put the values of x in
bins b=1,...B. Suppose in addition that the data should be described by a function f of the
bin b and some parameters p and that the expected variance in bin b is 6°, then we can
form

b=1 i, g,

where i, labels the events in bin b. If the parameters p give the true underlying
distribution p, then a Gaussian distribution of data values is:

P(yi-,,)ocexp(—%zz) (12)


http://arxiv.org/ftp/astro-ph/papers/0609/0609591.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.0721v1.pdf

1) Error matrix approach: a reminder

Using Bayes’ theorem with uniform prior we have P(p |y)x P(y | p) so that the

likelihood of a parameter estimate can be described as a Gaussian with the same ¥, now
viewed as a function of parameters. If we expand about the true values of the parameters,
p; = P, + dp,, and average over realizations of the data,

2 W\ 2 / L/ or
(7(p)=(x")+ %ﬁa :E< e é,pk>5pj5pk.—. (13)

where the expectation values are taken at the true values The mean
value of the events in bin b is indeed f, (p), so the second term vanishes. The distribution
of errors in the measured parameters is thus in the limit of high statistics proportional to

1 1/ oy 1

where the Fisher matrix is

N of of
. F — h h b 1.5
[using 1.1] — | F; ;o-f o, op, (1.5)

and N, is the average number of events in bin b.  From this expression it follows that
(sp,00)=(F"), 19

In other words, the covariance matrix is simply the inverse of the Fisher matrix (and vice
versa).




1) Error matrix approach: a reminder

More generally, if one can create a probability P(p; | y;) of the model parameters given a
set of observed data, e.g. by Bayesian methods, then one can define the Fisher matrix

components via
2
F=- o InP
’ ﬁpjapj

and the Cramer-Rao theorem states that any unbiased estimator for the parameters will
deliver a covariance matrix on the parameters that is no better than F'. The Fisher
matrix therefore offers a best-case scenario for ones ability to constrain cosmology
parameters given a set of observations.




1) Error matrix approach: a reminder

Nice properties of Fisher matrix

Change of variables

If we want to use some other set of parameters ¢ , the new Fisher matrix is
simply

F :ZNb o), 21, :ZN P, 2p. 21, Ofy _ P, P

; — . =(M) FM (1.7)
> 0, 04, 24, o, 24, 24, dp, 2p, 24, 4,

using the usual summation convention on j, k.

Priors

A Gaussian prior with width o can be placed on the ith parameter by adding to the
appropriate diagonal element of the Fisher matrix:

0,0,
F, > F,+ ;; (1.8)
which can also be written as
F—>F+F’ (1.9)
where in this case F” is an extremely simple matrix (with a single non-zero diagonal

element).

And also marginalization, combination of data sets...



1) Error matrix approach: a reminder

How to incorporate a “simple” nuisance parameter
(https://arxiv.org/abs/1103.0354v1)

Multiplicative uncertainties provide the simplest example of systematic uncertainties that can be repre-
sented by nuisance parameters in profile likelihoods. As an example, let us assume that the integrated
luminosity is measured in some auxiliary study, and results in a 2% uncertainty. We would rewrite the
likelihood as

N
L= [[P0ulp)G(LIL,or) 4)

i=1

for the measured value L + o 1. The function G is a normalized Gaussian of mean L and width or,, which
serves to constrain the value of the new nuisance parameter L to its measured value. Note that it is L and
not L that is used to calculate the p;. The negative log likelihood is thus

(L — L)
20%

)

—InL =Y [-nilnp; + p] +

and thus the remnant of the Gaussian term can be regarded as a penalty on the negative log likelihood.
It is in principle possible to use functions other than Gaussians to constrain the values of the nuisance
parameters. In Bayesian terms the constraint functions are simply the prior probability densities of the
nuisance parameters.


https://arxiv.org/abs/1103.0354v1

2) Error estimate: Fisher matrix vs Lagrange multiplier

Pumplin et al., PRD 65, 014011 (2002)

2_ .2
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- Higher order accounting for non-Gaussianity in parameter space (e.g., Sellentin et al., 2014)
— allows banana-shaped contours (beyond simple ellipses)

- Lagrange multiplier approach
— Find coutour for a constraint x* =x* _-+cst

2-dim (i,j) rendering a: X: physics

of d-dim PDF 4 variable X2
global

parameter space .

contours of * elobal

R
%
%

MC sampling -, 2
IM method ®



http://adsabs.harvard.edu/abs/2002PhRvD..65a4011P
http://adsabs.harvard.edu/abs/2014MNRAS.441.1831S

2) Error estimate: Fisher matrix vs Lagrange multiplier

Wikipedia + Pumplin et al., PRD 65, 014011 (2002)

Consider the two-dimensional problem introduced above To check the first possibility, notice that since the gradient of a
function is perpendicular to the contour lines, the contour lines of

fand g are parallel if and only if the gradients of fand g are
parallel. Thus we want points (x, y) where g(x, y) =0 and

maximize flx, y)
subject to g(x, y) = 0.

