Overview of beauty production models

I. Schienbein LPSC Grenoble/Univ. Grenoble Alpes

France-Japan workshop on physics analysis in the ALICE experiment, Ste Maxime, 14 March 2015

- FFNS
- ZM-VFNS
- GM-VFNS
- FONLL
- NLO Monte Carlo generators
- [k_T factorization]
- [Double parton scattering]
- [Diffractive production]

Theoretical approaches: Fixed Flavor Number Scheme (FFNS)

FFNS/Fixed Order

Factorization formula for inclusive heavy quark (Q) production:

FFNS/Fixed Order

Factorization formula for inclusive heavy quark (Q) production:

Inclusive heavy-flavored hadron (H) production:

$$d\sigma^{H} = d\sigma^{Q} \otimes D^{H}_{Q}(z)$$

Convolution with a scale-independent FF

* non-perturbative

- * describes hadronization
- * not based on a fact. theorem

Leading Order (LO)

Leading order subprocesses:

1. $gg \rightarrow Q\bar{Q}$

2. $q\bar{q} \rightarrow Q\bar{Q}$ (q = u, d, s)

- The gg-channel is dominant at the LHC ($\sim 85\%$ at $\sqrt{S} = 14$ TeV).
- The total production cross section for heavy quarks is finite.
 The minimum virtuality of the t-channel propagator is m². Sets the scale in α_s.
 Perturbation theory should be reliable.
- Note: For $m^2 \rightarrow 0$ total cross section would diverge.

[See M. Mangano, hep-ph/9711337; Textbook by Ellis, Stirling and Webber]

Next-to-leading Order (NLO)

Next-to-leading order (NLO) subprocesses:

- 1. $gg \rightarrow Q\bar{Q}g$
- 2. $q\bar{q} \rightarrow Q\bar{Q}g \quad (q = u, d, s)$
- 3. $gq \rightarrow Q\bar{Q}q, g\bar{q} \rightarrow Q\bar{Q}\bar{q}$ [new at NLO]
- 4. Virtual corrections to $gg \rightarrow Q\bar{Q}$ and $q\bar{q} \rightarrow Q\bar{Q}$

NLO corrections for σ_{tot} and differential cross sections $d\sigma/dp_T dy$ known since long:

- Nason, Dawson, Ellis, NPB303(1988)607; Beenakker, Kuif, van Neerven, Smith, PRD40(1989)54 [σ_{tot}]
- NDE, NPB327(1989)49; (E)B335(1990)260; Beenakker *et al.*,NPB351(1991)507
 [*dσ*/*dp*_T*dy*]

Well tested by recalculations and zero-mass limit:

- Bojak, Stratmann, PRD67(2003)034010 [$d\sigma/dp_T dy$ (un)polarized]
- Kniehl, Kramer, Spiesberger, IS, PRD71(2005)014018 [$m \rightarrow 0$ limit of diff. x-sec]
- Czakon, Mitov, NPB824(2010)111 [σ_{tot} , fully analytic]

Next-to-leading Order (NLO)

• Fixed order NLO calculation also useful to obtain predictions of heavy quark correlations!

Mangano, Nason, Ridolfi ('92)

Next-to-next-to-leading Order (NNLO)

Channels: $q\bar{q}, gg, qg$

- Two-loop virtual most difficult
 - Analytic approach: Bonciani, Ferroglia, Gehrmann, Maitre, Studerus, von Manteuffel ('08-'10)
 - Numeric approach: Czakon, Mitov et al.
- Virtual + Real Dittmaier, Uwer, Weinzierl ('08)
- Subtraction method for IR singularities in double real Czakon ('10-'11)

 $M_2^{(0)} + M_2^{(1)} + M_2^{(2)}$

 $M_3^{(0)} + M_3^{(1)}$

Next-to-next-to-leading Order (NNLO)

- Available now for top pair production!
- Total cross section Czakon, Mitov, PRLI10(2013)252004
- Differential distributions

- Czakon, Mitov, arXiv:1411.3007
- Analytic approach not yet complete [Bonciani et al.]

