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. INTRODUCTION




The pQCD formalism

Thursday, February 19, 15



Quantum Chromodynamics (QCD)

QCD: A QFT for the strong interactions

e Statement: Hadronic matter is made of spin-1/2 quarks [« SU(3)4]

» Baryons like A** = |u'u'u') forbidden by Pauli exclusion/Fermi-Dirac stat.
Need additional colour degree of freedom!

e Local SU(3)-color gauge symmetry:

_ _ 1 ,
Lov= >, G —me)q—gq@q— 3G GE" + Lot + Lanost

g=u,d,s,c,b,t

e Fundamental d.o.f.: quark and gluon fields

e Free parameters:

e gauge coupling: g
e quark masses: my, My, Ms, M, My, M;
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Quantum Chromodynamics (QCD)

Properties:

e Confinement and Hadronization:

e Free quarks and gluons have not been observed: ]
A) They are confined in color-neutral hadrons of size ~ 1 fm. D’ff
B) They hadronize into the observed hadrons. |
e Hadronic energy scale: a few hundred MeV [1 fm «— 200 MeV]
e Strong coupling large at long distances (= 1 fm): ’IR-slavery’
e Hadrons and hadron masses enter the game

e Asymptotic freedom:

e Strong couling small at short distances: perturbation theory
e Quarks and gluons behave as free particles at asymptotically large
energies
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Asymptotic Freedom

Renormalization of UV-divergences: o Gross, Wilczek ('73); Politzer (*73)

Running coupling constant as := as/(47)

as(n) 1
s\H) =
Bo In(u? /\?)
04 ————————— — . .
oW b N NLO.MShar ; Non-abelian gauge theories:
035F \» upper: (M )=0.121 negative beta-functions
A N 0, (M,)=0.1187 3
03 — ‘\\ ‘\\ -------- lower: o (M,)=0.1165 — d
: s\ + ] as 2
025} o, (M,)=0.118 : ain qu — —ﬁoas + ...
02f :
| where 3, = L1 C, — 2n
0.15| 0 — 3 VA 3 'f
0-11' T TS = asympt. freedom: as \ for u

u (GeV)
e Nobel Prize 2004
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Perturbative QCD (pQCD)

long distance 1 fm 0.2 fm short distance

soft scale 200 MeVE 1 GeV hard scale
A ,
< non-pert. ' perturbative »

Asympt. freedom === pQCD possible if all scales hard

Possible to separate hard and

Factorisation oy soft scales .
soft part : universal

hard part : perturbative
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The pQCD formalism

QCD factorization theorems:

do = PDF ® dé 4+ remainder

e PDF:

e Proton composed of partons = quarks, gluons

e Structure of proton described by parton distribution functions (PDF)
e Factorization theorems provide field theoretic definition of PDFs

e PDFs universal — PREDICTIVE POWER

e Hard part do:

e depends on the process

e calculable order by order in perturbation theory

e Factorization theorems prescribe how to calculate dé:
“dé = partonic cross section - mass factorization”

e Statement about error: remainder suppressed by hard scale

Original factorization proofs considered massless partons
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The pQCD formalism

QCD factorization theorems:

do = PDF ® dé 4+ remainder

e PDF:

e Proton composed of partons = quarks, gluons

e Structure of proton described by parton distribution functions (PDF)
e Factorization theorems provide field theoretic definition of PDFs

e PDFs universal — PREDICTIVE POWER

. Hare 1 he pQCD formalism 1s essential for
*  the physics program at the LHC!

e Factorization theorems prescribe how to calculate dé:
“dé = partonic cross section - mass factorization”

e Statement about error: remainder suppressed by hard scale

Original factorization proofs considered massless partons
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The Large Hadron Collider

* World records: Largest collider, highest energy, ...
* Main experiments: ATLAS, CMS,ALICE, LHCb

* p-p, p-Pb, Pb-Pb collisions
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Heavy quarks
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Heavy quarks

Three Generations

Particle content
of the SM

Mass scales in QCD

of Matter (Fermions) spin ¥2

mass - 2.4 MeV 1.27 GeV 173.2 GeV
harge - l I ) C Ve t
u charm top

Leptons

Bosons (Forces) spin 1

" g

gluon

0

Y

photon

91.2 GeV

"L

weak
force

126 GeV

H

Higgs
boson

80.4 GeV
+

"W

weak
force

spin 0

* Aocp~200 MeV

* Light quarks: my~2 MeV, mq~5 MeV, ms~100 MeV

e Heavy quarks: m.~1.3 GeV, mp~4.5 GeV, m~175 GeV

\_
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CHARM QUARK

*PARTICLEZ 0

EPAR l’lCLliZ 0

Heavy quarks

.OTT“ wu .

*PARTICLEZ 0

BOTTOM QUARK TOP QUARK l

v

TOP QuARE

L(t— W'h) =

Gr

877[

W-l-

b
I'(t— W*h) ~ 1.5 GeV

T ~436 x 107%° s

my | Vis* (1 — miy /mi )" (1 + 2myy, /my)

* The top quark is special: it decays before it could hadronize!

 The charm quark hadronizes into D, D*, Lambdac, ...