The method of Lagrange multipliers relies on the intuition that at a

maximum, fix, y) cannot be increasing in the direction of any neighboring V’szf = )\Va,,yg,

point where g = 0. If it were, we could walk along g = 0 to get higher, are the respective gradients. The constant 4 is required because
meaning that the starting point wasn't actually the maximum. although the two gradient vectors are parallel, the magnitudes of
We can visualize contours of f given by fix, y) = d for various values of d, the gradient vectors are generally not equal. This constant is
and the contour of g given by g(x, y) =0. called the Lagrange multiplier. (In some conventions 4 is precede

by a minus sign).

- Lagrange multiplier approach

— Find coutour for a constraint X2 = X2 _+cst Let X, be the value of X at the y?> minimum, which is the
i best estimate of X. For a fixed value of A, called the

2-dim (i,j) rendering | X: phowica Lagrange multiplier, one performs a new minimization with
of d-dim PDF : variable nglubal respect to the fit parameters {a;}, this time on the quantity
parameter space Ly

g F=x*+\NX—-X,), (22)
contours of y* elobal

to obtain a pair of values [ y*(\),X(\)]. (The constant term
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http://adsabs.harvard.edu/abs/2002PhRvD..65a4011P
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2) Error estimate: Fisher matrix vs Lagrange multiplier

Ay’ for the contours: effect of correlated errors
Stump et al., PRD 65, 014012 (2002) — App. A

Consider an observable m that is measured N times. We
shall refer to N measurements of m as one ‘“‘experiment.” Let
the true value of m be m,. The measurements are
my.,mo,ms3, ...,my. The deviations from the true value are
ay,a, a3, ... ,ay, where a;=m;—mg. In general, the
measurement errors are correlated, so in the Gaussian ap-
proximation the probability distribution of the fluctuations is

N
1
dP=Nepr 5 > aICI-_,raj] da. (A1)
ig=1
tion (A1). For this Gaussian distribution,
(aiaj)z(c_l)ij' (A2)

The mean-square fluctuation E; of the ith measurement m; is
E=(a})=(C")i. (A3)

To find the best estimate of the value of m from these N
measurements, ignoring the correlations in the measurement
errors, we define a chi-squared function x>(m) by

(A4)

The value of m that minimizes y2(m), call it m, is then the
best estimate of m based on this information. The function

The standard deviation 3, of m is the rms fluctuation; that is,

g 1 e,
g - ey o ij
p> —-j(m m)*dP e !ZJ EE, '

(A7)
where

1
D=2ﬁ == (A8)

The question we wish to answer is this: How much does
Xﬁ(m) increase, when m moves away from the minimum (at

m) by the amount =3, that corresponds to one standard
deviation of the mean? The answer to this question is

Example 1. Suppose the measurement errors are uncorre-
lated; that is,

Cij=6;;/E;. (A11)
Then the standard deviation of the mean m is %=1/ \fﬁ
Thus for the uncorrelated case, the increase of Xﬁ corre-
sponding to one standard deviation of the mean is Ay2=1.
This is the “normal” statistical result: the 1o range corre-
sponds to an increase of y? by 1.



http://adsabs.harvard.edu/abs/2002PhRvD..65a4012S

2) Error estimate: Fisher matrix vs Lagrange multiplier

Ay’ for the contours: effect of correlated errors
Stump et al., PRD 65, 014012 (2002) — App. A

The standard deviation 3, of m is the rms fluctuation; that is,

o*+ Ns?

o+ 5%

Axi=xim+3)—xi(m)= (A20)

In the limit s/o<£1, the error correlations in this model be-
come negligible and A y? reduces to the conventional value
of 1. But in the limit s/o> 1, where the error correlations are
dominant, A y? approaches N.

Thus for Example 3—a systematic error with 100% cor-
relation between measurements—the increase of Xﬁ for a

standard deviation of m is much larger than 1. If s and o are
comparable, then A Xﬁ is of order N.

--l
)I}

32= f (r?:—-m)zdP—— Z ;
ij

(A7)
here

(A8)

1
D=2ﬁ R

The question we wish to answer is this: How much does
l)(ﬁ(m) increase, when m moves away from the minimum (at

m) by the amount *73. that corresponds to one standard
deviation of the mean? The answer to this question is

— See, e.g., App.B to properly account for
correlated systematic errors in the }°
N.B.: if covariance matrix unknown, or if not
quadratic, better to add nuisance parameter...