Very large scale uncertainties at NLO in c,b production NNLO will be crucial to make progress!

Some NLO results for B-meson production

NLO FFNS works very well for pT up to roughly 5m

Remarks:

- Fixed order theory in reasonable agreement with Tevatron data up to $p_T \simeq 5 m_b$
- At $p_T \leq m_b$ factorization less obvious. Depends on definition of convolution variable *z*: $p_B = zp_b$ or $p_T^B = zp_T^b$ or $p_B^+ = zp_b^+$ or $\vec{p}_B = z\vec{p}_b$
- Less hadronization effects than originally believed: ϵ -parameter small corresponding to a hard fragmentation function. Harder FF \rightarrow harder p_T -spectrum
- Larger $\alpha_s(M_Z) \rightarrow$ harder p_T -spectrum
- Mass dependence imortant for $p_T \leq m$ (peak) $\rightarrow \sigma_{tot}$
- Only the 4th or 5th Mellin-moment of the FF is relevant for large p_T [M. Mangano]: $d\sigma^b/dp_T(b) \simeq A/p_T(b)^n$ with $n \simeq 4, \dots, 5$

 $\frac{d\sigma^{B}/dp_{T}(B)}{A/p_{T}(B)^{n}} \leq \int \frac{dz}{z} \frac{D(z)}{D(z)} \frac{d\sigma^{b}}{dp_{T}(b)} [p_{T}(b) = p_{T}(B)/z] = A/p_{T}(B)^{n} \times \int \frac{dz}{z} \frac{z^{n-1}}{D(z)} D(z)$

Theoretical approaches: Zero Mass Variable Flavor Number Scheme (ZM-VFNS)

ZM-VFNS/RS

Factorization formula for inclusive heavy quark (Q) production:

$$d\sigma^{H+X} \simeq \sum_{a,b,c} \int_0^1 dx_a \int_0^1 dx_b \int_0^1 dz \ f_a^A(x_a,\mu_F) f_b^B(x_b,\mu_F) d\hat{\sigma}_{ab\to c+X} D_c^H(z,\mu_F') + \mathcal{O}(m^2/p_T^2)$$

- Same factorization formula as for inclusive production of pions and kaons
- Quark mass neglected in kinematics and the short distance cross section
- Allows to compute p_T spectrum for $p_T >> m$
- Needs scale-dependent FFs of quarks and gluons into the observed heavy-flavored hadron (H)

List of subprocesses in the ZM-VFNS

Massless NLO calculation: [Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105]

- 1. $gg \rightarrow qX$
- 2. $gg \rightarrow gX$
- 3. $qg \rightarrow gX$
- 4. $qg \rightarrow qX$
- 5. $q\bar{q} \rightarrow gX$
- 6. $q\bar{q} \rightarrow qX$
- 7. $qg \rightarrow \bar{q}X$
- 8. $qg \rightarrow \bar{q}' X$
- 9. $qg \rightarrow q'X$
- 10. $qq \rightarrow gX$
- 11. $qq \rightarrow qX$
- 12. $q\bar{q} \rightarrow q'X$
- 13. $q\bar{q}' \rightarrow gX$
- 14. $q\bar{q}' \rightarrow qX$
- 15. $qq' \rightarrow gX$
- 16. $qq' \rightarrow qX$

 \oplus charge conjugated processes

Fragmentation functions

Determine FFs directly in x-space; evolved with DGLAP

PFF approach

Cacciari, Nason, PRL89(2002) I 22003

Determine FF from N=2 moment in PFF approach; not from entire x-spectrum

FIG. 1. Moments of the measured B meson fragmentation function, compared with the perturbative NLL calculation supplemented with different D(z) non-perturbative fragmentation forms. The solid line is obtained using a one-parameter form fitted to the second moment.

