A general overview of nu-A DIS

Ingo Schienbein LPSC/Université Joseph Fourier Grenoble

Workshop on "New directions in Nuclear DIS" ECT* Trento, Italy, June 8-12, 2015

- Neutrino DIS
- Why neutrino DIS?
- Long baseline experiments and MINERvA
- QCD studies with neutrinos
- SHiP experiment proposal
- nCTEQ nuclear correction factors
- [Global analysis of nPDFs using vA+IA+DY data]
- Conclusions

Neutrino DIS

Kinematics of DIS

(single exchange boson approximation)

Deep:
$$Q^2 \gg M^2 \simeq 1 \text{ GeV}^2$$

Inelastic: $W^2 >> M^2$

$$W^2 = (p+q)^2 = M^2 + Q/x - Q^2$$

• $Q^2 = -q^2 = -(l - l')^2 > 0$, the square of the momentum transfer,

• $\nu = p \cdot q/M \stackrel{\text{lab}}{=} E_l - E_{l'}$,

• $0 \le x = Q^2/(2p \cdot q) = Q^2/(2M\nu) \le 1$, the (dimensionless) Bjorken scaling variable,

• $0 \le y = p \cdot q/p \cdot l \stackrel{\text{lab}}{=} (E_l - E_{l'})/E_l \le 1$, the inelasticity parameter,

Cross section

 $d\sigma \propto L_{\mu\nu}W^{\mu\nu}$

Leptonic tensor calculable in pert. theory

Hadronic tensor

not calculabe in pert. theory

All possible tensors using momenta p and q:

$$g_{\mu\nu}, \quad p_{\mu}p_{\nu}, \quad q_{\mu}q_{\nu}, \quad p_{\mu}q_{\nu} + p_{\nu}q_{\mu},$$

$$\varepsilon_{\mu\nu\rho\sigma}p^{\rho}q^{\sigma}, \quad p_{\mu}q_{\nu}-p_{\nu}q_{\mu},$$

Most general form in terms of structure functions:

$$\begin{split} W^{\mu\nu}(p,q) &= -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 - i\varepsilon^{\mu\nu\rho\sigma}\frac{p_{\rho}q_{\sigma}}{M^2}W_3 + \frac{q^{\mu}q^{\nu}}{M^2}W_4 \\ &+ \frac{p^{\mu}q^{\nu} + p^{\nu}q^{\mu}}{M^2}W_5 + \frac{p^{\mu}q^{\nu} - p^{\nu}q^{\mu}}{M^2}W_6 \,. \end{split}$$

Modern notation:

$$\left\{F_1, F_2, F_3\right\} = \left\{W_1, \frac{Q^2}{2xM^2}W_2, \frac{Q^2}{xM^2}W_3, \right\}$$

All possible tensors using momenta p and q:

 $g_{\mu\nu}, \quad p_{\mu}p_{\nu}, \quad q_{\mu}q_{\nu}, \quad p_{\mu}q_{\nu} + p_{\nu}q_{\mu},$

$$\varepsilon_{\mu\nu\rho\sigma}p^{\rho}q^{\sigma}, \quad p_{\mu}q_{\nu}-p_{\nu}q_{\mu},$$

Most general form in terms of structure functions:

$$\begin{split} W^{\mu\nu}(p,q) &= -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 - i\varepsilon^{\mu\nu\rho\sigma}\frac{p_{\rho}q_{\sigma}}{M^2}W_3 + \frac{q^{\mu}q^{\nu}}{M^2}W_4 \\ &+ \frac{p^{\mu}q^{\nu} + p^{\nu}q^{\mu}}{M^2}W_5 + \frac{p^{\mu}q^{\nu} - p^{\nu}q^{\mu}}{M^2}W_6 \,. \end{split}$$

Modern notation:

$$\left\{F_1, F_2, F_3\right\} = \left\{W_1, \frac{Q^2}{2xM^2}W_2, \frac{Q^2}{xM^2}W_3, \right\}$$

All possible tensors using momenta p and q:

 $g_{\mu\nu}, \quad p_{\mu}p_{\nu}, \quad q_{\mu}q_{\nu}, \quad p_{\mu}q_{\nu} + p_{\nu}q_{\mu},$

$$\varepsilon_{\mu\nu\rho\sigma}p^{\rho}q^{\sigma}, \quad p_{\mu}q_{\nu}-p_{\nu}q_{\mu},$$

All possible tensors using momenta p and q:

$$g_{\mu\nu}, \quad p_{\mu}p_{\nu}, \quad q_{\mu}q_{\nu}, \quad p_{\mu}q_{\nu} + p_{\nu}q_{\mu},$$

$$\varepsilon_{\mu\nu\rho\sigma}p^{\rho}q^{\sigma}, \quad p_{\mu}q_{\nu}-p_{\nu}q_{\mu},$$

Most general form in terms of structure functions:

$$W^{\mu\nu}(p,q) = -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 - i\varepsilon^{\mu\nu\rho\sigma}\frac{p_{\rho}q_{\sigma}}{M^2}W_3 + \frac{q^{\mu}q^{\nu}}{M^2}W_4 + \frac{p^{\mu}q^{\nu} + p^{\nu}q^{\mu}}{M^2}W_5 + \frac{p^{\mu}q^{\nu} - p^{\nu}q^{\mu}}{M^2}W_6.$$

Modern notation:

$$\left\{F_1, F_2, F_3\right\} = \left\{W_1, \frac{Q^2}{2xM^2}W_2, \frac{Q^2}{xM^2}W_3, \right\}$$

$CC v_{\tau}$ -DIS

Albright, Jarlskog'75 Paschos, Yu'98 Kretzer, Reno'02

$$\begin{aligned} \frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx \, dy} &= \frac{G_F^2 M_N E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left\{ (y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M_N}) F_1^{W^{\pm}} \right. \\ &+ \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M_N x}{2E_{\nu}}) y \right] F_2^{W^{\pm}} \pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M_N}) \right] F_3^{W^{\pm}} \\ &+ \frac{m_\tau^2 (m_\tau^2 + \mathbf{Q}^2)}{4E_{\nu}^2 \mathbf{M}_N^2 \mathbf{x}} \mathbf{F}_4^{W^{\pm}} - \frac{m_\tau^2}{E_{\nu} \mathbf{M}_N} \mathbf{F}_5^{W^{\pm}} \right\} \end{aligned}$$

