



### Nuclear PDFs

### Ingo Schienbein LPSC Grenoble/Université Joseph Fourier

### QUARKONIUM 2010, École Polytechnique, Palaiseau

- INTRODUCTION
- **2** REVIEW OF GLOBAL ANALYSES OF NUCLEAR PDFS
- **3** NUCLEAR EFFECTS IN  $\nu A$  DIS
- **4** The nuclear gluon distribution

### Introduction

- Information on hadronic structure
- Initial state for hard processes in collisions involving hadrons
  - Deep inelastic scattering (DIS): *ℓA*, *νA*
  - Drell-Yan (DY):  $A + B \rightarrow \ell^+ + \ell^-$
  - Jets, Photons, Hadrons at large *p<sub>T</sub>*; Heavy Quarks; ... in *pA*, *AA*, (γ*A*, *eA*) collisions
- Provide nuclear corrections for global analyses of **proton PDFs** in a flexible way

- Factorization theorems
  - provide (field theoretical) definitions of universal PDFs
  - make the formalism predictive
  - make a statement about the error
- PDFs and predicitions for observables+uncertainities refer to this standard pQCD framework
- There might be breaking of QCD factorization, deviations from DGLAP evolution in particular in a nuclear environment

# Still need solid understanding of standard framework to establish deviations!

In the nuclear case, consider factorization as a working assumption to be tested phenomenologically

### Review of global analyses of nuclear PDFs

### NPDFs from $\ell A$ DIS and DY data

offi cial release soon

Table from Hirai et al.,arXiv:0909.2329

|       | R           | Nucleus    | Experiment  | EPS09      | HKN07 | DS04 |
|-------|-------------|------------|-------------|------------|-------|------|
|       |             | D/p        | NMC         |            | 0     |      |
|       |             | 411        | SLAC E139   | 0          | 0     | 0    |
|       |             | 4He        | NMC95       | 0 (5)      | 0     | 0    |
|       |             | Li         | NMC95       | 0          | 0     |      |
|       |             | Be         | SLAC E139   | 0          | 0     | 0    |
|       |             |            | EMC-88, 90  |            | 0     |      |
|       |             | С          | NMC 95      | 0          | Ō     | 0    |
|       |             |            | SLAC E139   | 0          | 0     | 0    |
|       |             |            | FNAL-E665   | -          | 0     |      |
|       |             |            | BCDMS 85    |            | 0     |      |
|       |             | N          | HERMES 03   |            | 0     |      |
|       |             |            | SLAC F49    |            | 0     |      |
|       |             | AI         | SLAC F139   | 0          | 0     | 0    |
|       |             | <u> </u>   | EMC 90      | -          | 0     | -    |
|       | A/D         |            | NMC 95      | 0          | õ     | 0    |
|       | 100         | Ca         | SLAC E139   | ő          | õ     | ő    |
|       |             |            | ENAL-E665   | - <b>-</b> | õ     |      |
|       |             |            | SLAC E87    |            | õ     |      |
| DIS   |             |            | SLAC E139   | 0 (15)     | õ     | 0    |
| 010   |             | Fe         | SLAC E140   | 0 (10)     | õ     |      |
|       |             |            | BCDMS 87    |            | õ     |      |
|       |             | Cu         | EMC 93      | 0          | õ     |      |
|       |             | - Ou       | LEDMES 02   |            | 0     |      |
|       |             | A          | SLAC E120   | 0          | ŏ     | 0    |
|       |             | Ag<br>Co   | EMC 00      |            | 0     | 0    |
|       |             | Au         | EWIC 00     | 0          | 0     | 0    |
|       |             |            | SLAC E139   | 0          | 0     | 0    |
|       |             | DL         | ENAL-ERE    |            | 0     |      |
|       |             | Po         | NMC 96      | 0          | 0     | 0    |
|       | A/C<br>A/Li | AL         | NINC 90     |            | 0     |      |
|       |             | A/C Ca     | NINC 90     |            | 0     | 0    |
|       |             |            | NINO 00     | 0          | 0     | 0    |
|       |             |            | NMC 06      | 0          | 0     | - 0  |
|       |             | re<br>Ca   | NINC 90     | 0 (10)     | 0     | - 0  |
|       |             | - Sh       | NING 90     |            | 0     | - 0  |
|       |             | PD         | NING 90     |            | 0     | 0    |
|       |             | 0          | NMC 95      |            | 0     |      |
| _     |             | Ca         | NMC 95      |            | 0     | 0    |
|       | A/D         |            | 4           | 0 (15)     | 0     | 0    |
| DY    |             | ) Ca<br>Fe | FNAL-E772   | 0 (15)     | 0     | 0    |
|       |             |            |             | 0 (15)     | 0     | 0    |
|       |             | <u>w</u>   |             | 0 (10)     | 0     | 0    |
|       | A/Be        | Fe         | FNAL E866   |            | 0     |      |
|       |             | W          |             | 0          | 0     |      |
| π pro | dA/pp       | Au         | RHIC-PHENIX | 0 (20)     |       |      |