* The bottom quark hadronizes into B mesons, etc
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Heavy quarks in pQCD

Heavy Quarks: h=c,b,t

® mU) md) mS < /\QCD << mC) mb) mt

aV,
2
my,

2
AQCD

o My > Nocp = as(m?) o< InT'(42-) < 1 (asymptotic freedom)

e my sets hard scale; acts as long distance cut-off — pQCD

How to incorporate heavy quark masses into the pQCD formalism?

Requirements:
(1) u < m: Decoupling of heavy degrees of freedom
(2) pu > m: IR-safety
(3) u ~ m: Correct threshold behavior
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Heavy flavor schemes
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Heavy flavor schemes

Requirements:
(1) n < m: Decoupling of heavy degrees of freedom
(2) > m: IR-safety
(3) pn ~ m: Correct threshold behavior

Problem:
e Multiple hard scales: m., my, m:,
e Mass-independent factorization/renormalization schemes like MS
e A single MS scheme cannot meet requirements (1) and (3) (is unphysical).

Way out: Patchwork of MS schemes S""r
e Variable Flavor-Number Scheme (VFNS): S°° — &%* — §%°
o Fixed Flavor-Number Scheme (FFNS): $>° — S>* — S§°° (3-FFNS)

e Masses reintroduced by backdoor: threshold corrections (=matching
conditions)
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Variable Flavor Number Scheme

o Effective theory with Nr active partons (NF=NR)
G(NF)

e RGE’s for PDFs (DGLAP) and as (for pr = pr= p)

o,
81nu2fi(x"u2’NF) — P’ij(xaﬂ27NF) & fj(aj7ﬂ27NF)
daS(M27NF)
— 37N
d1n 12 B(as, NF)

e Flavor thresholds: matching scales

4 5 6
,ugw) =~ mcmug\f) = mba,ugw) =y
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Variable Flavor Number Scheme

o Effective theory with Nf active partons (NF=NR)

G(NF)

e RGE’s for PDFs (DGLAP) and as (for pr = pr= p)

o,
81nugfi(x’M2’NF) — Pij(ZEv/LZvNF) & fj(xvu27NF)
da’«s(:uQvNF)
— S?N
d1n ;2 Blas, NF)

e Flavor thresholds: matching scales

4 5 6
HP 2 e, i) = i, ) = m
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Variable Flavor Number Scheme

o Effective theory with Nf active partons (NF=NR)
G(NF)

e RGE’s for PDFs (DGLAP) and as (for pr = pr= p)

o,
81nu2fi(x"u2’NF) — P’ij(xaﬂ27NF) & fj(aj7ﬂ27NF)
daS(M27NF)
— 37N
d1n 12 B(as, NF)

e Flavor thresholds: matching scales

4 5 6
,UEW) = mcmugw) = mbmug\f) = My
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® Flavor thresholds: matching conditions at J = UM

g g 2
AT =Y + % (a’lj + P ln[%])

&\ (i (pi . pii g i i) 1| £
+ ﬂ 612+{ 1 T 0®a1 —ﬁ()al} n %
o

(hep-ph/9601302, 9612398)

2

1. . . )
Y ) l 2
+§{PO®P0—,80PO}IH lﬁ

MS MS
cio. = 0,5 # 0

(hep-ph/9706430)

Using u = m and restricting to O (ag) terms

as(m*, Np + 1) = ay(m*, Nr) + c0; (m*, Nr)
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Variable Flavor Number Scheme

* Transition scales: change of scheme for observables

O(Ng) — O(Np+1) at pNFHY

e Standard VFNS: pv = m, pr=m

e user has to change the scheme at the heavy quark mass

e Hybrid VFNS (H-VFNS): pm = m, pr>m
 pr can depend on kinematic variables, e.g., pr = pr(x,Q) in DIS
e requires knowledge of PDFs fi(x,mur,N¥) and as(u,NF) up to pr

e user can freely choose where to change the scheme
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Variable Flavor Number Scheme

* Transition scales: change of scheme for observables

O(Ng) — O(Np+1) at pNF+Y

e Standard VFNS: pv = m, pr=m

e user has to change the scheme at the heavy quark mass

e Hybrid VFNS (H-VFNS): pm = m, pr>m
 pr can depend on kinematic variables, e.g., pr = pr(x,Q) in DIS
e requires knowledge of PDFs fi(x,mur,N¥) and as(u,Nf) up to pr

e user can freely choose where to change the scheme

arXiv:1306.6553
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FFNS vs VENS: Pros and Cons




Heavy flavor schemes: FFNS

3-FFNS

e charm is not a parton, appears only in final state

e no collinear divergencesfromc — ¢+ g
but terms « log(x/m) with . = Q, pr, . .. the hard scale

e Collinear logarithms log(:/m) kept in fixed order perturbation theory
+ correct threshold behavior

+ finite charm mass terms m/u exactly taken into account

— not IR-safe: does not meet requirement (2)

— How to include possible intrinsic charm?

The 3-FFNS should fail when as In(/m) becomes large [or asIn(u/m)?]