Albright-Jarlskog relations: (derived at LO, extended by Kretzer, Reno)

 $F_4 = 0$ valid at LO $[\mathcal{O}(\alpha_s^0)], M_N = 0$ (even for $m_c \neq 0$) $F_2 = 2xF_5$ valid at all orders in α_s ,
for $M_N = 0, m_q = 0$

Full NLO expressions $(M_N \neq 0, m_c \neq 0)$: Kretzer, Reno'02

Optical theorem: $W_{\mu\nu} \propto {
m Im}\, T_{\mu\nu}$

$$T_{\mu\nu} = i \int d^4x \ e^{iqx} \langle N | T[J^{\dagger}_{\mu}(x) J_{\nu}(0)] | N \rangle$$

Two approaches (both factorize short and long distances):

I. Parton Model:

Two approaches (both factorize short and long distances):

I. Parton Model:

Two approaches (both factorize short and long distances):

I. Parton Model:

Higher order coefficient functions

Reference	Boson	SFs	Order	Coefficients	Scheme	Comments	
BBDM'78 [18]	NC, CC^{\pm}	F_2, F_L, F_3	α_S^1	C_2	$\overline{\mathrm{MS}}$	$C_{3,+}^{(1)}(x) = C_{3,-}^{(1)}(x)$	
AEM'78 [70]	$\rm NC, \rm CC^{\pm}$	F_2	α_S^1	C_2	$\overline{\mathrm{MS}}$		
FP'82 [62]	$\rm NC, \rm CC^{\pm}$	F_2	α_S^1	C_2	$\overline{\mathrm{MS}}$		
GMMPS'91 [71]	NC, CC^+	F_L	α_S^2	$C_{L,q}(x), C_{L,g}(x)$	$\overline{\mathrm{MS}}$	$C_{L,g}$ corrected in [72]	
NZ'91 [73]	$\rm NC, \rm CC^{\pm}$	F_2	α_S^2	$C_{2,q}(x)$	$\overline{\mathrm{MS}}$	first calc.	
ZN'91 [72]	$\rm NC, \rm CC^+$	F_2, F_L	α_S^2	$C_{2,g}(x), C_{L,g}(x)$	$\overline{\mathrm{MS}}$	first calc.	
ZN'92 [74]	$\rm NC, \rm CC^+$	F_2	α_S^2	C_2	$\overline{\mathrm{MS}}$		
NV'00 $[75]$	$\rm NC, \rm CC^+$	F_2, F_L	α_S^2	C_2^{NS}	$\overline{\mathrm{MS}}$	x-space param.	
NV'00 [76]	$\rm NC, \rm CC^+$	F_2	α_S^2	C_2^S	$\overline{\mathrm{MS}}$	x-space param.	
ZN'92 [77]	NC, CC^+	F_3	α_S^2	$C_{3,-}^{(2)}(x)$	$\overline{\mathrm{MS}}$	first calc.	
MV'00 [78]	$\rm NC, \rm CC^+$	F_2, F_L, F_3	α_S^2		$\overline{\mathrm{MS}}$	all N , confirms $[72, 73, 77]$	
MRV'08 [79]	$\rm CC^-$	F_2, F_L, F_3	α_S^2	$\delta C_{2,L,3}^{(2)}(x)$	$\overline{\mathrm{MS}}$	x-space param., $\delta C_L^{(2)}$ new	
MVV'09 [80]	CC^+	F_3	α_S^2	$C_{3,-}^{(2)}(x)$	$\overline{\mathrm{MS}}$	x-space param.	
VVM'05 [81]	NC, CC^+	F_2, F_L	α_S^3	C_2, C_L	$\overline{\mathrm{MS}}$	x-space calc. and param.	
MVV'02 [82]	NC, CC^+	F_2	α_S^3	C_2^{NS}	$\overline{\mathrm{MS}}$	x-space param.	
MVV'05 [83]	NC, CC^+	F_L	α_S^3	C_L^{NS}	$\overline{\mathrm{MS}}$	x-space param.	
MR'07 [84]	$\rm CC^-$	F_2, F_L, F_3	α_S^3		$\overline{\mathrm{MS}}$	N-space, fixed $N \leq 10$	
MRV'08 [79]	$\rm CC^-$	F_2, F_L, F_3	α_S^3	$\delta C_{2,L,3}^{(2)}(N)$	$\overline{\mathrm{MS}}$	N-space, first 5 moments	
MVV'09 [80]	CC^+	F_3	α_S^3		$\overline{\mathrm{MS}}$	x-space calc.	

Table 2.1: Massless higher order Wilson coefficient functions in the literature. 'NC' corresponds to neutral current DIS with γ and Z exchange while 'CC[±]' stands for charged current DIS with $W^+ \pm W^-$ exchange.

Two approaches (both factorize short and long distances):

2. Operator Product Expansion (OPE):

OPE

Operator product expansion

$$\int d^{4}x \ e^{iq \cdot x} \langle N | T(J^{\mu}(x)J^{\nu}(0)) | N \rangle$$

$$= \sum_{k} \left(-g^{\mu\nu}q^{\mu_{1}}q^{\mu_{2}} + g^{\mu\mu_{1}}q^{\nu}q^{\mu_{2}} + q^{\mu}q^{\mu_{1}}g^{\nu\mu_{2}} + g^{\mu\mu_{1}}g^{\nu\mu_{2}}Q^{2} \right)$$

$$\times q^{\mu_{3}} \cdots q^{\mu_{2k}} \frac{2^{2k}}{Q^{4k}} A_{2k}\Pi_{\mu_{1}\cdots\mu_{2k}} \qquad \text{local operators}$$

$$\langle N | \mathcal{O}_{\mu_{1}\cdots\mu_{2k}} | N \rangle$$

$$= \sum_{j=0}^{k} (-1)^{j} \frac{(2k-j)!}{2^{j}(2k)^{j}} g \cdots g \ p \cdots p$$