### WHAT ARE THE DIFFERENCES?

#### Main differences:

- Choice of data sets (see previous table)
- Parametrization of input distributions

#### Assumptions on PDFs

- Data less constraining than in proton case → need to make more assumptions (otherwise flat directions in χ<sup>2</sup> function and fits don't converge)
- Assumptions replace uncertainty!  $\rightarrow$  error bands (of a single fi t) underestimate true uncertainties

Consequences?

- Use different sets of NPDFs to scan over assumptions
- Include more data sets  $\rightarrow$  allows to relax assumptions
- New ideas to handle flat directions?
- Neural Network NPDFs?

Further differences:

#### Heavy flavor schemes

- DS'04: 3-Fixed Flavor Number Scheme (3-FFNS) → no charm PDF
- HKN'07, EPS'09, nCTEQ: Variable Flavor Number Schemes (VFNS)

 $\rightarrow$  Beware of comparing 'apples with oranges'!

#### Parameters and other

- Input scale  $Q_0$ ,  $\alpha_s(M_Z)$ ,  $m_c$ ,  $m_b$
- Evolution in n-space (DS) and x-space (HKN, EPS, nCTEQ)
- Target Mass Corrections (TMC) see, e.g., [IS et al., JPG35(2008)053101; Qiu, Accardi, JHEP0807(2008)090]

### **DS'04**

Connected to GRV'98 proton PDFs  $f_i^p(x, Q)$ :

- $Q_0^2 = 0.4 \text{ GeV}^2$  (NLO),  $Q_0^2 = 0.26 \text{ GeV}^2$  (LO),  $m_c$ ,  $m_b$ ,  $\alpha_s$  as in GRV'98
- 3-Fixed flavor scheme (no charm PDF)
- strange PDF dynamically generated, i.e.,  $s^{p}(x, Q_{0}^{2}) = 0$

Parametrization of input distributions:

- PDFs for bound protons inside nucleus A:  $f_i^{p/A}(x, Q)$
- Convolution relation:  $f_i^{p/A}(x_N, Q_0^2) = \int_{x_N}^A \frac{dy}{y} W_i(y, A, Z) f_i^p(x_N/y, Q_0^2)$
- Weight functions  $W_v$  (valence),  $W_s$  (sea),  $W_g$  (gluon). For example:

$$\begin{aligned} W_{\nu}(y,A,Z) &= & A[a_{\nu}\delta(1-\epsilon_{\nu}-y)+(1-a_{\nu})\delta(1-\epsilon_{\nu'}-y)] \\ &+ n_{\nu}(y/A)^{\alpha_{\nu}}(1-y/A)^{\beta_{\nu}}+n_{s}(y/A)^{\alpha_{s}}(1-y/A)^{\beta_{s}} \end{aligned}$$

- Note:
  - Convolution simple product in Mellin moment space: very elegant
  - Ansatz valid for  $0 < x_N < A!$
  - The x-space approaches (HKN,EPS, nCTEQ) are restricted to 0 < x<sub>N</sub> < 1</li>
  - However, the DS'04 PDF grids apparently are restricted to  $0 < x_N < 1$  (and the momentum sum rule integrates to unity in this range)