Phenomenological guestion: When need to resum collinear log’s?
— Not unambigously answered yet! A lot of handwaving ...
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Heavy flavor schemes:VFNS

VENS
e charmis a partonfor u 2> m

e mass singularities absorbed in PDFs (and FFs)

e if m=0:1/c poles — MS subtraction
e if m=£0:log(n/m) + finite — MS subtraction

e QCD prediction: DGLAP (RG) evolution resums large logarithms log(u/m)
+ Requirements (1), (2) satisfied

+ finite mass terms m/u can be taken into account: massive VFNS (GM-VFNS)
(otherwise: massless VFNS (ZM-VENS) which is the original parton model)

— Requirement (3) problematic point:

e |n DIS slow-rescaling prescriptions (ACOT-x) good approximation of exact
threshold kinematics: ¢(x) — c(x) where x = x(1 + 4m°/ Q%)

e What to do in hadron—hadron collisions?

e \What to do in 1-particle inclusive production?

e Intrinsic charm natural to incorporate
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Heavy flavor schemes:VFNS

VFNS

e Factorization proof with massive quarks for inclusive DIS: Collins 98
Remainder ~ O(A°/Q%) not ~ O(m*/ Q?)

e Many incarnations of VFNS (ACOT, ACOT-y, TR): Freedom to shift finite
m-terms without spoiling IR-safety

e S-ACOT scheme: incoming heavy quarks massless («+— scheme choice)
more complex at NNLO

e Massive quarks can be described by massless evolution kernels (« scheme
choice)

e Matching n — n+ 1: PDFs, as, masses

e At NLO matching continuous at = m: " = fl.”f+1

e At higher orders matching discontinuos:

o for PDFs discontinuous at O(a2)
o for as discontinuous at O(a?)

e Observable discontinuous: o™ = ™1 1+ (9(043K+1)
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Termes in the perturbation series

L = In (m/pT)
a = /(2 )

Fixed Order—

Resummed
v
. LL | NLL [{NNLL
LO |
NLO | alL a
NNLO| (aL)? | a(al) a2
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Fixed Order—

FFNS/Fixed Order NLO

Resummed
v

. LL | NLL |NNLL
LO |

m+*0

NLO | aL a

m+*0
NNLO| (aL)? | a(al) a2




ZM-VFNS/Resummed NLO

Resummed

v

LL | NLL [NNLL
m=0

LO |

Fixed Order— | NLO al a

NNLO| (aL)? | a(al) a’
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GM-VFNS/FONLL (NLO+NLL)

Resummed

v

LL | NLL [NNLL

LO |

m=*=0

Fixed Order— | NLO al a

m=0 m==0

NNLO| (aL)? | a(al) a’

m=0 m=0

m=0 m=0
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ll. OPEN HEAVY FLAVOR
HADROPRODUCTION




Why interesting?
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Why open heavy flavor production is interesting

® Provides important probes for (our understanding of) QCD

® mp acts as long distance cut-off: pQCD applicable down to p7t~0,
Ot Calculable

® multi-scale problem (m, pt): pt<m, pt~m, pt>>m confronted to data!

testing ground for other multi-scale problem:s:
production of W/Z/Higgs, BSM processes

® Heavy flavor production sensitive to gluon, heavy quark PDFs
pp and pA collisions: constraints on these PDFs

® AA collisions: heavy flavors important probes of the QGP

® Solid understanding of charm production needed in cosmic ray and
neutrino astrophysics
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Theoretical approaches:

Fixed Flavor Number Scheme
(FFNS)




FFNS/Fixed Order

Factorization formula for inclusive heavy quark (Q) production:
PDFs
4 ¢/ \ )
do®@ ~ Z A2 P @doap—orx
N a,b \ J

\
f Calculable short distance cross section;
log(pT/m) terms kept in fixed order

sum over all possible
partonic subprocesses
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FFNS/Fixed Order

Factorization formula for inclusive heavy quark (Q) production:
PDFs
4 ¢/ \ )
do®@ ~ Z A2 P @doap—orx
N a,b \ J

\
f Calculable short distance cross section;
log(pT/m) terms kept in fixed order

sum over all possible
partonic subprocesses

Inclusive heavy-flavored hadron (H) production:

N\ Convolution with a

dO_H — dO_Q ® Dg(Z) «+ Scale-independent FF

. ~/ * non-perturbative
* describes hadronization
* not based on a fact. theorem
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Leading Order (LO)

Leading order subprocesses:

1. gg — QQ
2. g — QQ (g=u,d,s)

> <
A Y ;E?m< >m<
00000 < 00000 >

e The gg-channel is dominant at the LHC (~ 85% at /S = 14 TeV).

e The total production cross section for heavy quarks is fi nite.
The minimum virtuality of the t-channel propagator is m?. Sets the scale in as.
Perturbation theory should be reliable.

e Note: For m* — 0 total cross section would diverge.

[See M. Mangano, hep-ph/9711337; Textbook by Ellis, Stirling and Webber]
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Next-to-leading Order (NLO)

Next-to-leading order (NLO) subprocesses:

. g9 — QQg
. 93— QQg (g=u,d,s)
. 99— QQq,g9q — QQg  [new at NLO]

A~ W oo =

. Virtual corrections to gg — QQ and g — QQ

NLO corrections for o and differential cross sections do /dprdy known since long:

e Nason, Dawson, Ellis, NPB303(1988)607; Beenakker, Kuif, van Neerven, Smith,
PRD40(1989)54 [oo]

e NDE, NPB327(1989)49; (E)B335(1990)260; Beenakker et al.,NPB351(1991)507
[do/dprdy]
Well tested by recalculations and zero-mass limit:
e Bojak, Stratmann, PRD67(2003)034010 [do /dprdy (un)polarized]
e Kniehl, Kramer, Spiesberger, IS, PRD71(2005)014018 [m — O limit of diff. x-sec]
e Czakon, Mitov, NPB824(2010)111 [owt, fully analytic]
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Next-to-leading Order (NLO)

® Fixed order NLO calculation also useful to obtain
predictions of heavy quark correlations!

