Nuclear PDFs and

D-meson production in the GM-VFNS

Ingo Schienbein Université Grenoble Alpes/LPSC Grenoble

"France-Japan Workshop on physics analysis in the ALICE experiment" Strasbourg, May 9, 2017

Part I: Nuclear PDFs

- Introduction
- Brief review of available nuclear PDFs
- LHC pPb data useful for constraining nPDF

Introduction

Nuclear modifications of DIS structure functions

 $F_{2}^{A}(x) \neq ZF_{2}^{p}(x) + NF_{2}^{n}(x)$

Can we translate these modifications into universal nuclear PDFs?

Nuclear PDFs

- There are at least two motivations for NPDFs:
 - I. They encode information on the partonic structure of nuclei
 - 2. They are **crucial tools** for the description of pA and AA collisions at RHIC/LHC and lepton-A DIS
- Predictions for observables have to include reliable estimates of the uncertainties due to the NPDFs
- So far NPDFs are determined by performing global analyses of data similar to global analyses of proton PDFs

Theoretical Framework

- Factorization theorems
 - provide (field theoretical) definitions of universal PDFs
 - make the formalism predictive
 - make a statement about the error
- PDFs and predicitions for observables+uncertainities refer to this standard pQCD framework
- There might be breaking of QCD factorization, deviations from DGLAP evolution — in particular in a nuclear environment

Still need solid understanding of standard framework to establish deviations!

In the nuclear case, consider factorization as a working assumption to be tested phenomenologically

Theoretical Framework

• Factorization theorems

In the nuclear case, consider factorization as a working assumption to be tested phenomenologically

Main differences with free-proton PDFs

- Theoretical status of factorization
- Parametrization: more parameters to model A-dependence
- Less data constraints, much(!) smaller kinematic coverage

Main differences with free-proton PDFs

- Theoretical status of factorization
- Parametrization: more parameters to model A-dependence
- Less data constraints, much(!) smaller kinematic coverage

- Less data constraints → more assumptions about input PDFs
- Assumptions "hide" uncertainties!

Brief review of available nuclear PDFs

Available nuclear PDFs (NLO)

EPPS'16 (supersedes EPS'09)
 Eskola, Paakkinen, Paukkunen, Salgado, arXiv:1612.0574

- nCTEQ'15 nCTEQ collaboration, PRD93(2016)085037, arXiv:1509.00792
- DSSZ'II

de Florian, Sassot, Stratmann, Zurita, PRD85(2012)074028, arXiv:1509.00792

• HKN'07

Hirai, Kumano, Nagai, PRC76(2007)065207, arXiv:0709.3038

• AT'12

Atashbar Tehrani, PRC86(2012)064301

Available nuclear PDFs (NNLO)

Khanpour, Atashbar Tehrani, PRD93(2016)014026, arXiv:1601.00939

Main differences

- Used data sets
 - charged lepton-nucleus DIS, pA DY: All groups (but different cuts!) (EPPS'16 uses also π-A DY data)
 - RHIC single pion production: EPPS'16, nCTEQ'15, DSSZ'11 (EPPS now with weigth = 1; DSSZ includes nuclear corrections to FFs)
 - **neutrino-Pb DIS** (CHORUS): EPPS'16
 - LHC data (dijet production, W/Z production): EPPS'16

Main differences

- Used data sets
 - charged lepton-nucleus DIS, pA DY: All groups (but different cuts!)
 (EPPS'16 uses also π-A DY data)
 - RHIC single pion production: EPPS'16, nCTEQ'15, DSSZ'11 (EPPS now with weigth = 1; DSSZ includes nuclear corrections to FFs)
 - **neutrino-Pb DIS** (CHORUS): EPPS'16
 - LHC data (dijet production, W/Z production): EPPS'16

• Parametrization

- Multiplicative nuclear correction factors: EPPS'16, DSSZ'11, HKN'07, AT'12, KA'15 (requires proton baseline, parametrization can be quite complicated)
- Native nuclear PDFs (same treatment as proton PDFs): nCTEQ'16