### **DS'04**

#### Excellent fit to a restricted data set (420 points): $\chi^2/dof = 0.75$



- LO, NLO, error PDFs
- Related to MRST'98 proton PDF:  $Q_0^2 = 1 \text{ GeV}^2$
- Uses multiplicative ansatz:  $f_i^{p/A}(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i^p(x_N, Q_0^2)$
- Weight factor:  $R_i(x, A, Z) = 1 + (1 \frac{1}{A^{\alpha}}) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1-x)^{\beta_i}}$   $(i = u_v, d_v, \bar{q}, g)$
- neglects region  $x_N > 1$
- includes all current DIS & DY data sets, in particular deuterium data
- uses Hessian method to produce error PDFs

### **HKN'07**

• Reasonable fits:  $\chi^2/dof = 1.2$ 



- LO, NLO, error PDFs
- Related to CTEQ6.1M proton PDF: Q<sub>0</sub> = 1.3 GeV
- Uses multiplicative ansatz:  $f_i^{p/A}(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i^p(x_N, Q_0^2)$
- Weight factor is a piecewise defined function:

$$R_{i}(x,A,Z) = \begin{cases} a_{0} + (a_{1} + a_{2}x)(e^{-x} - e^{-x_{a}}) & x \leq x_{a} \\ b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} & x_{a} \leq x \leq x_{e} \\ c_{0} + (c_{1} - c_{2}x)(1 - x)^{-\beta} & x_{e} \leq x \leq 1 \end{cases}$$

where the parameters  $a_i, b_i, c_i, \beta, x_a, x_e$  are A-dependent

- neglects region  $x_N > 1$
- includes  $\pi^0$  RHIC data with a weight 20 to constrain gluon
- uses Hessian method to produce error PDFs

### **EPS'09**

- Excellent fit:  $\chi^2/dof = 0.8$
- Show here, as an example, comparison with DY data



I. Schienbein (LPSC Grenoble)

#### Work in collaboration with:

- People from LPSC Grenoble: K. Kovarik, J. Y. Yu, T. Stavreva, IS
- CTEQ-members: F. Olness (SMU), J. Owens (FSU), J. Morfin (FNAL), C. Keppel (JLAB)

- The results shown in the following are from IS,Yu,Kovarik,Keppel,Morfin,Olness,Owens,PRD80(2009)094004
- A first set of nCTEQ nuclear PDFs will be released in the near future

### NUCLEAR CTEQ

Framework as in CTEQ6M proton fit:

• Same functional form for bound proton PDFs inside a nucleus A as for free proton PDFs (restrict x to 0 < x < 1):

 $x f_k^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \quad k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s}, \\ \bar{d}(x, Q_0)/\bar{u}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}$ 

(bound neutron PDFs  $f_k^{n/A}$  by isospin symmetry)

• A-dependent fit parameters: (reduces to free proton parameters  $c_{k,0}$  for A = 1)

$$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1}(1 - A^{-c_{k,2}}), \quad k = 1, \dots, 5$$

- PDFs for a nucleus (A, Z):  $f_i^{(A,Z)}(x, Q) = \frac{Z}{A} f_i^{p/A}(x, Q) + \frac{A-Z}{A} f_i^{n/A}(x, Q)$
- Input parameters:  $Q_0 = m_c = 1.3 \text{ GeV}, m_b = 4.5 \text{ GeV}, \alpha_s^{NLO,\overline{\text{MS}}}(M_Z) = 0.118$
- Heavy quark treatment: ACOT scheme
- Standard DIS-cuts: Q > 2 GeV, W > 3.5 GeV

### **EXPERIMENTAL INPUT**

Use same data as HKN'07 (up to cuts)

- DIS F<sub>2</sub><sup>A</sup>/F<sub>2</sub><sup>D</sup> data sets: 862 points (before cuts)
- DIS F<sub>2</sub><sup>A</sup>/F<sub>2</sub><sup>A'</sup> data sets: 297 points (before cuts)
- DY data sets σ<sup>pA</sup><sub>DY</sub>/σ<sup>pA'</sup><sub>DY</sub>: 92 points (before cuts)