Mangano,Nason,Ridolfi ("92)
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Next-to-next-to-leading Order (NNLO)
Channels: qq, gg, qg

® TJwo-loop virtual most difficult MQ(O) + M2(1) + MQ(Z)

® Analytic approach: Bonciani, Ferroglia, Gehrmann,
Maitre, Studerus, von Manteuffel ('08-'10)

® Numeric approach: Czakon, Mitov et al.

® Virtual + Real M3(O) 4 M?El)
Dittmaier, Uwer, Weinzier| ('08)

® Subtraction method for IR M(O)
singularities in double real 4

Czakon ('10-’11)

Thursday, February 19, 15



Next-to-next-to-leading Order (NNLO)

® Available now for top pair production!
® Jotal cross section Czakon, Mitov, PRLI 10(2013)252004
® Differential distributions Czakon, Mitov, arXiv:1411.3007

® Analytic approach not yet complete

[Bonciani et al.]

Very large scale uncertainties at NLO in ¢,b production

NNLO will be crucial to make progress!
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10 F

1

0 25 5 75 10 125 15 175 20 225 25

Some NLO results for B-meson production

NLO FFNS works very well for pT up to roughly 5m

do/dpy. (nb/GeV) 104l do/dpy. (nb/GeV) VS = 1.96 TeV
R + [ _
pp—B X pp—B*X d=y=l

FENS .

/S = 1.96 TeV FENS; £=0.0001

-10=sy=<10 103:' w=E& m,

Tevatron Data m,=4.5 GeV

10 2}
%_L}ZP’{;\“\E 10 : \\\\ E 10 :
no FF Peterson FF

pr (GeV)

1

25 5 75 10 125 15 175 20 225 25
pr (GeV)

1

VS =1.96 TeV

do/dp, (nb/GeV)
pp—B"X

l=sy=s1

FENS; No FF; u=m

25 5 75 10 125 15 175 20 225 25
pr (GeV)
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Remarks:
e Fixed order theory in reasonable agreement with Tevatron data up to pr ~ 5m,

e At pr < my factorization less obvious. Depends on defi nition of convolution
variable z: pg = zpy, or p? = zp% or pt = zp," or Ps = zPp

e Less hadronization effects than originally believed:
e-parameter small corresponding to a hard fragmentation function.
Harder FF — harder pr-spectrum

e Larger as(Mz) — harder pr-spectrum
e Mass dependence imortant for pr < m (peak) — oot

e Only the 4th or 5th Mellin-moment of the FF is relevant for large pr [M. Mangano]:
do®/dpr(b) ~ A/pr(b)" withn~4,....5

do®/dpr(B) = [ dz/z D(z) do”/dpr(b)[pr(b) = pr(B)/z] =
A/pr(B)" x [dz z"~' D(z)
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Theoretical approaches:

Zero Mass Variable Flavor Number Scheme
(ZM-VFNYS)




ZM-VFNS/RS

Factorization formula for inclusive heavy quark (Q) production:

- N
1 1 1

do1 X ~ Z/ daﬁa/ dxy, / dz ff(ﬂﬁa,uF)ff(wb,MF)d5ab—>c+XDf(Za//F) + O(m*/p7)
ched0 0 0

g y

* Same factorization formula as for inclusive production of
pions and kaons

* Quark mass neglected in kinematics and the short distance
Cross section

* Allows to compute pT spectrum for pt >> m

* Needs scale-dependent FFs of quarks and gluons into
the observed heavy-flavored hadron (H)
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List of subprocesses in the ZM-VFNS

Massless NLO calculation: [Aversa,Chiappetta,Greco,Guillet, NPB327(1989)105]

. 99 — gX
. 99 — gX
. 99 — gX
. q9 — gX
qq — gX
qq — gX
. q9 — gX
. q9 — q'X
. q9 — q'X
. qq — gX
. qq — gX
. 99— q'X
. 99" — gX
. qq" — gX
. qq" — gX
16. g9/ — gX

O 0 1 O L B~ W N =

e e e e T e T
wnm A W NN = O

¢ charge conjugated processes

Thursday, February 19, 15



Fragmentation functions

Approach |: Perturbative FFs (PFFs) Caccciari, Greco, ...

DI (2, W) = DP (2, ) @ DE ()

T T

PFF evolved with DGLAP; Non-pert., scale-independent FF
short distance; describing hadronization of heavy
boundary condition calculable quark Q into heavy hadron H

Mellin-moments of Dqg"(z) determined from e*e- data
\_

J

-

way as FFs into pions or kaons

Non-pert. boundary conditions Di"(z,m) from fit to e*e" data;
Determine FFs directly in x-space; evolved with DGLAP

\_

~

Approach Il: treat FFs into H in the same Binnewies, Kniehl, Kramer, ..
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[Em—
@)

FFs into

—_ —_
NOJN N
T I T T T I T T

* CLEO

[E—
L] I L]

p

o o o o
S NN B~ N o©

Pai

do/dx (e'e” — D) (nb)

o BELLE 5

B N ]

0 0.1 02 03 04 05 06 07 08 09

3
.

....