Example 3. For an even more striking example, suppose
the N measurements that constitute a single “‘experiment’”
are, for i=1,2,3,...,N,

m;=my+y.+ Al4)
i oY 8 (

where the y; are randomly distributed with standard devia-
tion o, and the measurements are systematically off by the
amount £. Suppose that 8 has a Gaussian distribution with

standard deviation s for replications of the “experiment.” In



http://adsabs.harvard.edu/abs/2002PhRvD..65a4012S

3) Numerical accuracy and iterative procedure for the Hessian

Pumplin et al., PRD 65, [014011,014013] (2002)

2.2 dX
X —X0+2 Hyyiyy, —> (AX)?=Ax*2 —( -, —.
L.J i_,l' f;y; }ayj'
Being a symmetric matrix, H;; has a complete set of n ™ 7
orthonormal eigenvectors V{ )=Utk with eigenvalues € : V= 2 vy \/:Zj-
2_ .2 2_ 2
2 H;v = €k, (4) >’ - > Ax"=x _XG_Z i
These eigenvectors provide a natural basis to express arbi- AX=X— X= Z aX —y,= E Xz
trary variations around the minimum; we replace {y,;} by a 0 ay,;”t T

new set of parameters {z;} defined by

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

contours of constant 2 global
Goal: avoid numerical u: eigenvector in the I-direction 1
inaccuracies/instabilities when p(i): point of largest a; with tolerance T 4
calculating the derivatives w.r.t.
‘inhomogeneous’ variables
— may induce a bias of the

parameter contours

S global minimum

diagonalization and

- »>
rescaling by
the iterative method

N.B: similar in spirit to change of
variables (e.g., in cosmology) for
better-behaving ones, but going

further...

« Hessian eigenvector basis sets

. (b)
Original parameter basis Orthonornal eigenvector basis
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3) Numerical accuracy and iterative procedure for the Hessian

Pumplin et al., PRD 65, 014011 (2002)
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FIG. 1. Variation of y? with distance along a typical direction in FIG. 2. Difference between y“ and its quadratic approximation

parameter space. The dotted curve is the exact x* and the solid (2), both of which are shown in Fig. 1. A cubic contribution can be

curve is the quadratic approximation based on the Hessian. The  S€€M: along with a noticeable amount of numerical noise. The fine

quadratic form is seen to be a rather good approximation over the st.;ucture revealed here is small compared to the main variation of
range shown. x~ itself, which rises by 20 over the region shown, as can be seen in

Fig. 1.
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3) Numerical accuracy and iterative procedure for the Hessian

Pumplin et al., PRD 65, 014011 (2002)
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FIG. 3. Frequency distribution of A x? according to the Hessian FIG. 4. Same as Fig. 3, except that the displacements are re-
approximation (2) for displacements in random directions for which stricted to the parameter subspace spanned by the 10 steepest direc-
the true value is A y>=5.0. Solid histogram: using Hessian calcu- tions.
lated by iterative method of Sec. IIl; dotted histogram: using Hes-
sian calculated by MINUIT.
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3) Numerical accuracy and iterative procedure for the Hessian

Pumplin et al., PRD 65, 014011 (2002)
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FIG. 5. Minimum x? as a function of the predicted cross section
for W* production in pp collisions. The parabolic curve is the
prediction of the iteratively improved Hessian method. The points
are from the Lagrange multiplier method.
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4) Global fit and tolerance parameter

Pumplin et al., PRD 65, 014013 (2002) — App. A
[e.g. used for CR data fit/selection in hitps://arxiv.org/abs/1612.03219]

— Correlations between point (e.g. spectrum) may be unknown
— Correlations between different experiments unknown
Ax® # 1

v

Ay> < T

How to determine T?

— Tolerance required by acceptability of the experiments
« How well best fit agrees with individual datasets: compare with ideal range N +/-sqrt(2N )

 Attribute ‘abnormal’ Xz—Nn(sqrt(ZNn)) to unknown systematic errors/unusual fluctuations

— Tolerance required by mutual compatibility of the experiments
* If N experiments, fit all combinations of (N-1) experiments
- max(Ay’ ) between these combinations indicate that T*>~ Ay’

— Tolerance calculated from CL of individual experiments
* Fit individual experiments and calculate errors (e.g., Lagrange multipliers)
* Alternate fit are considered ‘alternative hypotheses’
* Combine errors and see how uch I requires in terms of Ay and T


http://adsabs.harvard.edu/abs/2002PhRvD..65a4013P
https://arxiv.org/abs/1612.03219

See http://www.desy.de/~blobel/banff.pdf for more on how to correctly
deal with systematics, etc.


http://www.desy.de/~blobel/banff.pdf
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