Table from Hirai et al.,arXiv:0909.2329

|       | R     | Nucleus      | Experiment  | EPS09  | HKN07 | DS04 |
|-------|-------|--------------|-------------|--------|-------|------|
|       |       | D/p          | NMC         |        | 0     |      |
|       |       | 4He          | SLAC E139   | 0      | 0     | 0    |
|       |       |              | NMC95       | O (5)  | 0     | 0    |
|       |       | Li           | NMC95       | 0      | 0     |      |
|       |       | Be           | SLAC E139   | 0      | 0     | 0    |
|       |       |              | EMC-88, 90  |        | 0     |      |
|       |       | •            | NMC 95      | 0      | 0     | 0    |
|       |       | C            | SLAC E139   | 0      | 0     | 0    |
|       |       |              | FNAL-E665   |        | 0     |      |
|       |       | N            | BCDMS 85    |        | 0     |      |
|       |       | N            | HERMES 03   |        | 0     |      |
|       |       | 41           | SLAC E49    |        | 0     |      |
|       |       | AI           | SLAC E139   | 0      | 0     | 0    |
|       |       |              | EMC 90      |        | 0     |      |
|       | A/D   | 0-           | NMC 95      | 0      | 0     | 0    |
|       |       | Ca           | SLAC E139   | 0      | 0     | 0    |
|       |       |              | FNAL-E665   |        | 0     |      |
|       |       |              | SLAC E87    |        | 0     |      |
| DIS   |       | <b>F</b>     | SLAC E139   | O (15) | 0     | 0    |
|       |       | Fe           | SLAC E140   |        | 0     |      |
|       |       |              | BCDMS 87    |        | 0     |      |
|       |       | Cu           | EMC 93      | 0      | 0     |      |
|       |       | Kr           | HERMES 03   |        | 0     |      |
|       |       | Ag           | SLAC E139   | 0      | 0     | 0    |
|       |       | Sn           | EMC 88      |        | 0     |      |
|       |       | A            | SLAC E139   | 0      | 0     | 0    |
|       |       | Au           | SLAC E140   |        | 0     |      |
|       |       | Pb           | FNAL-E665   |        | 0     |      |
|       |       | Be           | NMC 96      | 0      | 0     | 0    |
|       |       | AI           | NMC 96      | 0      | 0     | 0    |
|       | A/C   | 0.           | NMC 95      |        | 0     |      |
|       |       |              | NMC 96      | 0      | 0     | 0    |
|       |       | Fe           | NMC 96      | 0      | 0     | 0    |
|       |       | Sn           | NMC 96      | O (10) | 0     | 0    |
|       |       | Pb           | NMC 96      | 0      | 0     | 0    |
|       | A/Li  | С            | NMC 95      | 0      | 0     |      |
|       |       | Ca           | NMC 95      | 0      | 0     |      |
|       | A/D   | C            |             | 0      | 0     | 0    |
|       |       | A/D Ca<br>Fe | ENAL-E772   | 0 (15) | 0     | 0    |
| DV    |       |              |             | O (15) | 0     | 0    |
|       |       | W            |             | O (10) | 0     | 0    |
|       | A/Bo  | Fe           | ENAL ERE    | 0      | 0     |      |
|       | ∧ De  | W            | INAL LOUD   | 0      | 0     |      |
| π pro | dA/pp | Au           | RHIC-PHENIX | O (20) |       |      |

- 708 (1233) data points after (before) cuts
- 32 free paramters; 675 d.o.f.
- Overall  $\chi^2/d.o.f. = 0.95$
- individually:
  - for  $F_2^A/F_2^D$ :  $\chi^2/\text{pt} = 0.92$
  - for  $F_2^A/F_2^{A'}$ :  $\chi^2/\text{pt} = 0.69$
  - for DY:  $\chi^2/\text{pt} = 1.08$
- Our simple approach works!

DIS DATA VS X



DIS DATA VS X



### **RESULTS: DECUT3 FIT** HERMES DATA VS Q<sup>2</sup>



### **RESULTS: DECUT3 FIT** NMC data for D and Sn/C vs $Q^2$





DRELL-YAN DATA



### **RESULTS: DECUT3 FIT** DRELL-YAN DATA



- Factorization works well for  $\ell A$  DIS and DY data
- Nuclear CTEQ PDFs will be released in the near future

### Nuclear effects in $\nu A DIS$

I.S., Yu, Keppel, Morfi n, Olness, Owens, PRD77(2008)054013 I.S., Yu, Kovarik, Keppel, Morfi n, Olness, Owens, PRD80(2009)094004 Kovarik, Yu, Keppel, Morfi n, Olness, Owens, I.S., Stavreva, work nearing completion