OPAL
e total
o b-tagged

AT TE i B B

X

O01 02 03 04 05 06 0.7 0.8 09

1

D mesons

FF forc — D"

from fi tting to " e~ data

2008 analysis based on GM-VFNS
o =

global fi t: data from

ALEPH, OPAL, BELLE, CLEO
BELLE/CLEOfit

[KKKS: Kneesch, Kramer, Kniehl, IS
NPB799 (2008)]

tension between low and high energy
data sets — speculations about non-
perturbative (power-suppressed) terms

Thursday, February 19, 15



FFs into B mesons [I] from LEP/SLC data [2]

Petersen Kartvelishvili-Likhoded

D(x, 1) = N[(1 X_(1X)_2 1)6)(]2 D(x, po) = Nx*(1 — x)”

0.6 0.6
05§ 05}
m : o~ 5
t 04} t 04Ff
'O )
o 03} o 0.3}
'_é [ _é [
B 02¢ B 02¢
) i o [
201} 201}
ke, [ ke, [
0.1k ] 0.1k ]
0010203040)5(060708091 0010203040)5(060708091
x°/d.o.f. = 21.37 x°/d.of. = 1.495

[1] Kniehl,Kramer,|S,Spiesberger,PRD77(2008)014011
[2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300;
PRD65(2002)092006
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Theoretical approaches:
General Mass Variable Flavor Number Scheme

(GM-VFNS)




GM-VFNS

Factorization Formula: 1]

do(pp — D*X) = ) / dxy dxp dz fP(xq) ;;P(xz) X
I,J,k

d&(ij — kX) DY (2) + O(a2t, (A)P)

Q: hard scale, p = 1,2

o d&(pr, i, as(iR); ':—:): hard scattering cross sections
free of long-distance physics — my kept

e PDFs f,p(X‘InU”F)v ];"b(XZMMF): Ia./ =9,q,C [q = U, d7 S]
e FFs DP"(z,uk): k=g,q,c

= need short distance coefficients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment’,
PRD58(1998)094002
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List of subprocesses in the GM-VFNS

Only light lines Heavy quark initiated (mg = 0) Mass effects: mg # 0
O g9 9x O - O g0 Qx
® g9 — 9X O - O -
© g9 — 9X © Qg — gXx © -

O g9 - 9x O Q- aox O -
O 75— gx O QC - gx O -
O 75— gx 0O oo ax 0 -
@ g9 gx @ Qs Qx @ -
O g9 39X O Qg — gx O g0 Qx
O qg9—agX O Qg — gx O g0 — Qx
® g9 — gXx T 00 — gx @O -
® g9 — gX ® oo — ax ® -
® 95— g'X ® Q0 — gX ® qg — ax
® 99 — 9X ® Q7 — gX, qQ — gX ® -
® g9 — gX & Q7 — OX, gQ — gX @ -
® 99’ — gX ® Qg — 9X, 9Q — gX ® -
® 99’ — gX ® Qg — QX, 9Q — gX ® -

¢ charge conjugated processes
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Example diagrams

m %= 0 m = 0 (S-ACOT)
S S
egég 66666
£.0000000 4> € 0000000 g £
b B b B
o UO0000 « b y ———GEOOG00000° ¢

(a) (b)
J
® 9009999 0001 G\‘C@B arXiv:0705.4392

Reaches 50% at Tevatron at
small pT; decreases only
mildly towards larger pT

A

“0000000°* <
(c)

O

g

FIG. 2: Examples of Feynman diagrams leading to contributions of (a) class (i), (b) class (ii), and

(c) class (iii).
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Limiting cases

® GM-VFNS — ZM-VFNS for pt >> m
(this is the case by construction)

® GM-VFNS — FFNS for pr~ m

(formally this can be shown; numerically
problematic in the S-ACOT scheme)
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The GM-VFNS at low pr

LO: m=0 case diverges at pT=0

104 E I“ ] ] I ] ] ] ] I ] ] ] ] I ] ] ] ] I ] ] ] ] -
‘\‘m =0 do
. % [nb/GeV]

103 F -

L.O E

gg — bb+ q7 — bb 1
10° E
10 3
LE

10—1 [ [ [ I [ [ [ [ I [ [ [ [ I [ [ [ I
5 10 15 20 25
pr|GeV]

Problem: current implementation in S-ACOT scheme
b+g channel with m=0 diverges at small pr!
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The GM-VFNS at low pr

Problem can be solved by suitable scale choice

do/de (nb/GeV)
p p —-B"X

do/de (nb/GeV)
p p —-B"X

GM-VFNS AN GM-VENS
10 3k VS =1.96 TeV 1 103 N VS =1.96 TeV
- : 10=y=<10

o 10=y=<10 %

Tevatron Data Tevatron Data

10 £ default scale = V(p,2+m,2)

default scale = V(p2+m,2)
w, and g frozen below u=m,

u, and ug, frozen below u=m,

L 255 95710 125 15 175 20 22525 L 025 5 75 10 125 15 175 20 225 25
pr (GeV) pr (GeV)

Figure 5: do/dpr for pp — Bt + X at v/S = 1.96 TeV, |y| < 1.0, in the GM-VFNS
(data from CDF [6]). Left panel: {g = 1, & = 0.5 and &g = 0.5 (full curve), & = 0.6
(upper dashed curve), & = 0.4 (lower dashed curve). Right panel: & = (1,0.5,0.5) for
the central curve; upper curve: £z = 0.5, lower curve: £ = 2.

arXiv:1502.01001
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The GM-VFNS at low pt

Comparison with LHCb data

03 do/ de (nb/GeV)
; pp— (B+B) X ]
FFNS
VS =7.0TeV
10 4 - T 1
103} 20=< y=45
LHCDb Data
default scale = V(p2+m,?2)
0 s 10 12
pr (GeV)

4 107k,

arXiv:1502.01001

105:—

.....