FFs into B mesons [1] from LEP/SLC data [2]

Petersen

$$D(x, \mu_0^2) = N \frac{x(1-x)^2}{[(1-x)^2 + \epsilon x]^2}$$

Kartvelishvili-Likhoded

 $D(x, \mu_0^2) = Nx^{lpha} (1-x)^{eta}$

[1] Kniehl,Kramer,IS,Spiesberger,PRD77(2008)014011
[2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300;
PRD65(2002)092006

Theoretical approaches: General Mass Variable Flavor Number Scheme (GM-VFNS)

GM-VFNS

Factorization Formula:

$$d\sigma(p\bar{p} \to D^{\star}X) = \sum_{i,j,k} \int dx_1 \ dx_2 \ dz \ f_i^{p}(x_1) \ f_j^{\bar{p}}(x_2) \times d\hat{\sigma}(ij \to kX) \ D_k^{D^{\star}}(z) + \mathcal{O}(\alpha_s^{n+1}, (\frac{\Lambda}{Q})^{p})$$

Q: hard scale, p = 1, 2

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), \frac{m_h}{p_T})$: hard scattering cross sections free of long-distance physics $\rightarrow m_h$ kept
- PDFs $f_i^p(x_1, \mu_F), f_j^{\bar{p}}(x_2, \mu_F)$: i, j = g, q, c [q = u, d, s]
- FFs $D_k^{D^*}(z, \mu_F')$: k = g, q, c

 \Rightarrow need short distance coefficients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

List of subprocesses in the GM-VFNS

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$f g g \to q X$	1 -	1 $gg \rightarrow QX$
$\textbf{2} gg \to gX$	2 -	2 -
$\textbf{3} qg \rightarrow gX$	3 $Qg \rightarrow gX$	3 -
$\textbf{4} \textbf{qg} \rightarrow \textbf{qX}$	$\textbf{4} \textbf{Q} g \rightarrow \textbf{Q} X$	4 -
5 $q\bar{q} \rightarrow gX$	5 $Q\bar{Q} \rightarrow gX$	5 -
6 $q\bar{q} \rightarrow qX$	6 $Q\bar{Q} \rightarrow QX$	6 -
	$ 7 Qg \rightarrow \bar{Q}X $	7 -
8 $qg \rightarrow \bar{q}' X$	8 $Qg \rightarrow \bar{q}X$	8 $qg \rightarrow \bar{Q}X$
$ 9 \ qg \rightarrow q'X $	9 $Qg \rightarrow qX$	9 $qg \rightarrow QX$
$\textcircled{0} qq \rightarrow gX$	$\textcircled{0} QQ \rightarrow gX$	10 -
$\textcircled{1} qq \rightarrow qX$	$\textcircled{1} QQ \rightarrow QX$	1 -
	$\textcircled{Q} Q \bar{Q} \rightarrow q X$	$\textcircled{P} q\bar{q} \rightarrow QX$
$\textcircled{B} q\bar{q}' \rightarrow gX$	() $Q\bar{q} ightarrow gX, q\bar{Q} ightarrow gX$	13 -
	$\textcircled{P} \ Q\bar{q} \rightarrow QX, q\bar{Q} \rightarrow qX$	(4) -
(5) $qq' \rightarrow gX$	(5) $Qq \rightarrow gX, qQ \rightarrow gX$	15 -
$ \begin{array}{c} \mathbf{\textcircled{0}} \mathbf{\textcircled{0}} \mathbf{\emph{0}} \emph{0$		16 -

Example diagrams

FIG. 2: Examples of Feynman diagrams leading to contributions of (a) class (i), (b) class (ii), and(c) class (iii).

Limiting cases

• **GM-VFNS** \rightarrow **ZM-VFNS** for $p_T >> m$

(this is the case by construction)

• **GM-VFNS** \rightarrow **FFNS** for $p_T \sim m$

(formally this can be shown; numerically problematic in the S-ACOT scheme)

The GM-VFNS at low pT

Problem: current implementation in S-ACOT scheme b+g channel with m=0 diverges at small p_T !