 $\Pi_{\mu_1 \cdots \mu_{2k}} = p_{\mu_1} \cdots p_{\mu_{2k}} - (g_{\mu_i \mu_j} \text{ terms})$

traceless, symmetric rank-2k tensor

TMC: Master formula

$$\begin{split} F_1^{\text{TMC}}(x,Q^2) &= \frac{x}{\eta r} F_1^{(0)}(\eta,Q^2) + \frac{M^2 x^2}{Q^2 r^2} h_2(\eta,Q^2) + \frac{2M^4 x^3}{Q^4 r^3} g_2(\eta,Q^2) , \\ F_2^{\text{TMC}}(x,Q^2) &= \frac{x^2}{\eta^2 r^3} F_2^{(0)}(\eta,Q^2) + \frac{6M^2 x^3}{Q^2 r^4} h_2(\eta,Q^2) + \frac{12M^4 x^4}{Q^4 r^5} g_2(\eta,Q^2) , \\ F_3^{\text{TMC}}(x,Q^2) &= \frac{x}{\eta r^2} F_3^{(0)}(\eta,Q^2) + \frac{2M^2 x^2}{Q^2 r^3} h_3(\eta,Q^2) + 0 , \end{split}$$

- Modular, easy to use!
- Resums leading twist TMC to all orders in $(M^2/Q^2)^n$
- Input: standard structure functions in the parton model with M=0
 - any order in α_s
 - can include quark masses

IS et al. '08, A review of TMC

Figure 9. Comparison of the F_2 structure function, with and without target mass corrections, and NuTeV data [64]. The base PDF set is CTEQ6HQ [7].

Why neutrino DIS?

v DIS: From Atmospheric to UHE neutrinos

Flavor separation of PDFs, nPDFs; Proton PDFs: nuclear corrections; dimuon production: main source of information on strange sea; Non-singlet evolution of $F_{3:} \alpha_{s;}$ Paschos-Wolfenstein relation, ... Neutrino interactions in the atmosphere; CC DIS dominant; small-x (x~10⁻⁷...10⁻⁵); No UHE neutrinos observed so far

Nuclear modifications

- Neutrino experiments use heavy nuclear targets: Pb, Fe, Ar, H₂O, C
- As discovered more than 30 years ago by the European Muon Collaboration, nucleon structure functions are modified by the nuclear medium (EMC effect)
- Studies of nucleon structure: need to correct for nuclear effects
- Nuclear effects interesting in its own right!
 - Many models exist.
 - However, charged lepton nuclear effects still not fully explained, in particular the EMC effect (0.3 < x < 0.7)

The EMC effect

 $F_2^A(x) \neq ZF_2^p(x) + NF_2^n(x)$

Are the nuclear effects the same with neutrinos?

Longbaseline experiments and MINERvA

J. Mousseau, talks at DIS 2015 and Fermilab Joint Experimental-Theoretical Physics seminar, May 8, 2015

Neutrino properties: What we know in 2012

- very weakly interacting, electrically neutral, spin 1/2, tiny mass
- long lived (or stable), tiny or vanishing magnetic moment

• 3 light 'SM families' (V_e, V_μ, V_τ)

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle L	istings.
Mass $m < 2 \text{ eV}$ (tritium decay)	
Mean life/mass, $ au/m > ~300$ s/eV, CL $= 90\%$ (reactor)
Mean life/mass, $ au/m > ~7 imes 10^9$ s/eV $$ (solar)	
Mean life/mass, $ au/m > ~15.4$ s/eV, CL $= 90\%$ ((accelerator)
Magnetic moment $\mu~<~0.32 imes10^{-10}~\mu_B$, CL $=$ 9	90% (solar)

Number of Neutrino Types

Number $N = 2.984 \pm 0.008$ (Standard Model fits to LEP data) Number $N = 2.92 \pm 0.05$ (S = 1.2) (Direct measurement of invisible Z width)

• neutrinos oscillate $\iff m_v \neq 0$

Neutrino Mixing

$$\begin{split} & \sin^2(2\theta_{12}) = 0.857 \pm 0.024 \\ & \Delta m_{21}^2 = (7.50 \pm 0.20) \times 10^{-5} \text{ eV}^2 \\ & \sin^2(2\theta_{23}) > 0.95 \ ^{[i]} \\ & \Delta m_{32}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2 \ ^{[j]} \\ & \sin^2(2\theta_{13}) = 0.098 \pm 0.013 \end{split}$$

Neutrino properties: What we want to know

- nature of neutrinos:
 - Majorana or Dirac fermions?
 - are there sterile neutrinos?

• neutrino masses:

- what are the absolute neutrino masses?
- normal $(m_2 \ll m_3)$ or inverted $(m_2 \gg m_3)$ mass hierarchy? [we know $m_2 > m_1$ from MSW effect]
- **mixing matrix** (PMNS-matrix):
 - more precise measurement of mixing angles
 - is the PMNS matrix unitary?
 - is there leptonic CP violation?

Long Baseline experiments

L = O(A few 100 km)

Near detector:

 ${\cal V}$

- neutrino flux
- neutrino beam energy spectrum
- cross sections before oscillation

Far detector:

observation of charged and neutral current reactions

Detection requires good understanding of neutrino interactions

Nuclear 12 GeV proton	effects distort mea $KEK \rightarrow SK$	sured kir 250	nematics o 1.4	of the neutri H ₂ O	i nos 1999-2004	<mark>∀</mark> μ
Two (simila 50 Ge Nuclear	ar) detectors will not ful effectspacedify near	ly solve the ang far	e problem: spec<u>tra</u> di	fferently	2010-	$ \frac{\nabla \mu}{\Delta m_{23}^2} $
Effects not	rateg y has been tead in neu	trino physic t n ycję ar ef	cs. fects,fr,om I/	∖ DIS in _F ⊌A DI	<mark>S</mark> . 2005-2014	νΑ x-s NC/CC ν μ , ν _e ; θ
Checks cated	Checkscated experiments like MINERVAL 17 Pb 2008-2012					
Monday, June 8, NuMI	$FN A \rightarrow Ash River$	810	~7	liquid scint	2013-	<mark></mark>

MINERvA neutrino flux

Results so far with LE flux; Large contributions from QE and RES Data taking at the moment with ME flux; much better sensitivity at low and high-x

CC DIS ratios: $\sigma(Ev)$

Cuts on (published) inclusive sample: $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV

- Not isoscalar corrected!
- Data show no significant deviation from simulation with GENIE which does not include any nuclear effects.
- The parton model results using nPDFs are consistent with unity.
- Small nuclear effects in the integrated cross section.