LHCDb Data

default scale = V(p2+m, 2)

w, and u frozen below pu=m,

20=< y=<45

do/dp,. (nb/GeV)
pp— (B +B) X
GM-VENS
VS =7.0TeV

0..

2 4

0 12
pr (GeV)

6 8

Figure 6: do/dpy for pp — BT + B~ + X at v/S = 7 TeV with 2.0 < y < 4.5, compared
with results from the FFNS (left) and the GM-VFNS (right). &g r = (1, 0.5, 0.5). The
error band is obtained from variations by factors 2 up and down (maximum: &g = 0.5,
minimum: £z = 2). The factorization scale parameters are frozen below p; = my. Data

points are taken from [15].
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GM-VFNS: Comparison with ATLAS data

10 “p

Figure 9: pp — BT 4+ X at /S = 7 TeV in the GM-VFNS compared with data from

10 Fi

do/dp., (pb/GeV)
pp— B" X
GM-VENS i

VS =7.0TeV
00=< lyl=0.5

ATLAS Data 4

__________

..........

20 40 60 80 100 120

10 Fl

- do/dp; (pb/GeV)
= pp—B'X
GM-VENS i

VS =7.0TeV
10=< lyl=1.5

ATLAS Data 4

.......

ey ay——

2
10 F 1 U T T
g do/dp; (pb/GeV)
+
pp—=B X
10 kL GM-VENS ]
- VS =7.0TeV
05=<1lyl=10
L ATLAS Data .
-1 |
10 3 e E
-2 [ L T
10 F _
| :
3 e
10 1 1 1 1 1
20 40 60 80 100 120
pr (GeV)
10 2 1 1 1. U § LI A L
5 do/dp. (pb/GeV)
[ +
-, pp—=B X
0 El. GM-VFNS -
i VS =7.0TeV
1.5=< lyl=2.25
L ATLAS Data -
-1 [
10 F i
2 |
10 F s E
3 |
10 F I 3
1 1 Lo L i--I- ---------
20 40 60 80 100 120
pr (GeV

ATLAS [13]. prr are frozen below my, and & = (1, 1, 1).

arXiv:1502.01001
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GM-VFNS

® FFs in x-space in the BKK approach

® Heavy-quark initiated contributions (Q+g — Q+X...)
get very large at small pt in the massless case:

(i) switch off heavy-quark PDF sufficiently quickly
OR
(i) calculate these subprocesses with mass

® Error bands: Yr, Ur, MF varied independently

® Predictions for D and B prod. at Tevatron, RHIC, LHC:
arXiv:1502.01001, 1202.0439, 1109.2472,0901.4130,0705.4392,
hep-ph/0508129, ph/0502 194, ph/0410289

® Predictions including D-decay and B-decay:
arXiv: 1310.2924, 1212.4356
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Theoretical approaches:

Fixed Order plus Next-to-Leading Logarithms
(FONLL)




FONLL=FO+NLL [I]

FONLL = FO + (RS — FOMO0)G(m, pr)

FO: Fixed Order; FOMO: Massless limit of FO; RS: Resummed

(0.04 pr =m
5 0.25 pr =3m
G(m, pr) = p%szsm2 ~ ¢ 0.50 pr =5m
0.66 pr=7m
. 0.80 pr = 10m
F <3
. FONLL = 419 PT ~ >
RS PT Z 10m

[1] Cacciari, Greco, Nason, JHEP05(1998)007
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FONLL

® FFsin N-space in the PFF approach

® RS-FOMO gets very large at small p:

G(m,pt) = pt%/(pT? + a2 Mm?) with a=5

needed to suppress this contribution sufficiently rapidly
® Central scale choice for FO, RS, FOMO: mt

® Error bands: Ur = UF (only two scales varied)

® Predictions for LHC7 in arXiv:1205.6344
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NLO Monte Carlo generators:
MC@NLO and POWHEG




NLO MC generators

MC@NLO, POWHEG: hep-ph/0305252, arXiv:0707.3088
consistent matching of NLO matrix elements with parton
showers (PS)

Flexible simulation of hadronic final state
(PS, hadronization, detector effects)

Note: FONLL and GM-VFNS only one-particle inclusive
observables

High accuracy: NLO+LL*
(FONLL and GM-VFNS have NLO+NLL accuracy)

Simulation of hadronic final state involves tuning;
NOT a pure theory prediction!
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Theoretical approaches:
kTt factorization
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1. COMPARISON OF GM-VENS,
FONLL, POWHEG with ALICE DATA




Comparison with ALICE data

arXiv:1405.3083

pp — D "+X at Vs = 2.76 TeV

:I | | | | | | | | | | | | | | | | | | | | | | _I__

10° & =
: H ALICE -
1oL — POWHEG _
g F GM-VFNS :
2 1 FONLL —
I F -
S 10 <
3 E -
10° =
10-3§_I ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] I_:'::
0 5 10 15 20 25