EPPS' $16^{0.4}$ framework $x = 10^{-1}$

- NLO PDFs with errors (Hessian method, $\Delta \chi^2 = 52$)
- Parametrization ($x_N < I$, $Q_0 = I.3$ GeV, $i = u_v, d_v, ubar, dbar, s, g$) $f_i^{p/A}(x_N,\mu_0) = R_i(x_N,\mu_0,A,Z) f_i(x_N,\mu_0),$ EPPS16 $(A_{0}^{(0)}, x) = (A_{0}^{(0)}, x)$ $R_i(x, A, Z) = \begin{cases} a_0 + (a_1 + a_2 x)(e^{-x} - e^{-x_a}) & x \le x_a \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & x_a \le x \le x_e \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & x_e \le x \le 1 \end{cases}$ 1.0 0.9 0.8 small-x shadowing 0.7 EMC minimun 0.6 0.5 A-dependence of fit parameters: $y_i(A) = y_i(A_{ref}) \left(\frac{A}{A_{ref}}\right)^{\gamma_i[y_i(A_{ref}) - 1]}$ 1.5 antishadowing • CTI4NLO free proton baseline, D (A=2) taken as free EMC 0.6
 - Data: IA DIS, DY, nu-A DIS, π^0 (RHIC, LHC: dijets, W/Z

 10^{-2}

x

 10^{-1}

 10^{-3}

EPPS'16 framework: Data

- DIS cut: Q > 1.3 GeV
- No cut on W
- Underlying assumption: structure function <u>ratios</u> less sensitive to higher twist and TMC

Fig. 2 The approximate regions in the (x, Q^2) plane at which different data in the EPPS16 fit probe the nuclear PDFs.

Experiment	Observable	Collisions	Data points	χ^2
SLAC F130	DIS	$e^{-H_0(A)}$ e^{-D}	91	19.9
CEBN NMC 95 re	DIS	$\mu^{-}\text{He}(4), \mu^{-}\text{D}$	16	12.2
Olitik 14110 55, 10.	DID	μ IIC(4), μ D	10	10.0
CERN NMC 95	DIS	μ^{-} Li(6), μ^{-} D	15	18.4
CERN NMC 95, Q^2 dep.	DIS	μ^{-} Li(6), μ^{-} D	153	161.2
				-
SLAC E139	DIS	$e^{-}Be(9), e^{-}D$	20	12.9
CERN NMC 96	DIS	$\mu^{-}Be(9), \mu^{-}C$	15	4.4
SLAC E139	DIS	$e^{-}C(12), e^{-}D$	7	6.4
CERN NMC 95	DIS	$\mu^{-}C(12), \ \mu^{-}D$	15	9.0
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}C(12), \ \mu^{-}D$	165	133.6
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \ \mu^{-}D$	16	16.7
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \ \mu^{-}Li(6)$	20	27.9
FNAL E772	DY	pC(12), pD	9	11.3
SLAC E139	DIS	$e^{-} Al(27), e^{-} D$	20	13.7
CERN NMC 96	DIS	$\mu^{-}Al(27), \ \mu^{-}C(12)$	15	5.6
	D 10		_	
SLAC E139	DIS	$e^{-}Ca(40), e^{-}D$	7	4.8
FNAL E772	DY	pCa(40), pD	9	3.33
CERN NMC 95, re.	DIS	$\mu^{-}Ca(40), \mu^{-}D$	15	27.6
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} Li(6)	20	19.5
CERN NMC 96	DIS	μ^{-} Ca(40), μ^{-} C(12)	15	6.4
CLAC E120	DIG	$= E_{\alpha}(56) = D$	26	<u> </u>
ENAL E779	DIS	$e^{-}Fe(50), e^{-}D$	20	22.0
CEDN NMC 06	DIG	$e^{-}Fe(50), e^{-}D$	9 15	3.0 10.9
ENAL ESSE	DIS	μ Fe(50), μ C(12)	10	10.8
FNAL E800	DI	pre(50), pbe(9)	28	20.1
CEBN EMC	DIS	$\mu^{-}Cu(64) \ \mu^{-}D$	19	15.4
	DIS	μ Cu(01), μ D	10	10.1
SLAC E139	DIS	e^{-} Ag(108), e^{-} D	7	8.0
				0.0
CERN NMC 96	DIS	μ^{-} Sn(117), μ^{-} C(12)	15	12.5
CERN NMC 96, Q^2 dep.	DIS	μ^{-} Sn(117), μ^{-} C(12)	144	87.6
FNAL E772	DY	pW(184), pD	9	7.2
FNAL E866	DY	pW(184), pBe(9)	28	26.1
CERN NA10★	DY	$\pi^{-}W(184), \pi^{-}D$	10	11.6
FNAL E615★	DY	$\pi^+W(184), \pi^-W(184)$	11	10.2
		_ /		
CERN NA3★	DY	π^{-} Pt(195), π^{-} H	7	4.6
	DIG		01	0.4
SLAC E139	DIS	e Au(197), e D	21	8.4
RHIC PHENIX	π^{0}	dAu(197), pp	20	6.9
CERN NMC 06	פות	$\mu = Pb(207) \mu = O(12)$	15	/ 1
CERN CMS*	$\frac{D13}{W^{\pm}}$	$\mu = 10(201), \mu = 0(12)$	10	4.1 Q Q
CERN CMS*	7	$p_{\rm P} D(200)$	01 A	0.0 5 9
CERN ATI AS*	7	pPb(200)	7	0.C 0.C
CERN CMS*	dijot	pTD(200)	(7	9.0 5.5
CERN CHORUS*	DIS	$\nu Ph(208) = \overline{\nu} Ph(208)$	1 894	0.0 A 800
	1010	×1 0(200), v1 0(200)	024	000.0