The GM-VFNS at low pT

Problem can be solved by suitable scale choice

arXiv:1502.01001

Figure 5: $d\sigma/dp_T$ for $p\bar{p} \rightarrow B^+ + X$ at $\sqrt{S} = 1.96$ TeV, |y| < 1.0, in the GM-VFNS (data from CDF [6]). Left panel: $\xi_R = 1$, $\xi_I = 0.5$ and $\xi_F = 0.5$ (full curve), $\xi_F = 0.6$ (upper dashed curve), $\xi_F = 0.4$ (lower dashed curve). Right panel: $\xi_i = (1, 0.5, 0.5)$ for the central curve; upper curve: $\xi_R = 0.5$, lower curve: $\xi_R = 2$.

The GM-VFNS at low pT

Comparison with LHCb data

arXiv:1502.01001

Figure 6: $d\sigma/dp_T$ for $pp \to B^+ + B^- + X$ at $\sqrt{S} = 7$ TeV with 2.0 < y < 4.5, compared with results from the FFNS (left) and the GM-VFNS (right). $\xi_{R,I,F} = (1, 0.5, 0.5)$. The error band is obtained from variations by factors 2 up and down (maximum: $\xi_R = 0.5$, minimum: $\xi_R = 2$). The factorization scale parameters are frozen below $\mu_{I,F} = m_b$. Data points are taken from [15].

GM-VFNS: Comparison with ATLAS data

arXiv:1502.01001

Figure 9: $pp \rightarrow B^+ + X$ at $\sqrt{S} = 7$ TeV in the GM-VFNS compared with data from ATLAS [13]. $\mu_{I,F}$ are frozen below m_b and $\xi_i = (1, 1, 1)$.

GM-VFNS

- FFs in x-space in the BKK approach
- Heavy-quark initiated contributions $(Q+g \rightarrow Q+X, ...)$ get very large at small p_T in the massless case:

(i) switch off heavy-quark PDF sufficiently quickly OR(ii) calculate these subprocesses with mass

- Error bands: μ_R , μ_F , μ_F' varied independently
- Predictions for D and B prod. at Tevatron, RHIC, LHC: arXiv:1502.01001, 1202.0439, 1109.2472, 0901.4130, 0705.4392, hep-ph/0508129, ph/0502194, ph/0410289
- Predictions including D-decay and B-decay: arXiv: 1310.2924, 1212.4356

Theoretical approaches: Fixed Order plus Next-to-Leading Logarithms (FONLL)

FONLL=FO+NLL [1]

 $FONLL = FO + (RS - FOM0)G(m, p_T)$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m, p_T) = \frac{p_T^2}{p_T^2 + 25m^2} \simeq \begin{cases} 0.04 & : \quad p_T = m \\ 0.25 & : \quad p_T = 3m \\ 0.50 & : \quad p_T = 5m \\ 0.66 & : \quad p_T = 7m \\ 0.80 & : \quad p_T = 10m \end{cases}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & p_T \lesssim 3m \\ \text{RS} & : & p_T \gtrsim 10m \end{cases}$$

[1] Cacciari, Greco, Nason, JHEP05(1998)007

FONLL

- FFs in N-space in the PFF approach
- RS-FOM0 gets very large at small pT:

$$G(m,p_T) = p_T^2/(p_T^2 + a^2 m^2)$$
 with **a=5**

needed to suppress this contribution sufficiently rapidly

- Central scale choice for FO, RS, FOM0: mT
- Error bands: $\mu_F = \mu_F'$ (only two scales varied)
- Predictions for LHC7 in arXiv:1205.6344

Termes in the perturbation series

Termes in the perturbation series

FFNS/Fixed Order NLO

ZM-VFNS/Resummed NLO

GM-VFNS/FONLL (NLO+NLL)

NLO Monte Carlo generators: MC@NLO and POWHEG

NLO MC generators

- MC@NLO, POWHEG: hep-ph/0305252, arXiv:0707.3088 consistent matching of NLO matrix elements with parton showers (PS)
- Flexible simulation of hadronic final state (PS, hadronization, detector effects)

Note: FONLL and GM-VFNS only one-particle inclusive observables

- High accuracy: NLO+LL* (FONLL and GM-VFNS have NLO+NLL accuracy)
- Simulation of hadronic final state involves tuning; NOT a pure theory prediction!