Monday, June 8, 15

CC DIS ratios: $\sigma(Ev)$

Ratio using **free** proton and neutron PDFs (Z f^{p} + N f^{n})

No nuclear effects; deviation from unity due to non-isoscalarity

CC DIS ratios: $d\sigma/dx$ (flux averaged)

Cuts on (published) inclusive sample: $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV

- Not isoscalar corrected! Need to disentangle non-isoscalar effects from nuclear effects!
- Currently, simulation assumes same x-dependent nuclear effects for C, Fe and Pb based on charged lepton DIS.
- Lowest x bin is <x>~0.07 and <Q²> ~ 2.0 GeV². Data suggest additional nuclear shadowing (Pb,Fe).
 A-dependent higher-twist effects might also play a role.
- In the EMC region (0.3 < x < 0.75) good agreement between data and simulation.
- Data errors mostly statistics dominated. Future improvements at small and high-x due to ME flux.

CC DIS ratios: $d\sigma/dx$ (flux averaged)

Ratio using **free** proton and neutron PDFs (Z f^{p} + N f^{n})

No nuclear effects; deviation from unity due to non-isoscalarity

Conclusions

First **preliminary** results from MINERvA on neutrino DIS using LE flux

Exciting results to come in the future!

EMC effect, shadowing, ... in neutrino interactions

QCD studies with neutrinos
Flavor separation of PDFs

NC charged lepton DIS: 2 structure functions (Y-exchange)

$$F_2^{\gamma}(x) \sim \frac{1}{9} [4(u + \bar{u} + c + \bar{c}) + d + \bar{d} + s + \bar{s}](x)$$

$$F_2^{\gamma}(x) = 2x F_1^{\gamma}(x)$$

CC Neutrino DIS: 6 additional structure functions $F_{1,2,3}^{W+}$, $F_{1,2,3}^{W-}$

$$F_2^{W^+} \sim [d + s + \bar{u} + \bar{c}] \qquad F_3^{W^+} \sim 2[d + s - \bar{u} - \bar{c}]$$
$$F_2^{W^-} \sim [\bar{d} + \bar{s} + u + c] \qquad F_3^{W^-} \sim 2[u + c - \bar{d} - \bar{s}]$$

Useful/needed to disentangle different quark parton flavors in a global analysis of proton or nuclear PDFs

Dimuon production and the strange PDF

Opposite sign dimuon production in neutrino DIS: $vN \rightarrow \mu^+\mu^-X$

W+I F

Other

≥140

4100

W+LF

Other

- High-statistics data from CCFR and NuTeV: Main source of information!
- x~[0.01,0.4]
- vFe DIS: need nuclear corrections! Problem: Figal State Interactions (FSI)
- CHORUS (vPb): compatible with NuTeV. could be included.

NOMAD (vFe): data not yet published, in principle very interesting

World data on 18/5 F_2^{NC} and F_2^{CC} on iron

$$\Delta F_2 = \frac{5}{18} F_2^{CC} - F_2^{NC} \simeq \frac{x}{6} [s(x) + \bar{s}(x)]$$

Data available at Durham database;

Data brought to the same $Q^2=8 \text{ GeV}^2$

Info on nuclear corrections in v-Fe DIS vs I-Fe DIS: <u>Advantage</u>: no deuterium

Info on strange PDF in iron:

Advantage: inclusive, no FSI

<u>Disadvantage</u>: difference of two large numbers

Drell-Yan production of W/Z at the LHC

Uncertainty of strange-PDF will feed into benchmark process

VRAP code: Anastasiou, Dixon, Melnikov, Petriello, PRD69(2004)094008

Strange PDF: experimental constraints

Semi-Inclusive DIS (SIDIS): $e+N \rightarrow K+X$

$$\frac{d\sigma}{dxdQ^2dz} \propto \sum_q e_q^2 f_q(x,Q^2) D_q^K(z,Q^2)$$
$$\sim \frac{1}{9} s(x,Q^2) D_s^K(z,Q^2)$$

Strange PDF: experimental constraints

xF₃ and Isospin Violation

*xF*₃ <u>uniquely</u> determined by neutrino-DIS

$$\frac{1}{2}F_3^{\nu A}(x) = d_A + s_A - \bar{u}_A - \bar{c}_A + \dots,$$

$$\frac{1}{2}F_3^{\bar{\nu}A}(x) = u_A + c_A - \bar{d}_A - \bar{s}_A + \dots$$

• The sum is sensitive to the valence quarks • Nonsinglet QCD evolution, determination of $\alpha_s(Q)$

The difference can be used to constrain isospin violation

$$\Delta x F_3 = x F_3^{\nu A} - x F_3^{\bar{\nu} A} = 2x s_A^+ - 2x c_A^+ + x \, \delta I^A + \mathcal{O}(\alpha_S)$$

$$\delta I^A = (d_{p/A} - u_{n/A}) + (d_{n/A} - u_{p/A}) + (\bar{d}_{p/A} - \bar{u}_{n/A}) (\bar{d}_{n/A} - \bar{u}_{p/A})$$

Hadronic Precision Observables

$$\begin{split} R^{\nu} &= \frac{\sigma_{\rm NC}^{\nu}}{\sigma_{\rm CC}^{\nu}} \simeq g_L^2 + r g_R^2 \\ R^{\bar{\nu}} &= \frac{\sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\bar{\nu}}} \simeq g_L^2 + r g_R^2 \\ r &= \frac{\sigma_{\rm CC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\nu}} \end{split}$$

 g_L and g_R are effective L and R vq couplings

$$g_L^2 = \rho^2 \left(\frac{1}{2} - s_w^2 + \frac{5}{9}s_w^4\right)$$
$$g_R^2 = \rho^2 \left(\frac{5}{9}s_w^4\right)$$

Paschos-Wolfenstein (PW):

$$R^{-} = \frac{\sigma_{\rm NC}^{\nu} - \sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\nu} - \sigma_{\rm CC}^{\bar{\nu}}}$$
$$\simeq g_{L}^{2} - g_{R}^{2} = \rho^{2} \left(\frac{1}{2} - s_{w}^{2}\right)$$

QCD for PW-style analysis

see, e.g., hep-ph/0405221

SHiP experiment proposal

SHiP Proposal

PHYSICAL

CERN-SPSC-2015-017/SPSC-P_350-ADD-1 arXiv:1504.04855 (hep-ph)

TECHNICAL

CERN-SPSC-2015-016/SPSC-P_350 arXiv:1504.04956 (hep-ph)