Tuesday 9 May 471.0

EPPS'16 framework: Results

 Large uncertainties for nuclear gluon distribution

- Nuclear strange PDF poorly constrained
 - Clearly more LHC pPb data required
 - from LHC5
 - from LHC8 (much higher statistics)

1

nCTEQ'I5 framework PRD93(2016)085037

• Functional form of the bound proton PDF same as for the free proton (CTEQ6M, x restricted to 0 < x < 1)

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \qquad i = u_v, d_v, g, \dots$$

$$\bar{d}(x,Q_0)/\bar{u}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}$$

• A-dependent fit parameters (reduces to free proton for A = 1)

$$c_k \to c_k(\mathbf{A}) \equiv c_{k,0} + c_{k,1} \left(1 - \mathbf{A}^{-c_{k,2}} \right), \quad k = \{1, \dots, 5\}$$

• PDFs for nucleus (A, Z)

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

(bound neutron PDF $f_i^{n/A}$ by isospin symmetry)

nCTEQ'I5 framework: Data sets

• NC DIS & DY

CERN BCDMS & EMC & NMC N = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn, W)FNAL E-665 N = (D, C, Ca, Pb, Xe)DESY Hermes N = (D, He, N, Kr)SLAC E-139 & E-049 N = (D, Ag, Al, Au, Be, C, Ca, Fe, He)FNAL E-772 & E-886 N = (D, C, Ca, Fe, W)

• Single pion production (new)

Single pion production

RHIC - PHENIX & STAR N = Au

• Neutrino (to be included later)

Deep Inelastic Scattering

CHORUS CCFR & NuTeV

N = Pb N = Fe

Fit details

PRD93(2016)085037

Fit properties:

- fit @NLO
- $Q_0 = 1.3 \text{GeV}$
- using ACOT heavy quark scheme
- kinematic cuts: Q > 2 GeV, W > 3.5 GeV $p_T > 1.7 \text{ GeV}$
- 708 (DIS & DY) + 32 (single π^0) = 740 data points after cuts
- 16+2 free parameters
 - 7 gluon
 - 7 valence
 - 2 sea
 - 2 pion data normalizations
- $\chi^2 = 587$, giving $\chi^2/dof = 0.81$