### WHY NEUTRINO DIS?

#### • Flavor separation:

Neutrino sfs depend on different combinations of PDFs

#### • Dimuon production:

- · Main source of information on the strange sea
- Large uncertainty on s(x, Q<sup>2</sup>) has significant influence on the W and Z benchmark processes at the LHC
- Data interesting for proton PDF and NPDF
- For proton PDF: need nuclear corrections
- **EW precision measurements:** Paschos-Wolfenstein analysis: extraction of  $\sin^2 \theta_W$

#### LBL precision neutrino experiments: Need good understanding of neutrino–nucleus cross sections

### NUCLEAR CORRECTION FACTORS

Be O an observable calculable in the parton model

Define nuclear correction factor:

 $R[\mathcal{O}] := \frac{\mathcal{O}[\mathsf{NPDF}]}{\mathcal{O}[\mathsf{PDF}]} \quad \text{or for data} \quad R[\mathcal{O}] := \frac{\mathcal{O}^{\mathsf{exp}}}{\mathcal{O}[\mathsf{PDF}]}$ 

- Factor needed to correct data to the free nucleon level
- Note: different observables  $\Rightarrow$  different correction factors
- In particular, correction factor for  $F_3^{\nu A}$  could be quite different from  $F_2^{\nu A}$ !
- Also R[F<sub>2</sub><sup>ℓA</sup>], R[F<sub>2</sub><sup>νA</sup>], R[F<sub>2</sub><sup>νA</sup>], R[d<sup>2</sup>σ<sup>νA</sup>/dxdQ<sup>2</sup>], ... are all (more or less) different even for universal nPDFs

Note: the term "nuclear effects" is less precise and (mis-)used in the literature for a lot of different things



- Are nuclear corrections in charged-lepton and neutrino DIS different?
- Obviously the PDFs from fits to  $\ell A$  + DY data do not describe the NuTeV  $\nu$  Fe DIS data.
- A global analysis of *l*A+DY+*v*A data confirms this result! (see backup slides for a detailed account)

Note:  $x_{\min} = 0.02$  in these fi gures.

- We observe different nuclear effects in ℓA+DY data as opposed to NuTeV νFe data
- These are precision effects relevant for precision observables
- Paukkunen and Salgado come to different conclusions in a recent paper
- The main reason for the different results is that Paukkunen and Salgado use uncorrelated systematic errors, whereas we take into account the full error correlation matrix
- For more details see backup slides and a publication in preparation

### The nuclear gluon distribution

#### $g^{A}(x, Q^{2})$ weakly constrained by $Q^{2}$ -dependence of NMC data





•  $x \sim 0.01 \dots 0.4$ ,  $Q^2 \sim 10 \dots 100 \text{ GeV}^2$ 

### THE NUCLEAR GLUON DISTRIBUTION

A series of equally good fits  $(\chi^2/pt \simeq 0.9)$  to  $\ell A$ +DY data with different gluons



Shown are the gluon distributions at the scale  $Q_0 = 1.3 \text{ GeV}$  for different A vs x

### **GLUON UNCERTAINTY IN EPS'09**

- EPS'09 also uses RHIC data for inclusive pion production to constrain the gluon
- This involves fragmentation functions  $D_i^{\pi}(z, \mu^2)$  into pions
- Large uncertainties! Still some of the gluons of the decut3g series lie outside the error band of  $R_G^{Pb}$



### NEED HARD PROBES IN *pA* TO CONSTRAIN NPDFS

Hard probes in pp,  $p\bar{p}$  to constrain proton PDFs:

- Tevatron inclusive jet data  $\rightarrow$  gluon
- Lepton pair production  $\rightarrow$  sea quarks
- Vector boson production  $\rightarrow$  sea quarks (less useful due to high scale)

Other interesting processes:

- Prompt photon production [see Arleo, Gousset]  $\rightarrow$  gluon
- Heavy quark production  $\rightarrow$  gluon?
- $\gamma + j \rightarrow$ gluon
- $\gamma + j_Q$  (see talk by T. Stavreva)  $\rightarrow$  gluon, charm
- $\gamma + J/\Psi$  (see talk by M. Machado)
- Quarkonium production?