Prepared for submission to JHEP

A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

Sergey Alekhin,^{1,2} Wolfgang Altmannshofer,³ Takehiko Asaka,⁴ Brian Batell,⁵ Fedor Bezrukov,^{6,7} Kyrylo Bondarenko,⁸ Alexey Boyarsky^{*},⁸ Nathaniel Craig,⁹ Ki-Young Choi,¹⁰ Cristóbal Corral,¹¹ David Curtin,¹² Sacha Davidson,^{13,14} André de Gouvêa,¹⁵ Stefano Dell'Oro,¹⁶ Patrick deNiverville,¹⁷ P. S. Bhupal Dev,¹⁸ Herbi Dreiner,¹⁹ Marco Drewes,²⁰ Shintaro Eijima,²¹ Rouven Essig,²² Anthony Fradette,¹⁷ Björn Garbrecht,²⁰ Belen Gavela,²³ Gian F. Giudice,⁵ Dmitry Gorbunov,^{24,25} Stefania Gori,³ Christophe Grojean[§],^{26,27} Mark D. Goodsell,^{28,29} Alberto Guffanti,³⁰ Thomas Hambye,³¹ Steen H. Hansen,³² Juan Carlos Helo,¹¹ Pilar Hernandez,³³ Alejandro Ibarra,²⁰ Artem Ivashko,^{8,34} Eder Izaguirre,³ Joerg Jaeckel[§],³⁵ Yu Seon Jeong,³⁶ Felix Kahlhoefer,²⁷ Yonatan Kahn,³⁷ Andrey Katz,^{5,38,39} Choong Sun Kim,³⁶ Sergey Kovalenko,¹¹ Gordan Krnjaic,³ Valery E. Lyubovitskij,^{40,41,42} Simone Marcocci,¹⁶ Matthew Mccullough,⁵ David McKeen,⁴³ Guenakh Mitselmakher ,⁴⁴ Sven-Olaf Moch,⁴⁵ Rabindra N. Mohapatra,⁴⁶ David E. Morrissey,⁴⁷ Maksym Ovchynnikov,³⁴ Emmanuel Paschos,⁴⁸ Apostolos Pilaftsis,¹⁸ Maxim Pospelov[§],^{3,17} Mary Hall Reno,⁴⁹ Andreas Ringwald,²⁷ Adam Ritz,¹⁷ Leszek Roszkowski,⁵⁰ Valery Rubakov,²⁴ Oleg Ruchayskiy*,²¹ Jessie Shelton,⁵¹ Ingo Schienbein,⁵² Daniel Schmeier,¹⁹ Kai Schmidt-Hoberg,²⁷ Pedro Schwaller,⁵ Goran Senjanovic, 53,54 Osamu Seto, 55 Mikhail Ct "....*, §.²¹ Brian Shuve,³ Robert Shrock,⁵⁶ Lesya Shchutska[§] Spray,⁵⁸ Florian Staub,⁵ ano[§].^{59,60} Daniel Stolarski,⁵ Matt Strassley .63 Kathryn M. Anurag Tripathi,⁵⁹ Sean Tulin 85 theorists Zurek^{64,65} 200 pages

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-SPSC-2015-016 SPSC-P-350 8 April 2015

Technical Proposal

A Facility to Search for Hidden Particles (SHiP) at the CERN SPS

The SHiP Collaboration¹

234 authors 44 institutions 13 countries

Abstract

A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden

Talk by A. Di Crescenzo at DIS 2015

Neutrino Physics@SHiP

Energy spectrum of different neutrino flavors interacting in the target

CC DIS neutrino interactions in 5 years run $(2 \times 10^{20} \text{ pot})$

	<e></e>	CC DIS
	(GeV)	interactions
$N_{ u_{\mu}}$	29	$1.7 imes10^{6}$
$N_{ u_e}$	46	$2.5 imes10^5$
$N_{ u_{ au}}$	59	$6.7 imes10^3$
$N_{\overline{ u}_{\mu}}$	28	$6.7 imes10^5$
$N_{\overline{ u}_e}$	46	$9.0 imes10^4$
$N_{\overline{ u}_{ au}}$	58	$3.4 imes10^3$

SHiP

- Proposal: fixed target experiment at the CERN SPS
- SPS: 4×10^{13} protons per spill@400 GeV $\rightarrow 2 \times 10^{20}$ pot in 5 years (same as CNGS)
- Search for new physics beyond SM: explore the intensity frontier
- Rich Standard Model physics program:
 - first observation of $anti-V_T$
 - V_T and anti- V_T cross section measurements: sensitive to F_4 and F_5
 - structure functions studies: W⁺: F₁, F₂, F₃; W⁻: F₁, F₂, F₃
 - charm physics with neutrinos and anti-neutrinos: strange PDF
 - electroweak measurements: Paschos-Wolfenstein relation, ...

Sensitivity to F4 and F5

nCTEQ nuclear correction factors

vA DIS vs IA DIS

- Not much information on nuclear ratios in VA DIS
- Often use information from IA DIS to correct for nuclear effects
- Sometimes the same nuclear correction factor is applied independent of the neutrino observable, Q², or the nuclear A
- **Big question**:

Are nuclear effects in vA DIS the same as in IA DIS?

(Problem: term "nuclear effect" used for different things)

Nuclear corrections: Parton model perspective

- Be O an observable calculable in the parton model
- Define **nuclear correction** factor in the following way:

$$R[O] = O[Z f^{p/A} + N f^{n/A}]/O[Z f^{p} + N f^{n}]$$

- Advantages:
 - very flexible: any $Q^2 > I GeV^2$, different nuclear A
 - different observables: $F_{1,2,3}^{W+}$, $F_{1,2,3}^{W-}$, $F_{1,2}^{\gamma}$, DY, $d\sigma/dxdy$
 - calculation of uncertainties possible
- Of course, <u>no explanation</u> of nuclear effects

Nuclear corrections: Parton model perspective

Even with same nuclear modification of the different parton flavors:

 $R[F_2^{\nu A}](x) \neq R[F_2^{lA}](x) \qquad R[F_3^{\nu A}](x) \neq R[F_2^{\nu A}](x)$

simply because different observables depend differently on the partons.

Often similar but **not** the same: 1

measured needed correction factor $F_2^A/F_2^D \neq R[F_2^A]$

Non-isoscalarity effects; Deuteron has its own nuclear corrections.

In summary:

Nuclear correction factors will be (more or less) different even if the same nuclear mechanisms are at work/even if there are universal NPDFs

Big question: can VA+IA data be described by a universal set of NPDFs?