Error analysis:

• use Hessian method

$$\chi^2 = \chi_0^2 + \frac{1}{2} H_{ij} (a_i - a_i^0) (a_j - a_j^0)$$
$$H_{ij} = \frac{\partial^2 \chi^2}{\partial a_i \partial a_j}$$

- tolerance $\Delta \chi^2 = 35$ (every nuclear target within 90% C.L.)
- eigenvalues span 10 orders of magnitude \rightarrow require numerical precision
- use noise reducing derivatives

Fit details

PRD93(2016)085037

Fit details

Error analysis:

PRD93(2016)085037

Fit properties:

Fit quality

ONIT O

- $\chi^2/dof = 0.81$
- Q > 2 GeV, W > 3.5 GeV $p_T > 1.7 \text{ GeV}$
- 708 (DIS & DY) + 32 (singl = 740 data points after cuts
- 16+2 free parameters
 - 7 gluon
 - 7 valence
 - 2 sea
 - 2 pion data normalizations

• $\chi^2 = 587$, giving $\chi^2/dof = 0.81$

nCTEQ results

- First global analysis with Hessian error PDFs: [PRD93(2016]085037]
- Figure: PDFs inside lead at Q=10 GeV vs x
- nCTEQ features larger uncertainties than previous nPDFs
- better agreement between different groups

Valence distributions

Full lead nucleus distribution:

EPPS'I6 vs nCTEQ'I5 $@Q^2=10 \text{ GeV}^2$

• Generally good agreement for x>0.01 (nCTEQ has no data constraints for x<0.01) $\Delta \chi^2 = 35$ (nCTEQ'15), $\Delta \chi^2 = 52$ (EPPS'16)

- Valence bands at large-x partly differ (valence at small-x <10⁻² irrelevant); influence from CHORUS data?
- EPPS'16 bands for light sea more realistic; nCTEQ'15 has fewer fit parameters for sea
- Still quite some parametrization bias even for EPPS'16

Tuesday 9 May 17

Comparison with dijet data

LHC p-Pb data useful for constraining nPDF

Available pPb LHC data useful for nPDF fits

• W/Z production

- ATLAS [arXiv:1507.06232, ATLAS-CONF-2015-056]
- CMS [arXiv:1512.06461, arXiv:1503.05825]
- LHCb [arXiv:1406.2885]
- ALICE [arXiv:1511.06398]
- Jets
 - ATLAS [arXiv:1412.4092]
 - CMS [arXiv:1401.4433, CMS-PAS-HIN-14-001]
- Charged particle production (FFs dependence)
 - CMS [CMS-PAS-HIN-12-017]
 - ALICE [arXiv:1405.2737, arXiv:1505.04717]
- Isolated photons (PbPb)
 - ATLAS [arXiv:1506.08552]
 - CMS [arXiv:1201.3093]
 - ALICE [arXiv:1509.07324]

Available pPb LHC data useful for nPDF fits

• W/Z production

light sea, strange sea

- ATLAS [arXiv:1507.06232, ATLAS-CONF-2015-056]
- CMS [arXiv:1512.06461, arXiv:1503.05825]
- LHCb [arXiv:1406.2885]
- ALICE [arXiv:1511.06398]

• Jets

- ATLAS [arXiv:1412.4092]
- CMS [arXiv:1401.4433, CMS-PAS-HIN-14-001]
- Charged particle production (FFs dependence)
 - CMS [CMS-PAS-HIN-12-017]
 - ALICE [arXiv:1405.2737, arXiv:1505.04717]
- Isolated photons (PbPb)
 - ATLAS [arXiv:1506.08552]
 - CMS [arXiv:1201.3093]
 - ALICE [arXiv:1509.07324]

Available pPb LHC data useful for nPDF fits

• W/Z production

light sea, strange sea

- ATLAS [arXiv:1507.06232, ATLAS-CONF-2015-056]
- CMS [arXiv:1512.06461, arXiv:1503.05825]
- LHCb [arXiv:1406.2885]
- ALICE [arXiv:1511.06398]