### Backup slides

### Analysis of $\nu A$ , $\ell A$ and DY data

Kovarik, Yu, Keppel, Morfin, Olness, Owens, Schienbein, Stavreva, work nearing completion

I. Schienbein (LPSC Grenoble)

**Nuclear PDFs** 

July 29–31, 2010 38 / 55

### COMBINING $\ell A$ DIS, DY AND $\nu A$ DIS DATA

- *lA* and DY data sets as before
- 8 Neutrino data sets
  - NuTeV cross section data: vFe, vFe
  - CHORUS cross section data: vPb, vPb
  - NuTeV dimuon data: vFe, vFe
  - CCFR dimuon data:  $\nu$  Fe,  $\bar{\nu}$  Fe
- Problem: Neutrino data sets have much higher statistics. Systematically study fits with different weights.

| Weight       | Fit name | ℓ data | $\chi^2$ (/pt) | $\nu$ data | $\chi^2$ (/pt) | total $\chi^2$ (/pt) |
|--------------|----------|--------|----------------|------------|----------------|----------------------|
| <i>w</i> = 0 | decut3   | 708    | 639 (0.90)     | -          | -              | 639 (0.90)           |
| w = 1/7      | glofac1a | 708    | 645 (0.91)     | 3134       | 4710 (1.50)    | 5355 (1.39)          |
| w = 1/4      | glofac1c | 708    | 654 (0.92)     | 3134       | 4501 (1.43)    | 5155 (1.34)          |
| w = 1/2      | glofac1b | 708    | 680 (0.96)     | 3134       | 4405 (1.40)    | 5085 (1.32)          |
| <i>w</i> = 1 | global2b | 708    | 736 (1.04)     | 3134       | 4277 (1.36)    | 5014 (1.30)          |
| $W = \infty$ | nuanua1  | -      | -              | 3134       | 4192 (1.33)    | 4192 (1.33)          |

decut3 (w = 0)



glofac1a (w = 1/7)



glofac1c (w = 1/4)



glofac1b (w = 1/2)



global2b (w = 1)



nuanua1 ( $w = \infty$ )



I. Schienbein (LPSC Grenoble)

### IS THERE A REASONABLE COMPROMISE FIT?

| Weight       | Fit name | ℓ data | $\chi^2$ (/pt) | $\nu$ data | $\chi^2$ (/pt) | total $\chi^2$ (/pt) |
|--------------|----------|--------|----------------|------------|----------------|----------------------|
| <i>w</i> = 0 | decut3   | 708    | 639 (0.90)     | -          | -              | 639 (0.90)           |
| w = 1/7      | glofac1a | 708    | 645 (0.91)     | 3134       | 4710 (1.50)    | 5355 (1.39)          |
| w = 1/4      | glofac1c | 708    | 654 (0.92)     | 3134       | 4501 (1.43)    | 5155 (1.34)          |
| w = 1/2      | glofac1b | 708    | 680 (0.96)     | 3134       | 4405 (1.40)    | 5085 (1.32)          |
| <i>w</i> = 1 | global2b | 708    | 736 (1.04)     | 3134       | 4277 (1.36)    | 5014 (1.30)          |
| $W = \infty$ | nuanua1  | -      | -              | 3134       | 4192 (1.33)    | 4192 (1.33)          |

- w = 0: No. Problem:  $R[F_2^{\nu Fe}]$
- w = 1/7: No. Problem:  $R[F_2^{\nu Fe}]$
- w = 1/4, 1/2: No.
  - $Q^2 = 5$ : Undershoots  $R[F_2^{\ell Fe}]$  for x < 0.2. Overshoots  $R[F_2^{\nu Fe}]$  for  $x \in [0.1, 0.3]$
  - $Q^2 = 20$ :  $R[F_2^{\ell Fe}]$  still ok. Overshoots  $R[F_2^{\nu Fe}]$ .
- w = 1: No. Possibly there is a compromise if more strict  $Q^2$  cut?
  - $Q^2 = 5$ : Undershoots  $R[F_2^{\ell Fe}]$  for x < 0.2.  $R[F_2^{\nu Fe}]$  ok.
  - $Q^2 = 20$ :  $R[F_2^{\ell Fe}]$  still ok.  $R[F_2^{\nu Fe}]$  ok.
- $w = \infty$ : No. Problem:  $R[F_2^{\ell Fe}]$

