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— The one-point function (i.e., the isotropic flux distribution) is a complementary
method to (anisotropic) two-point correlations in searches for a gamma-ray dark
matter annihilation signature.

— Using analytical models of structure formation and dark matter halo properties,
we compute the gamma-ray flux distribution due to annihilations in extragalactic
dark matter halos, as it would be observed by the Fermi Large Area Telescope.

— We show that by using the flux distribution at only one energy bin, one can
probe the canonical cross-section required for explaining the relic density, for dark
matter of masses around tens of GeV.


http://iopscience.iop.org/article/10.1088/1475-7516/2015/09/027/meta

2.1 PDF for the flux from individual halos

Throughout the paper, F represents the differential flux, i.e., a number of photons received
per unit area, unit time, and unit energy range [F(E) = d°N,/dAdtdE]. The PDF P(F)
for observing a total differential flux F' from all of the halos in a pixel depends on the PDF
Py (F) for observing F from any individual halo.! We thus proceed by first deriving the latter
quantity.

Because the differential flux F' from an individual halo is completely determined by its
rest-frame differential luminosity L = d? N, /dtdE and its redshift z, we can write

»| P\(F) = [dLd: P(F|L,2)P(L, z)

P = fafL dz 8[F — F(L, )| P(L|z)P(z) i (2.1)

Here, the usual relation for the differential flux,
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P(F) = /dL dz §|F — F(L,2)|P(L|z)P(2)

We can interpret |P{L|z) = dN/dL(z)|as
the redshift-dependent halo differential-luminosity function.® Assuming that the halos are
isotropically distributed across the Universe, the number of halos at redshift z is proportional
to the comoving volume 0V (z) of the corresponding redshift slice dz, therefore we also have

P(z)=dN/dz ocdV/dz.

Alternatively, we can rewrite eq. (2.1) in terms of the halo mass M to obtain
iP(F) = /dL dM dz §[F — F(L, z)| P(L|M, z)P(M|z)P(z)

where we can similarly interpret P(M|z) = dN/dM (z) as the redshift-dependent halo mass
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the halo, which usually shows scatter for any given M. The halo profiles can be completely
characterised by some parameters 8y, (such as pg, rs, vir . . . in the case of the NFW profile [29])
so that (for any given particle dark matter model) we have L = L(8y). If we further assume
that the distribution of halo profiles can be described by a halo model that gives P(6,,|M, z),
we can write

"
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P(LIM,z) = fa.‘ﬂh P(L|6,)P(6n|M, z) = fdﬂhé[L — L(6,)| P(6,| M, 2)

P(F) = /dM dz d6y, §[F — F(0y, z)| P(6u| M, ) P(M|2)P(z) | W
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Pi(F) = /dﬂ-f dz 6y 5[F — F(6n, =) P(6u| M, =) P(M|2)P(=)
| -

P(M|z) = dN/dM (z)
,  P(2)=dN/dz x dV/dz.
Y,
/
In order to make the numerical (:al(:ulatiuﬂ/ of eq. (2.5) more tractable, we shall neglect
the scatter in the distribution P(6y|M, z) in t“,‘his work. That is, we take the distribution of

the halo-profile parameters 6y, = {6, ,,...,6y,} to be given by
\
n
P(6u[M, z) = | [ 60n: — Oni(M, 2)], (2.6)
i=1

I
where the functions 8y, ; (M, z) give the mean values for the parameters. With this assumption,
we can perform the integrals over @, and M in eq. (2.5), leaving only an integral over z:

\
‘ -1 -
OF |~ dN dV _
P(F)= [dz|—] ——. (2.7)
oM dM dz
To find the probability function in a set of transformed variables, | 7
find the Jacobian. For example, If 4 = u (x). then //

P,du=P,dx, .
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We assume that all dark matter gamma-ray sources may be treated as point sources (see
also section 3.1.1 and section 5.4 below), allowing us to equate the differential flux F' and
the differential flux per pixel. The dark matter differential flux F arriving at any given pixel
*n any number of individual halo point
sources [30], where each differential flux~F; 18 am iidependent and identically distributed
(ii.d.) random variable with the distribution Pj(F'). The distribution of a sum of random
variables is the convolution of all the original distributions [31]; since the F; are i.i.d., the

of the Fermi sky map, is the summed fh

distribution of the total differential flux per pixel is the autoconvolution [25]

Pu(F) = P((F)* P\(F) % - x Pi(F) = (P))™], (2.8)

where k 18 the number of halos contributing to this flux. Since furthermore we do not know
how many halos are thus stacked in a pixel, the number £ of fluxes in the sum is itself a

random variable. If we assume this number & of halos per pixel is Poisson-distributed over

the sky with some mean N, we can model the total differential lux per pixel as
P(F) = / AN'P(N') S P (KN') Py(F), (2.9)
k

where the uncertainties in k& and N’ are marginalised away. Since the numbers & and N’ of
extragalactic halos are very large, hoth PN} and N’} are thin enough to be approx-

tIhP(F) = Pon/(F).| Thus, the only additional physical
input required to compute P(F) from F;(F') 18 N, which is discussed below.

imated by delta functions, so tha
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Pu(F) =P (F)*x P (F)* - « P|(F) = (Pl)*k

P(F) = Pey:(F).