• Jets

gluon

- ATLAS [arXiv:1412.4092]
- CMS [arXiv:1401.4433, CMS-PAS-HIN-14-001]
- Charged particle production (FFs dependence)

gluon

- CMS [CMS-PAS-HIN-12-017]
- ALICE [arXiv:1405.2737, arXiv:1505.04717]
- Isolated photons (PbPb)

gluon

- ATLAS [arXiv:1506.08552]
- CMS [arXiv:1201.3093]
- ALICE [arXiv:1509.07324]

nCTEQ study of W,Z production at LHC

y < -I:x > 5 x 10⁻² ... 0.3 (region where nPDFs are constrained by data in global analysis)

- $|y| < I: x \sim 10^{-2}$ (transition region from anti-shadowing to shadowing)
- $y > 1: x < 5 \times 10^{-3}$ (pure extrapolation!)

W-boson rapidity distributions

W-boson rapidity distributions

ALICE data:

Importance of strange PDF

- y<- | (large x): s > sbar could help!
- **|y|<I**: delayed transition from anti-shadowing to shadowing could help **as seen in NuTeV neutrino data**
- y>1: Extrapolation, rather no shadowing at very small x?

Z-boson rapidity distributions

What about heavy quarks?

- Charmonium production
 - Probes gluon at small-x
 - Theory under control?
- Inclusive D-meson production
 - Very sensitive to gluon at small-x! see PROSA study (for the gluon in the proton): EPJC75(2015)396, arXiv: 1503.04581
 - at large pT and forward rapidites: probe of IC
- Inclusive photon+charm production
 - probe of intrinsic charm

work by T. Stavreva et al.

Conclusions

- Much recent progress (EPPS'16, NCTEQ'15, W/Z analysis)
- nPDF uncertainties still substantial (more realistic larger uncertainties now with EPPS'I6)
- Need more precise LHC pA data from as many hard processes as possible! Lead-only analysis possible!
- Coloured and un-coloured final states to test shadowing vs energy loss effects
- Bright future: future fixed target experiments, EIC, LHeC, π -A data from COMPASS

• A lot of room for theoretical progress

Part II: D-meson production in the GM-VFNS

GM-VFNS

Factorization Formula:

$$d\sigma(p\bar{p} \to D^*X) = \sum_{i,j,k} \int dx_1 \ dx_2 \ dz \ f_i^p(x_1) \ f_j^{\bar{p}}(x_2) \times d\hat{\sigma}(ij \to kX) \ D_k^{D^*}(z) + \mathcal{O}(\alpha_s^{n+1}, (\frac{\Lambda}{Q})^p)$$

Q: hard scale, p = 1, 2

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), \frac{m_h}{p_T})$: hard scattering cross sections free of long-distance physics $\rightarrow m_h$ kept
- PDFs $f_i^p(x_1, \mu_F)$, $f_j^{\bar{p}}(x_2, \mu_F)$: i, j = g, q, c [q = u, d, s]
- FFs $D_k^{D^*}(z, \mu_F')$: k = g, q, c

 \Rightarrow need short distance coefficients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