- Are nuclear corrections in charged-lepton and neutrino DIS different?
- Obviously the PDFs from fits to ℓA + DY data do not describe the neutrino DIS data.
- However, a better flavor decomposition could be possible resulting from a global analysis of ℓA , DY and νA data.

Note: $x_{\min} = 0.02$ in these figures.

Global analysis of vA+IA+DY data

COMBINING ℓA DIS, DY AND νA DIS DATA

- *l*A and DY data sets as before
- 8 Neutrino data sets
 - NuTeV cross section data:
 \nuFe, \overline
 \nuFe
 \nuFe
 - CHORUS cross section data: νPb, νPb
 - NuTeV dimuon data: νFe, νFe
 - CCFR dimuon data: νFe , $\overline{\nu} Fe$
- Problem: Neutrino data sets have much higher statistics. Systematically study fits with different weights.

Weight	Fit name	ℓ data	χ^2 (/pt)	ν data	χ^2 (/pt)	total χ^2 (/pt)
<i>w</i> = 0	decut3	708	639 (0.90)	-	-	639 (0.90)
w = 1/7	glofac1a	708	645 (0.91)	3134	4710 (1.50)	5355 (1.39)
w = 1/4	glofac1c	708	654 (0.92)	3134	4501 (1.43)	5155 (1.34)
w = 1/2	glofac1b	708	680 (0.96)	3134	4405 (1.40)	5085 (1.32)
w = 1	global2b	708	736 (1.04)	3134	4277 (1.36)	5014 (1.30)
$W = \infty$	nuanua1	-	-	3134	4192 (1.33)	4192 (1.33)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

decut3 (w = 0)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

glofac1a (w = 1/7)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

glofac1c (w = 1/4)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

glofac1b (w = 1/2)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

global2b (w = 1)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

nuanua1 ($w = \infty$)

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

IS THERE A REASONABLE COMPROMISE FIT?

Weight	Fit name	ℓ data	χ^2 (/pt)	ν data	χ^2 (/pt)	total χ^2 (/pt)
<i>w</i> = 0	decut3	708	639 (0.90)	-	-	639 (0.90)
w = 1/7	glofac1a	708	645 (0.91)	3134	4710 (1.50)	5355 (1.39)
w = 1/4	glofac1c	708	654 (0.92)	3134	4501 (1.43)	5155 (1.34)
w = 1/2	glofac1b	708	680 (0.96)	3134	4405 (1.40)	5085 (1.32)
w = 1	global2b	708	736 (1.04)	3134	4277 (1.36)	5014 (1.30)
$W = \infty$	nuanua1	-	-	3134	4192 (1.33)	4192 (1.33)

- w = 0: No. Problem: $R[F_2^{\nu Fe}]$
- w = 1/7: No. Problem: $R[F_2^{\nu Fe}]$
- w = 1/4, 1/2: No.
 - $Q^2 = 5$: Undershoots $R[F_2^{\ell Fe}]$ for x < 0.2. Overshoots $R[F_2^{\nu Fe}]$ for $x \in [0.1, 0.3]$
 - $Q^2 = 20$: $R[F_2^{\ell Fe}]$ still ok. Overshoots $R[F_2^{\nu Fe}]$.
- w = 1: No. Possibly there is a compromise if more strict Q^2 cut?
 - $Q^2 = 5$: Undershoots $R[F_2^{\ell Fe}]$ for x < 0.2. $R[F_2^{\nu Fe}]$ ok.
 - $Q^2 = 20$: $R[F_2^{\ell Fe}]$ still ok. $R[F_2^{\nu Fe}]$ ok.
- $W = \infty$: No. Problem: $R[F_2^{\ell Fe}]$

Discussion based on the comparison of the nuclear correction factors $R[F_2^{\ell A}]$ and $R[F_2^{\nu A}]$

- There is definitely a tension between the NuTeV and the charged lepton data
 - There is a clear dependence on the weight.
 - Theory curves for $R[F_2^{\ell A}]$ and $R[F_2^{\nu A}]$ are both shifted down with increasing weight of the neutrino data.
- Preliminary conclusion: At the level of the (high) precision there doesn't seem to be a good compromise fit of the combined ℓA , DY and νA data.
- However one has to be careful:
 - These are precision effects
 - For each weight, the curves have uncertainty bands not considered
 - The figures show the comparison to only few (representative) data

Consider next quantitative criterion based on χ^2

TOLERANCE CRITERION

Probability distribution for the χ^2 function

$$P_N(\chi^2) = \frac{(\chi^2)^{N/2-1} e^{-\chi^2/2}}{2^{N/2} \Gamma(N/2)}$$

Determine ξ_{50}^2 and ξ_{90}^2 (i.e. p = 50, p = 90):

$$\int_{0}^{\xi_{p}^{2}} d\chi^{2} P_{N}(\chi^{2}) = p/100$$

Condition for compatibility of two fits:

The 2nd fit (χ_n^2) should be within the 90% C.L. region of the first fit $(\frac{2}{\lambda_{n,0}})$

$$\chi_n^2/\chi_{n,0}^2 < \xi_{90}^2/\xi_{50}^2 \qquad \Leftrightarrow \qquad C_{90} \equiv \frac{\Delta\chi^2}{\frac{\chi_{n,0}^2}{\xi_{50}^2}(\xi_{90}^2 - \xi_{50}^2)} < 1$$

see CTEQ'01, PRD65(2001)014012; MSTW'09, EPJC(2009)63,189-285

I. Schienbein (LPSC Grenoble)

Recent progress on CTEQ nPDFs

TOTAL χ^2 FOR A) ℓA +DY DATA AND B) NEUTRINO DATA

90% tolerance condition for the charged lepton $\chi^{\rm 2}$ and the neutrino $\chi^{\rm 2}$

- decut3: 638.9 \pm 45.6 (best fit to only charged lepton and DY data)
- nuanua1: 4192 \pm 138 (best fit to only neutrino data)

Weight	Fit name	ℓ data	χ^2	ν data	χ^2	total χ^2 (/pt)
<i>w</i> = 0	decut3	708	639	-	nnnn NO	639 (0.90)
w = 1/7	glofac1a	708	645 YES	3134	4710 NO	5355 (1.39)
w = 1/4	glofac1c	708	654 YES	3134	4501 NO	5155 (1.34)
w = 1/2	glofac1b	708	680 YES	3134	4405 NO ***	5085 (1.32)
<i>w</i> = 1	global2b	708	736 NO	3134	4277 YES	5014 (1.30)
$W = \infty$	nuanua1	-	nnn NO	3134	4192	4192 (1.33)

Is there a compromise fit compatible to both, decut3 **and** nuanua1?