P, (GeV)
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Comparison with ALICE data

arXiv:1405.3083

pp — D*+X at \s=7 TeV

| | | | | | | | | | | | | | | | | | | | | | | _I__

10 1 ALICE =
- —_ POWHEG -

g 10F GM-VFNS E
2 f FONLL :
2 1 =
- :
107 =

- —

102 = =
:l | | | | | | | | | | | | | | | | | | | | | | | :F

0 5 10 15 20 25
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Comparison with ALICE data

do/(dp_ Ay) (ub/GeV)
T

ALICE/POWHEG

GM-VFNS/POWHEG

102

10

10"

102

pp — Di+X at s =7 TeV

ALICE

— POWHEG

GM-VFNS

"|"'|"'|"'|"'|"}

20

25

arXiv:1405.3083
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do/dp_ (nb/GeV)

ALICE/POWHEG

FONLL/POWHEG

GM-VFNS/POWHEG

omparison with ALICE data

10*

10°

10?

10

pp — HF+X — (u"+u)/2 at Vs =7 TeV

— POWHEG
----- GM-VFNS

FONLL

arXiv:1405.3083
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Comparison with ALICE data

arXiv:1405.3083

pp —~c+X —e+Xat \s=7TeV pp — b+X (= c+X) = e+X at \'s=7 TeV

_I“IIIIII|IIII|IIII|IIII|IIII|IIII|II||II_
)

[ N K Y N Y Y N N Y N N N Y (N I Y N N I N N N N A B N N
I I I I I I I I

10% & = 102 & E
= - ALICE 3 = =4 ALICE :
- ~—— POWHEG ] - —— POWHEG ]
10° R | GM-VFNS = oteNeg e GM-VFNS —
= —— FONLL 3 g —— FONLL 3

T

T

1/(2np_) do/(dp_ Ay) (mb/GeV?)
o

lyl<0.8 lyl<0.8

~ s
S~
~ o

—

<Q

2
]

— 107 —
||I||||I||||I||||I||||I||||I||||||||||||: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
p, (GeV) p, (GeV)
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IV. SUMMARY




Summary

Discussed different theoretical approaches
to open heavy flavor hadroproduction

GM-VFNS, FONLL, POWHEG in good
agreement with data within large
uncertainties!

GM-VFNS at low pt improved; more work
In progress

Need NNLO to reduce scale uncertainties!
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Back up slides
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HARD SCATTERING COEFFICIENTS WITH HEAVY QUARK MASSES

Mass terms contained in the hard scattering coeffi cients:
d(/)\'(,LLF, HFE aS(MR)7 %

Two ways to derive them:

(1) Compare massless limit of a massive fi xed-order calculation
with a massless MS calculation
to determine subtraction terms
[Kniehl,Kramer,|S,Spiesberger,PRD71(2005)014018]

OR

(2) Perform mass factorization using partonic PDFs and FFs
[Kniehl,Kramer,|S,Spiesberger,EPJC41(2005)199]

» SKip details

I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11-15, 2011 28 /58
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(1) SUBTRACTION TERMS FOR THE GM-VFNS FROM MASSLESS LIMIT

e Compare limit m — 0 of the massive calculation (Merebashvili et al., Ellis,
Nason; Smith, van Neerven; Bojak, Stratmann; ...)
with massless MS calculation (Aurenche et al., Aversa et al., ...)

lim d&(m) = dés + Ado

m—0

= Subtraction terms

dowy = Ado = lim d&(m) — déys

e Subtract dog,, from massive partonic cross section while keeping mass terms

d&(m) - d&’(m) — dosub

— | d6(m) short distance coeffi cient including m dependence

— allows to use PDFs and FFs with MS factorization ® massive short distance
Cross sections

e T[reat contributions with charm in the initial state with m =0

e Massless limit: technically non-trivial, map from phase-space slicing to
subtraction method

I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11-15, 2011 29 /58
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(2) SUBTRACTION TERMS FOR THE GM-VFENS VIA MASS FACTORIZATION

Mass factorization

Subtraction terms are associated to mass singularities:
can be described by
partonic PDFs and FFs for collinear splittingsa — b+ X

o initial state: D (x, ;2) = oW plO) (x)in 1
1 o0 12) = 2 Ce [ 142 (In &5 — 2In(1 — 2) — 1],
1 Qg
A1 g, pu?) = =25 1 %5(1 — X)
e finalstate: (V) (7, ,2) = PO (z)in L,

dd) (2, 12) = Crsd 12 (In £ — 2In(1 — z) — )],

e Other partonic distribution functions are zero to order as

[Mele, Nason; Kretzer, Schienbein; Melnikov, Mitov]

I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11-15, 2011 30/58
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(2) SUBTRACTION TERMS VIA MS MASS FACTORIZATION: a(ki)b(k2) — Q(p1)X [1]

1
. k4 P
Sketch of kinematics: ks
X2

(a) (b) (c)
N - I ) 21 4500 (]
Flg. (a) do (ab—> QX) = dX1 fa_>i(X1,,u,_-) do (Ib—> QX)[X1 k1,k2,p1]
0
= AV (x)®dsO(ib — ax)
1
Fig. (b): do*'®(ab — QX) = /o dxo fél,(XQ,u%) d6(%(aj — QX)[ky, Xoko, p1]
= 1" (%) ®ds©(aj — QX)
1
Fig. (c): do*®(ab — QX) = / dz d6© (ab — kX)[ki, ko, 2z~ 'p1] A\ (2, )
0

d6©(ab — kX) @ d\ (2)