### DISCUSSION/INTERMEDIATE CONCLUSION

Discussion based on the comparison of the nuclear correction factors  $R[F_2^{\ell A}]$  and  $R[F_2^{\nu A}]$ 

- There is definitely a tension between the NuTeV and the charged lepton data
  - There is a clear dependence on the weight.
  - Theory curves for  $R[F_2^{\ell A}]$  and  $R[F_2^{\nu A}]$  are both shifted down with increasing weight of the neutrino data.
- Preliminary conclusion: At the level of the (high) precision there doesn't seem to be a good compromise fit of the combined  $\ell A$ , DY and  $\nu A$  data.
- However one has to be careful:
  - These are precision effects
  - For each weight, the curves have uncertainty bands not considered
  - The figures show the comparison to only few (representative) data

Consider next quantitative criterion based on  $\chi^2$ 

### **TOLERANCE CRITERION**

Probability distribution for the  $\chi^2$  function

$$P_N(\chi^2) = \frac{(\chi^2)^{N/2-1} e^{-\chi^2/2}}{2^{N/2} \Gamma(N/2)}$$

Determine  $\xi_{50}^2$  and  $\xi_{90}^2$  (i.e. p = 50, p = 90):

$$\int_0^{\xi_p^2} d\chi^2 P_N(\chi^2) = p/100$$

Condition for compatibility of two fits:

The 2nd fit  $(\chi_n^2)$  should be within the 90% C.L. region of the first fit  $(\chi_{n,0}^2)$ 

$$\chi_n^2/\chi_{n,0}^2 < \xi_{90}^2/\xi_{50}^2 \qquad \Leftrightarrow \qquad C_{90} \equiv \frac{\Delta\chi^2}{\frac{\chi_{n,0}^2}{\xi_{50}^2} < 1$$

see CTEQ'01, PRD65(2001)014012; MSTW'09, EPJC(2009)63,189-285

I. Schienbein (LPSC Grenoble)

TOTAL  $\chi^2$  FOR A)  $\ell A$ +DY DATA AND B) NEUTRINO DATA

90% tolerance condition for the charged lepton  $\chi^2$  and the neutrino  $\chi^2$ 

- decut3: 638.9  $\pm$  45.6 (best fit to only charged lepton and DY data)
- nuanua1: 4192  $\pm$  138 (best fit to only neutrino data)

| Weight         | Fit name | $\ell$ data | $\chi^2$       | $\nu$ data | $\chi^2$           | total $\chi^2$ (/pt) |
|----------------|----------|-------------|----------------|------------|--------------------|----------------------|
| <i>w</i> = 0   | decut3   | 708         | 639            | -          | nnnn <b>NO</b>     | 639 (0.90)           |
| w = 1/7        | glofac1a | 708         | 645 YES        | 3134       | 4710 <b>NO</b>     | 5355 (1.39)          |
| <i>w</i> = 1/4 | glofac1c | 708         | 654 <b>YES</b> | 3134       | 4501 <b>NO</b>     | 5155 (1.34)          |
| <i>w</i> = 1/2 | glofac1b | 708         | 680 YES        | 3134       | 4405 <b>NO</b> *** | 5085 (1.32)          |
| <i>w</i> = 1   | global2b | 708         | 736 <b>NO</b>  | 3134       | 4277 <b>YES</b>    | 5014 (1.30)          |
| $W = \infty$   | nuanua1  | -           | nnn <b>NO</b>  | 3134       | 4192               | 4192 (1.33)          |

Is there a compromise fit compatible to both, decut3 and nuanua1?

Observations:

- There is no good compromise fit based on the 90% C.L. criterion.
- Our best candidate is glofac1b which is marginally compatible:  $4405 4192 \simeq 1.5 \times 138$
- Observations in agreement with the previous conclusions based on R[F<sup>l</sup><sub>2</sub><sup>Fe</sup>] and R[F<sup>ν</sup><sub>2</sub><sup>Fe</sup>].

Let's have a look at the tolerance criterion applied to the individual data sets!