Observations:

- There is no good compromise fit based on the 90% C.L. criterion.
- Our best candidate is **glofac1b** which is *marginally* compatible: $4405 4192 \simeq 1.5 \times 138$
- Observations in agreement with the previous conclusions based on $R[F_2^{\ell Fe}]$ and $R[F_2^{\nu Fe}]$.

Let's have a look at the tolerance criterion applied to the individual data sets!

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: $n = 1, \ldots, 32$ vs decut3; $n = 33, \ldots, 40$ vs nuanua1

glofac1a (w = 1/7)

• Y-axis: C₉₀; X-axis: Number of the data set (n = 1, ..., 40)

- Important data sets:
 - n = 8 (red circle): Fe/D charged lepton data
 - blue ellipse: CHORUS νPb , $\overline{\nu} Pb$ cross section data
 - n = 35, 36 (red ellipse): NuTeV νFe , $\overline{\nu} Fe$ cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: $n = 1, \ldots, 32$ vs decut3; $n = 33, \ldots, 40$ vs nuanua1

glofac1c (w = 1/4)

• Y-axis: C₉₀; X-axis: Number of the data set (n = 1, ..., 40)

- Important data sets:
 - n = 8 (red circle): Fe/D charged lepton data
 - blue ellipse: CHORUS νPb , $\overline{\nu} Pb$ cross section data
 - n = 35, 36 (red ellipse): NuTeV νFe , $\overline{\nu} Fe$ cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: $n = 1, \ldots, 32$ vs decut3; $n = 33, \ldots, 40$ vs nuanua1

glofac1b (w = 1/2)

• **Y-axis**: C₉₀; **X-axis**: Number of the data set (n = 1, ..., 40)

- Important data sets:
 - n = 8 (red circle): Fe/D charged lepton data
 - blue ellipse: CHORUS νPb , $\overline{\nu} Pb$ cross section data
 - n = 35, 36 (red ellipse): NuTeV νFe , $\overline{\nu} Fe$ cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: $n = 1, \ldots, 32$ vs decut3; $n = 33, \ldots, 40$ vs nuanua1

global2b (w = 1)

• **Y-axis**: C₉₀; **X-axis**: Number of the data set (n = 1, ..., 40)

- Important data sets:
 - n = 8 (red circle): Fe/D charged lepton data
 - blue ellipse: CHORUS νPb , $\overline{\nu} Pb$ cross section data
 - n = 35, 36 (red ellipse): NuTeV νFe , $\overline{\nu}Fe$ cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS

Observations:

- w = 1/7: $C_{90} > 5$ for NuTeV νFe ; $C_{90} \simeq 1.8$ for NuTeV $\bar{\nu}Fe$
- CHORUS data (blue ellipse) always compatible; little dependence on weight w
- increasing weight: NuTeV cross section data improve; charged lepton *Fe/D* data get worse
- our best candidate (w = 1/2)
 - Fe/D (n=8): $C_{90}\simeq 2$
 - NuTeV ν *Fe* (*n* = 35): *C*₉₀ \simeq 2.2
 - NuTeV *v Fe* (*n* = 36): *C*₉₀ < 1
 - some other data sets n = 3, 4, 5, 6, 32 with $C_{90} > 1$
- w = 1: Fe/D (n = 8): C₉₀ > 3
- Confi rms and quantifi es observations based on R plots
CONCLUSIONS III

Based on nuclear corrections factors *R* and the tolerance criterion $C_{90} < 1$:

- There is no good compromise fit to the $\ell A DIS + DY + \nu A DIS$ data.
- Most problematic: tension between NuTeV ν Fe cross section data and Fe/D data in charged lepton DIS.
- The NuTeV $\overline{\nu}Fe$ data are less problematic. They have larger errors.
- The CHORUS
 \nuPb and
 \nuPb data are compatible with both, the charged lepton+DY and the NuTeV data, as is well known. They also have larger errors.
- Relaxing the tolerance criterion to $C_{90} \leq 2$ the fit with weight w = 1/2 would be *marginally* acceptable.
- This can also (qualitatively) be verified with the *R*-plots.
- A larger Q^2 -cut, say $Q^2 > 5 \text{ GeV}^2$, could also help to reduce the tension. (In particular, this would remove some of the rather precise NuTeV cross section data at small *x*.)

Last words

Last words

A global approach across subfields

Exciting contributions from vA DIS to this picture

Strange PDF

- Before dimuon data (~2001) essentially no experimental constraints on strange sea
- Theoretical assumptions necessary!
 - Early parametrisations (Duke-Owens): SU(3)-symmetric sea

 Later parametrisations (e.g. CTEQ6.1): SU(3) symmetry is broken; strange sea ~ 1/2 light sea

• CTEQ6.6 and later: dimuon data! strange PDF fitted with 2 free parameters

$$x\overline{u} = x\overline{d} = x\overline{s} = A_S(1-x)^{\eta_S}S/6$$

$$\bar{d}(x) > \bar{u}(x)$$

$$s = \overline{s}$$

(s + \overline{s})(x, Q_0) = \kappa(\overline{u} + \overline{d})(x, Q_0)
\kappa \appa 0.5

Strange PDF: Uncertainty

- Knowledge of strange PDF is limited (see figures)
- If exact SU(3) symmetry: ubar = dbar = sbar and κ =1
- $m_s >> m_u, m_d$: expect ubar = dbar > sbar and $\kappa < I$
- CTEQ6.1, CTEQ6.5: κ=0.5
 by design
- CTEQ6.6: κ=0.5 at x=0.1
 central PDF a factor 2 larger for small x
- Green error band: (upper figure) enveloppe of 44 CTEQ6.6 error PDFs
- Blue error band: (upper figure)

$$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{N_p} [X(S_i^+) - X(S_i^-)]^2}$$

Drell-Yan production of W/Z at the LHC

- Benchmark processes, essential to know impact of PDF uncertainties
- Conversely, W/Z production to constrain PDFs

- Larger energy \Rightarrow probes PDFs to small momentum fractions x
- Larger rapidity (y) \Rightarrow access to **very** small x
- Larger contribution from the **sc-channel**

Evolution of Kappa

Can W/Z data constrain the strange PDF?