^B Comparison with ALICE data

arXiv:1405.3083

arXiv:1405.3083

arXiv:1405.3083

$$pp \rightarrow b+X (\rightarrow c+X) \rightarrow e+X at s = 7 TeV$$

10⁻² ALICE POWHEG GM-VFNS FONLL Sunday_March 15, 15

Theoretical approaches: k_T factorization

k_T factorization

k_T factorization: Gribov et al. '83; Collins et al. '91; Catani et al. '91

Central production, small x~0.01 ... 0.001

Factorization:

Factorization formula:

$$d\sigma = \int \frac{d^2 \mathbf{q}_{T1}}{\pi} \int \frac{dx_1}{x_1} \Phi(x_1, t_1, \mu_F) \times \int \frac{d^2 \mathbf{q}_{T2}}{\pi} \int \frac{dx_2}{x_2} \Phi(x_2, t_2, \mu_F) d\hat{\sigma}_{PRA}$$

Where Φ - Unintegrated PDFs.

Partonic cross-section:

$$d\hat{\sigma}_{PRA} = \frac{(2\pi)^4}{2x_1 x_2 S} \overline{|\mathcal{M}|^2}_{PRA} \delta^{(4)} (P_{[i]} - P_{[f]}) \times \prod_{j=[f]} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2p_j^0},$$

Normalization of the unPDF:

$$\int^{\mu^2} dt \Phi(x,t,\mu^2) = x f(x,\mu^2),$$

where $f(x, \mu^2)$ - collinear PDF, implies, that the *collinear limit* holds for the amplitude:

$$\int \frac{d\phi_1 d\phi_2}{(2\pi)^2} \lim_{t_{1,2} \to 0} \overline{|\mathcal{M}|^2}_{PRA} = \overline{|\mathcal{M}|^2}_{CPM}$$

Application to D and B meson production in Parton Reggeization Approach (RPA): Karpishkov, Nefedov, Saleev, Shipilova, ...

k_T factorization

k_T factorization: Gribov et al. '83; Collins et al. '91; Catani et al. '91

Central production, small x~0.01 ... 0.001

Factorization:

Factorization formula:

$$d\sigma = \int \frac{d^2 \mathbf{q}_{T1}}{\pi} \int \frac{dx_1}{x_1} \Phi(x_1, t_1, \mu_F) \times \int \frac{d^2 \mathbf{q}_{T2}}{\pi} \int \frac{dx_2}{x_2} \Phi(x_2, t_2, \mu_F) d\hat{\sigma}_{PRA}$$

Where Φ - Unintegrated PDFs.

Partonic cross-section:

$$d\hat{\sigma}_{PRA} = \frac{(2\pi)^4}{2x_1 x_2 S} \overline{|\mathcal{M}|^2}_{PRA} \delta^{(4)} (P_{[i]} - P_{[f]}) \times \prod_{j=[f]} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2p_j^0},$$

Normalization of the unPDF:

$$\int^{\mu^2} dt \Phi(x,t,\mu^2) = x f(x,\mu^2),$$

where $f(x, \mu^2)$ - collinear PDF, implies, that the *collinear limit* holds for the amplitude:

$$\int \frac{d\phi_1 d\phi_2}{(2\pi)^2} \lim_{t_{1,2} \to 0} \overline{|\mathcal{M}|^2}_{PRA} = \overline{|\mathcal{M}|^2}_{CPM}$$

Application to D and B meson production in Parton Reggeization Approach (RPA): Karpishkov, Nefedov, Saleev, Shipilova, ...