3.1.1 Number of halos per Fermi pixel

Cosmology directly determines the redshift distribution of halos (via isotropy P(z) = dN/dz)
and their mass distribution (via the gravitational collapse of inhomogeneities that yields
dN/dM). The normalisation of these number densities clearly corresponds to the total num-
ber N of halos in the Universe. The number of halos per Fermi pixel is then

ﬂpix N — ﬂpi}{ f dN dV

N' = dMd:z (3.1)

Ar A dM dz

PSF(Fermi-Lat)~0.8° — N'~ 7 10*'
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P (F) = /dz
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P(F) = Pey:(F).

3.1.2 Halo mass function

The halo mass function, first addressed heuristically by Press and Schechter [38] and subse-
quently formalised in, e.g., ref. [39], is computed as

dn O 2
aM f( )dM v (?) | (34)
where d, = 1.69/D(z) is the (linear) critical overdensity, D(z) is the linear growth factor, and
a(M) is the rms deviation of primordial density fluctuations, smoothed to scale M [39]. The
functional form of o (M) (required to calculate dv/dM) is determined from the literature [40)]
with normalisation set by the cosmological parameter og [32|. The function f(v) is derived
from the excursions of these density fluctuations above a ‘barrier’ [39] that encodes the
physics of halo collapse (including é.). For an approachable presentation of the formalism,
see ref. [41].
In addition to ellipsoidal collapse, our fiducial mass function incorporates a virialised
halo’s angular momentum and the cosmological constant into its barrier d.. It has a self-

similar f(v) well-fit by the following function (eq. (163) in [42, 43]):

0.1218  0.0079\ [av 0.5526 0.02 12
vf(v) (1+ (ap) 05 + {ay}”'4) ﬂu{p (0.4019&1} |:].—|— ()05 + {ay)”‘4:| ) :
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3.2 Halo model

The differential lnminosity from annihilation in a dark matter halo of mass M is given by the
product of a particle physics term and an astrophysical J-factor, i.e. the line-of-sight integral
of the dark matter density squared, boosted by the annihilations in halo substructures. The
dark matter density can be parameterised using the same profiles that fit N-body simulations
well. For an NFW profile, the J factor of a point-like source can be analytically recast as

J = (]. + B) ﬂ(ﬂvir)psﬂffvir, (35)

in terms of the substructure boost B, the virial concentration ci,, the scale density ps of the
profile, and the analytic function (e.g., [46])

ac) = (1—@) (ln{l—l—c}— 1ic)_2'




PDF of observing P (F) and P(F) [single vs all halos in pixel]

L AN dV
dM dz

OF
oM

P (F) = /dz

Pu(F) =P (F)*x P (F)* - « P|(F) = (Pl)*k

P(F) = Pyan(F).

3.3 The gamma-ray model

3.3.1 Dark matter annihilation model

The particle physics component K(E) = (ov)(dN/dE)/m? of this model (L(E) = JK(E))
1s assumed here to be a standard WIMP model, with annihilations into gamma rays via bb.
{ov) is taken to be the thermal cross-section 3 x 1072% cm® 57!, and the WIMP mass is taken
to be m, = 85 GeV. Our parameterisation of the photon number per energy per annihilating
particle is [53]:

dN  0.42 exp(—8x) E
dE ~ my(z3 +0.00014)" ©  my (38)

3.3.2 Gamma-ray optical depth

By restricting our analysis to small enough redshifts and energies, we do not need to consider
a o} a Lo} L 1

photoionisation or pair production [54]. We can then use a very rough parameterisation [53]

of gamma-ray absorbtion:

e TE2) —exp | - - E_\" : (3.9)
3.3 \10GeV
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Figure 1. The flux/intensity PDF for a single dark matter source, Py(F'), with its dependence on
photon energy (left) and boost models (right). In the right panel, the blue, black, and red curves
represent respectively the pessimistic, fiducial, and optimistic models of the subhalo boost. The choice
of boost model clearly and significantly affects the functional form of the one-point function. The
log-slopes of the fiducial model are offset (black dashed) and quantified for convenience. The flux F
and intensity I of the gamma-ray background are related via the instrument’s pixel size: F = I},
where (i = 5.8 x 10~ % st for E=1GeV photons.
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We will need, when computing the total P(F), to compute the first few moments of
Py (F) at an intermediate step:

Bnr = [ dFPUE)F, (4.1)

VIH{F} - /dF;P]_(F;}(F; — E‘I"l{}"})g . (42)

After multiplying eq. (4.1) by the mean number of halos [eq. (3.1)] and dividing by the
pixel size, one obtains the mean intensity of the gamma-ray background from dark matter
annihilation [61]. Similarly the variance [eq. (4.2)] is related to the angular power spectrum
after similar corrections [62].