- Higher scales: production of s(x) via gluon splitting moves κ(x) to the SU(3) symmetric limit!
- LHC7 sensitive to x~0.01
- LHCI4 sensitive to x~0.005
- Need very precise measurement at Q=80 GeV to constrain strange PDF at Q=1.5 GeV!

PDF Uncertainties \Rightarrow S(x) PDF \Leftrightarrow W/Z at LHC

Anastasiou, Dixon, Melnikov, Petriello, Phys.Rev.D69:094008,2004. Kusina, Stavreva, Berge, Olness, Schienbein, Kovarik, Jezo, Yu, Park Phys.Rev. D85 (2012) 094028 y distribution shape can constrain s(x) PDF

Monday, June 8, 15

W, Z data sensitivity to strange sea

- ATLAS performed NNLO QCD fit to Z, W^+, W^- + HERA ep DIS cross sections: significant tension for Z observed when suppressing strange by 50% at low scale $1.9 \,\mathrm{GeV}^2$
- Fit with free strange sea gives no supression

 $r_s = 1.00 \pm 0.20_{\text{exp}} \stackrel{+0.16}{_{-0.20 \text{ sys}}}$

Monday, June 8, 15

First LHC results on W+charm (CMS)

• Sensitive to strange quark PDFs (process dominated by $s+g \rightarrow W + charm$):

- PDF uncertainties from the second quark generation are a potential source of uncertainty for the W mass measurement at the LHC
- Data-driven control of light-quark and top backgrounds
- Enormous margin for improvement (only 2010 statistics used), new method (secondary vertex tagging), complementary to the one employed until now at Tevatron (semileptonic charm decay tagging):

For
$$p_T^{jet} > 20$$
 GeV, $|\eta^{jet}| < 2.1$:

$$\frac{\sigma(W^+ + charm)}{\sigma(W^- + charm)} = 0.92 \pm 0.19(stat.) \pm 0.04(syst.); \quad \frac{\sigma(W + charm)}{\sigma(W + jets)} = 0.142 \pm 0.015(stat.) \pm 0.024(syst.)$$

J. Alcaraz, W/Z Physics, EPS-HEPP 2011 Conference

de Investigacione icas Medicambie

REQUIREMENTS

- Proposal: fixed target experiment at the CERN SPS
- SPS: $4x10^{13}$ protons per spill @ 400 GeV \rightarrow $2x10^{20}$ pot in 5 years (same as CNGS)

1) BACKGROUND REDUCTION

- Combinatorial background
- Neutrino flux
- Muon flux
- Neutrino interactions

1) SIGNAL ENHANCEMENT

- Geometrical acceptance
- Reconstruction of decays
- High sensitivity

Monday, June 8, 15

DETECTOR LAYOUT

TIMESCALE

		2014	2015	2016	2017	20	18	2019	2020	2021	2022	2023	2024	2025	2026
Activity			01 03 03 04 01 03 03 04 01 03 04				01 02 03 04 01 02 03 03 04 01 02 07			Q1 Q2 Q3 Q4	Q1 Q2 Q8 Q8	01 02 03 04	01 02 03 04	CL Q2 Q3 Q4	Q1 C2 Q8 Q4
	LHC operation														
	SPS operation														
Experiment	Technical Proposal														
	SHIP Project approval						I I								
	Technical Design Reports and R&D						I I								
	TDR approval						I I								
	Detector production														
	Detector installation														
	SHIP dry runs and HW commissioning						I I			l î					
	SHIP commissioning with beam						I I					. ,	l I	1 I	
	SHIP operation		↓↓				I I								
_	Pre-construction activities(Design, tendering, permits)														
fra	CE works for extraction tunnel, target area						ι								
<u>=</u> .	CE works for TDC2 junction cavern														
- m	CE works for shield tunnel and detector hall														
١Ŭ	General infrastructure installation						I I								
	Detailed design, specification and tender preparation														
	Technical Design Report Approval						I I								
	Integration studies														
e	Production and tests														
Beam lir	Refurbishment of existing equipment					Ι,	L								
	Removal of TT20 equipment for CE								,						
	Installation of new services and TT20 beam line								·						
	Installation of services for new beam line to target														
	Installation of beam line and tests								_						
	Muon shield installation (commissioning)														
ы	Design studies and prototyping														
arg	Production and installation														
Ξ															

Form SHiP Collaboration	Deceml
Technical Proposal	April 2015 🖌
Technical Design Report	2018
Construction and Installation	2018-2022
Commissioning	2022
Data taking and analysis	2023-2027
A. Di Crescenzo - IFAE 2015	

Monday, June 8, 15

December 2014 🗸

SHIP LOCATION

Proposed location by CERN beams and support departments

COST ESTIMATION

ltem	Cost (MCHF)			
Facility		135.8		
Civil engineering	57.4			
Infrastructure and services	22.0			
Extraction and beamline	21.0			
Target and target complex	24.0			
Muon shield	11.4			
Detector		58.7		
Tau neutrino detector	11.1			
Hidden Sector detector	46.8			
Computing and online system	0.2			
Grand total		194.5		

NEUTRINO FLAVOR IDENTIFICATION

REQUIREMENTS

- Electric charge measurement of τ lepton decay products
- Key role for v_{τ}/\bar{v}_{τ} separation in the τ ->h decay channel
- Momentum measurement

LAYOUT

- 3 OPERA-like emulsion films
- 2 Rohacell spacers (low density material)
- 1 Tesla magnetic field

Charge measured from the curvature of the track with the **sagitta** method

PERFORMANCES

- Sign of the electric charge can be determined with better than 3 standard deviation level up to 12 GeV
- The **momentum** of the track can be estimated from the sagitta
- Dp/p < 20% up to 12 GeV/c

NEUTRINO PHYSICS

τ DECAY CHANNEL	BR (%)
τ →μ	17.7
τ→e	17.8
$\tau \! \rightarrow \! h$	49.5
τ →3h	15.0

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = N_p \frac{2\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_s} Br(D_s \to \tau) 2 = 2.85 \times 10^{-5} N_p$$

SENSITIVITY TO F₄ AND F₅

r = ratio between the cross sections in the two hypotheses

 $E(v_{\tau} + \overline{v}_{\tau}) < 20 \text{ GeV}$ (~420 events expected)

A. Di Crescenzo - DIS 2015