k_T factorization

kT factorization: Gribov et al. '83; Collins et al. '91; Catani et al. '91

Central production, small x~0.01 ... 0.001

Factorization:

Factorization formula:

$$d\sigma = \int \frac{d^2 \mathbf{q}_{T1}}{\pi} \int \frac{dx_1}{x_1} \Phi(x_1, t_1, \mu_F) \times \int \frac{d^2 \mathbf{q}_{T2}}{\pi} \int \frac{dx_2}{x_2} \Phi(x_2, t_2, \mu_F) d\hat{\sigma}_{PRA}$$

Where Φ - Unintegrated PDFs.

Partonic cross-section:

$$d\hat{\sigma}_{PRA} = \frac{(2\pi)^4}{2x_1 x_2 S} \overline{|\mathcal{M}|^2}_{PRA} \delta^{(4)} (P_{[i]} - P_{[f]}) \times \prod_{j=[f]} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2p_j^0},$$

Normalization of the unPDF:

$$\int^{\mu^2} dt \Phi(x,t,\mu^2) = x f(x,\mu^2),$$

where $f(x, \mu^2)$ - collinear PDF, implies, that the *collinear limit* holds for the amplitude:

$$\int \frac{d\phi_1 d\phi_2}{(2\pi)^2} \lim_{t_{1,2} \to 0} \overline{|\mathcal{M}|^2}_{PRA} = \overline{|\mathcal{M}|^2}_{CPM}$$

Application to D and B meson production in Parton Reggeization Approach (RPA): Karpishkov, Nefedov, Saleev, Shipilova, ...

Theoretical approaches: Double parton scattering

Production of two $c\bar{c}$ pairs in double-parton scattering

Consider two hard (parton) scatterings

Not consider so far in the literature Luszczak, Maciula, Szczurek, arXiv:1111.3255

Factorization of double parton scattering?

arXiv:1410.6664

- Correlations between the two momentum fractions, the transverse separation of partons and/or flavor
- Spin correlations between the partons
- Color correlations between the partons
- Interferences in fermion number
- Interferences in flavor

General framework	D meson production	DPS production of cccc	SPS production of <i>cccc</i>
Formalism			

$$d\sigma^{DPS} = \frac{1}{2\sigma_{eff}} F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2) F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2) d\sigma_{gg \to c\bar{c}}(x_1, x_1', \mu_1^2) d\sigma_{gg \to c\bar{c}}(x_2, x_2', \mu_2^2) dx_1 dx_2 dx_1' dx_2'.$$

▲□▶▲□▶▲□▶▲□▶

Ē.

$$F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2), F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2)$$

are called double parton distributions

dPDF are subjected to special evolution equations single scale evolution: Snigireev double scale evolution: Ceccopieri, Gaunt-Stirling

Formalism

Consider reaction: $pp \rightarrow c\bar{c}c\bar{c}X$ Modeling double-parton scattering Factorized form:

If two hard scatterings are completely independent! (very rough!)

$$\sigma^{DPS}(pp \rightarrow c\bar{c}c\bar{c}X) = rac{1}{2\sigma_{eff}}\sigma^{SPS}(pp \rightarrow c\bar{c}X_1) \cdot \sigma^{SPS}(pp \rightarrow c\bar{c}X_2).$$

The simple formula can be generalized to include differential distributions

Theoretical approaches: diffractive production

Diffractive production

Szczurek et al., arXiv:1412.3132

FIG. 1: The mechanisms of single-diffractive production of heavy quarks.

FIG. 2: The mechanisms of central-diffractive production of heavy quarks.

IV. SUMMARY

Summary

- Discussed different theoretical approaches to open heavy flavor hadroproduction
- GM-VFNS, FONLL, POWHEG in good agreement with data within large uncertainties!
- pA data for B meson production useful for constraining nuclear gluon PDF
- GM-VFNS at low p_T improved; more work