Since eq. (2.7) entails an integration over redshift for each F', and since we find Py (F')
to be relatively smooth, we calculate 250 logarithmically equidistant points over the ~40
orders of magnitude supporting the distribution. In order to obtain robust estimate of the
moments, we further sample 250 points within the four orders of magnitude nearest to the
maximum estimated from the low-resolution sampling.
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Enr) = [ dF'PAF)F, (4.1)
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Figure 2. Schematic of the F. cutoff of Pi(F) into high/low flux. In our computation of the full
P(F), the central limit theorem is used to combine the fluxes from the many sources fainter than
F,, that follow a distribution PIF <f (F'). Monte Carlo is used above this cutoff to combine the halo

Auxes drawn from PIF ).
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Figure 3. The flux PDF P(F) per pixel. The blue, black, and red curves represent respectively the
pessimistic, fiducial, and optimistic models of the subhalo boost. Instrumental responses of Fermi-
LAT on detecting P(F') are schematically shown. Vertical lines represent a flux corresponding to a
single, one GeV photon per pixel, over the course of a mission of duration 5 (10) years. The Horizontal
line schematises the angular resolution limit [eq. (4.4)] at 1 GeV.
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Figure 4. Brightnesses of promising clusters and dwarf spheroidal galaxies superposed on the extra-
galactic dark matter annihilation gamma-ray background. The color code is the same as for previous
figures. We assume that dwarf spheroidals have no substructure boost. The fiducial model does not
favour indirect searches with clusters. The inversion of predictions for Coma and Fornax between top
and bottom panels accounts for source extension, as explained in the main text.
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Figure 5. One-point function P(F) for the three dark matter models (with boosts color-coded as
previously), alongside the P(F') of the diffuse contribution of blazars (green). The dashed red band
represents the measurement of the unresolved EGB from the Fermi data at 1GeV [66], while the
dashed green line is the mean of the blazar PDF.
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Figure 6. Predicted flux distribution Prap(F) of the extragalactic gamma-ray background, with
(black) and without (green) a contribution from dark matter annihilations. The distributions have
two peaks, based on whether or not a blazar is present in the associated pixel. The mean EGB derived
from Fermi [66] is represented by the vertical line (red, dashed). A cross-section twice the canonical
value was used to visually enhance the differences between these distributions.
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5.3 The photon count distribution P(C)

The observable given by Fermi is not the gamma-ray flux F, but the discrete number of photon
counts per pixel C'. Photon arrival may then be modelled as a Poisson rate with a mean
determined by the differential gamma-ray flux and the exposure € = (time) x (detector area) x
(photon energy). For a five-year Fermi mission, correcting for the field of view, we have an
exposure of ¢ &~ 2.83 x 10" em? s MeV sr pixel ™!, Marginalising over the uncertain flux
distribution then gives

P(C) = f Peas(F)P (C|eF) dF. (5.8)

This Poisson arrival uncertainty substantially smooths away the differences between the null
and alternate flux models, as evidenced by figure 7. However, the percent-level shift between
the low-flux peaks due to the dark matter distribution’s skewness survives, since a percent
ifference with €' ~ @Q(100) is still a few photons. There is also a larger, opposite shift in the
difference with € ger,
point-source-driven high-flux tail due to our imposed value of the distribution’s mean.
We can define, given our number of pixels Ny, the test statistic [25]

X'E = Z *Npix[PNull(C’T} — Py (Cr)
| c v NpixPyun (C)
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Figure 7. Predicted count distributions of EBG photons with (black) and without (green) a dark
matter component. The green bands represent the Poisson errors o oc /N P(C') on the dark-matter-
free model. The lower panel shows difference between the two models. A cross-section twice the
canonical value was used to visually enhance the differences between these distributions.
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Figure 8. Predicted statistical significance of a (hypothetical) one-point-function-only detection of a
dark matter annihilation signal above perfectly characterised astrophysical backgrounds, as a function
of the dark matter cross-section. Curves are labelled by the flux Sy,;, down to which the blazar
distribution is extrapolated (see table 3). Horizontal lines (blue, dashed) represent some common
choices of confidence level. Including the energy-dependence of the flux distributions would improve
these results, at the cost of a greater dependence on the annihilation spectrum.

they remain smaller than a factor of three. We then compute, without requiring any addi-
tional physical assumptions, the flux distribution per pixel P(F'), which has the characteristic
form of an isotropic diffuse Gaussian matched at high flux to the point-source distribution
with a power-law slope of —2.5. This distribution is non-Gaussian and asymmetric; however
the most likely flux and the mean flux are comparable at the percent-level in all but the
optimistic boost model, salvaging previous ‘mean intensity’ constraints on the dark matter
properties from this potential systematic effect.

The fluxes predicted for our fiducial model lie just within the reach of the Fermi-LAT,
and should be observable by the tenth vear of the mission. We also showed that the dis-
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