Tuesday 9 May 17

List of subprocesses in the GM-VFNS

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$	
$f gg \to qX$	1 -	$ 1 gg \rightarrow QX $	
$2 gg \rightarrow gX$	2 -	2 -	
$\textbf{3} qg \rightarrow gX$	3 $Qg \rightarrow gX$	3 -	
	$\textbf{4} \textbf{Qg} \rightarrow \textbf{QX}$	4 -	
5 $q\bar{q} \rightarrow gX$	5 $Q\bar{Q} \rightarrow gX$	5 -	
$6 q\bar{q} \rightarrow qX$	$\mathbf{\widehat{O}} \mathbf{Q}\mathbf{\overline{Q}} \to \mathbf{Q}\mathbf{X}$	6 -	
		7 -	
8 $qg \rightarrow \bar{q}' X$	8 $Qg \rightarrow \bar{q}X$	8 $qg \rightarrow \bar{Q}X$	
$ 9 qg \rightarrow q' X $	9 $Qg \rightarrow qX$	9 $qg \rightarrow QX$	
$\textcircled{0} qq \rightarrow gX$	$\textcircled{0} QQ \rightarrow gX$	10 -	
$\textcircled{1} qq \rightarrow qX$	$\textcircled{1} QQ \rightarrow QX$	1 -	
	$\textcircled{Q} Q \bar{Q} \rightarrow qX$	$\textcircled{P} q\bar{q} \rightarrow QX$	
$\textcircled{B} q\bar{q}' \rightarrow gX$	igodot g $Qar q o g X$, $qar Q o g X$	13 -	
	() $Qar{q} ightarrow QX$, $qar{Q} ightarrow qX$	1 -	
(5) $qq' \rightarrow gX$	$\textcircled{5} Qq \rightarrow gX, qQ \rightarrow gX$	15 -	
$ \begin{array}{ccc} $	$\bigcirc Qq \rightarrow QX, qQ \rightarrow qX$ rocesses	1 6 -	

Tuesday 9 May 17

Limiting cases

• **GM-VFNS** \rightarrow **ZM-VFNS** for $p_T >> m$

(this is the case by construction)

• **GM-VFNS** \rightarrow **FFNS** for $p_T \sim m$

(formally this can be shown; numerically problematic in the S-ACOT scheme)

Termes in the perturbation series

FFNS/Fixed Order NLO

ZM-VFNS/Resummed NLO

GM-VFNS/FONLL (NLO+NLL)

Comparison with ALICE data

Central scale choice: $\mu_R = \mu_F = \mu_F' = m_T$

Uncertainty band: varying the scales by a factor 2 up/down

CTI0 PDFs, KKKS FFs, m_c = 1.5 GeV

Comparison with ALICE data

D_s FFs from Kniehl, Kramer'06

arXiv:1405.3083

Recent numerical results

- $a (D^*, D^0, D^+, D_s)$ in pp@7 TeV, |y| < 0.5, pT =
- Ratio of D^0/D^+ (etc) predicted to be <u>flat</u> at $p_T>2$ m
- Λ_c in pp@5 TeV
- Results for p-Pb in progress
 - dσ/dp_T sensitive to small-x nuclear gluon but large scale uncertainty
 - R_{pA} will be sensitive to small-x nuclear gluon PDF with reduced scale uncertainty; careful study required

Comparison with most recent ALICE data

arXiv:1702.00766

Comparison with most recent ALICE data

arXiv:1702.00766

Conclusion

- GM-VFNS in good agreement with ALICE data for inclusive D meson production
- Large scale uncertainties!
 To make progress need NNLO
- p-Pb heavy quark data (D,B) interesting to constrain the small-x nuclear gluon distribution
- More results to come. Stay tuned.

(W⁺,W⁻) Correlation

(Z,W) Correlation

FONLL=FO+NLL [1]

 $FONLL = FO + (RS - FOM0)G(m, p_T)$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m, p_T) = rac{p_T^2}{p_T^2 + 25m^2} \simeq egin{cases} 0.04 & : & p_T = m \ 0.25 & : & p_T = 3m \ 0.50 & : & p_T = 5m \ 0.66 & : & p_T = 5m \ 0.80 & : & p_T = 7m \ 0.80 & : & p_T = 10m \end{cases}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & p_T \lesssim 3m \\ \text{RS} & : & p_T \gtrsim 10m \end{cases}$$

[1] Cacciari, Greco, Nason, JHEP05(1998)007

FONLL

- FFs in N-space in the PFF approach
- RS-FOM0 gets very large at small pT:

$$G(m,p_T) = p_T^2/(p_T^2 + a^2 m^2)$$
 with **a=5**

needed to suppress this contribution sufficiently rapidly

- Central scale choice for FO, RS, FOM0: mT
- Error bands: $\mu_F = \mu_F'$ (only two scales varied)
- Predictions for LHC7 in arXiv:1205.6344