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: n = 1, ..., 32 vs decut3; n = 33, ..., 40 vs nuanua1

glofac1a (w = 1/7)



- Y-axis: C<sub>90</sub>; X-axis: Number of the data set (n = 1, ..., 40)
- Important data sets:
  - n = 8 (red circle): Fe/D charged lepton data
  - blue ellipse: CHORUS vPb, vPb cross section data
  - n = 35, 36 (red ellipse): NuTeV  $\nu$  Fe,  $\bar{\nu}$  Fe cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: n = 1, ..., 32 vs decut3; n = 33, ..., 40 vs nuanua1

glofac1c (w = 1/4)



- Y-axis: C<sub>90</sub>; X-axis: Number of the data set (n = 1, ..., 40)
- Important data sets:
  - n = 8 (red circle): Fe/D charged lepton data
  - blue ellipse: CHORUS vPb, vPb cross section data
  - n = 35, 36 (red ellipse): NuTeV  $\nu$  Fe,  $\bar{\nu}$  Fe cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: n = 1, ..., 32 vs decut3; n = 33, ..., 40 vs nuanua1

glofac1b (w = 1/2)



• Y-axis: C<sub>90</sub>; X-axis: Number of the data set (n = 1, ..., 40)

- Important data sets:
  - n = 8 (red circle): Fe/D charged lepton data
  - blue ellipse: CHORUS vPb, vPb cross section data
  - n = 35, 36 (red ellipse): NuTeV  $\nu$  Fe,  $\bar{\nu}$  Fe cross section data

I. Schienbein (LPSC Grenoble)

INDIVIDUAL DATA SETS: n = 1, ..., 32 vs decut3; n = 33, ..., 40 vs nuanua1

global2b (w = 1)



- Y-axis:  $C_{90}$ ; X-axis: Number of the data set (n = 1, ..., 40)
- Important data sets:
  - n = 8 (red circle): Fe/D charged lepton data
  - blue ellipse: CHORUS vPb, vPb, vPb cross section data
  - n = 35, 36 (red ellipse): NuTeV  $\nu$  Fe,  $\bar{\nu}$  Fe cross section data

I. Schienbein (LPSC Grenoble)

### TOLERANCE CRITERION $C_{90} < 1$ :

INDIVIDUAL DATA SETS

Observations:

- w = 1/7:  $C_{90} > 5$  for NuTeV  $\nu$  Fe;  $C_{90} \simeq 1.8$  for NuTeV  $\bar{\nu}$  Fe
- CHORUS data (blue ellipse) always compatible; little dependence on weight w
- increasing weight: NuTeV cross section data improve; charged lepton Fe/D data get worse
- our best candidate (w = 1/2)
  - Fe/D (n = 8): C<sub>90</sub> ~ 2
  - NuTeV *νFe* (*n* = 35): *C*<sub>90</sub> ≃ 2.2
  - NuTeV *v̄* Fe (n = 36): C<sub>90</sub> < 1</li>
  - some other data sets n = 3, 4, 5, 6, 32 with C<sub>90</sub> > 1
- w = 1: Fe/D (n = 8): C<sub>90</sub> > 3
- Confi rms and quantifi es observations based on R plots

### **CONCLUSIONS**

Based on nuclear corrections factors *R* and the tolerance criterion  $C_{90} < 1$ :

- There is no good compromise fit to the  $\ell A DIS + DY + \nu A DIS$  data.
- Most problematic: tension between NuTeV *νFe* cross section data and *Fe/D* data in charged lepton DIS.
- The NuTeV  $\bar{\nu}$  Fe data are less problematic. They have larger errors.
- The CHORUS  $\nu Pb$  and  $\overline{\nu}Pb$  data are compatible with both, the  $\ell A$ -DIS+DY and the NuTeV  $\nu Fe$  and  $\overline{\nu}Fe$  data, as is well known. They also have larger errors.
- Relaxing the tolerance criterion to  $C_{90} \lesssim 2$  the fit with weight w = 1/2 would be *marginally* acceptable.
- This can also (qualitatively) be verified with the *R*-plots.
- A larger Q<sup>2</sup>-cut, say Q<sup>2</sup> > 5 GeV<sup>2</sup>, could also help to reduce the tension. (In particular, this would remove some of the rather precise NuTeV cross section data at small *x*.)