[1] Kniehl, Kramer, |.S., Spiesberger, EPJC41(2005)199
I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11-15, 2011 31/58
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GRAPHICAL REPRESENTATION OF SUBTRACTION TERMS FOR gg — QQg

W-H—% <
d5%(gg — QQ) ® dgLQ(Z): A Y /6666 M
OO0 —t 00000 ==

5

< < <
1) J(x) ® d6(Qg — Qg): Terever k] .,
= |
fb’b’b’b’ﬁl > 00000
fb’b’b’mil > @m—%
D o) ® 46 (9@ — Qg): Jroowee i
“00000° - “00000° - 00000 <
I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11-15, 2011 32/58
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GRAPHICAL REPRESENTATION OF SUBTRACTION TERMS FOR @ — QQg AND gg — QQq

d6©(gq — QQ) ® dSLQ(z): >m%
d59(qq — gg) ® dé1—)>o(z): %{ m M\<

d5©)(gg — g9) ® déza(z): ﬁ—?\é };N@}Ki %EM

(1 o(x1) © d6©)(Qq — Qq); :

\ 4
\ 4

I. Schienbein (LPSC Grenoble) D and B production in the GM-VFNS July 11-15, 2011 33/58
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DPS production of cccc

Production of two cc¢ pairs in double-parton scattering

Consider two hard (parton) scatterings

Ol

2l

Not consider so far in the literature
Luszczak, Maciula, Szczurek, arXiv:1111.3255
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DPS production of cccc

Formalism

Consider reaction: pp — ccccX
Modeling double-parton scattering
Factorized form:

]
GSPS(pp — cCX) - OSPS(pp — cCX).

o”™(pp — ccceX) =
Oeff

The simple formula can be generalized to include differential
distributions

do
dy; dy, d?p1+dysdysd?pot

] do do
2001 dy1dy,d?pyr dysdysd?por ﬁ

Oofr IS @ model parameter (12-15 mb)
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DPS production of cccc

Formalism

]
DPS 2 2 2 2
do = EFQQ(XMX&M’P’Q)FQQ(X{XQ’M’VQ)
e

’ 2 ’ .2 r 3
dOgg—ca(X1, X1, Uy )dOgg—ca(Xe, X5, 15 ) dxydxodx)dx; .

2 2 2 2
Fao(X1, X2, U5, 145). Fag(X)X5, 15, 145)
are called double parfon distributions

dPDF are subjected to special evoultion equations
single scale evolution: Snigireev

double scale evolution: Ceccopieri, Gaunt-Stirling ﬁ
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DPS production of cccc

DPS results

1033 T T T T T T T T T T T - 1033 T T T T T T T T T T =
ESPS pp—ccX vs. DPS pp—=cccc X3 ESPS pp—ccX vs. DPS ppeccchE
_.‘_- _ _ 2 -
102 GRV94 LO < (Bonmachie - Landsholl).~ = __10°F ne = uz = Mg =
o) - — — — GJRO8LO ey fo) P —— — 2= =4m =
é 0 I MSTWO08 LO ‘ ) é o [ e u2 =2 =mj )
= CTEQ6LO .o 3 = E
n i = . ) i i
é e ‘ E 2 3 E
I - 3 <] - §
@) = ly <8.0 - O B ly 1<8.0
107E ‘ Oy = 15 Mb5 107 E g€ . GRV94 LO 5
E/%. u2 =u2 = M, 3 -2 " 0, =15mb 7
I A ILO: gg—cCT - ILO gg—>cc-
10-2 1 1 1 1 L1 2 1 1 1 1 L1 1.1 1 1 1 1 10.2 1 1 1 L1 11 1 1 1

102 10° 10* 102 10° 10*

s (GeV) \s (GeV)

Inclusive cross section more difficult to calculate
Oss, 2 Ops < Omclus:ve < Osg _|_ 2 Ops
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HADROPRODUCTION OF D°, D™ D** DF
GM-VFNS RESULTS W/ KKKSc FFs | 1]

10 F

' do/dp,, (nb/GeV)

GM-VENS
VS =1.96 TeV

l=sysl

5 75

I I I I I I e
10 125 15 175 20 225 25
pr (GeV)

do/dpr [nb/GeV]

10 F

1L F

ly| <

' do/dp,, (nb/GeV)

GM-VENS
VS =1.96 TeV

l=sysl

5 75

10 125 15 175 20 225 25
pr (GeV)

1 prompt charm

GM-VENS
VS =1.96 TeV

l=sysl

10 125 15 175 20 225 25
pr (GeV)

5 75

Uncertainty band: 1/2 < ug/mr, ue/mr <2 (mr = \/,OZT + m3)

CDF data from run Il [2]
GM-VENS describes data within errors

[1] Kniehl,Kramer,IS,Spiesberger, arXiv:0901.4130[hep-ph], PRD(to appear)
[2] Acosta et al., PRL91(2003)241804

I. Schienbein (LPSC Grenoble)
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COMPARISON W/ PREVIOUS KK FFs | 1]

25

Data/Theory pp— D’ X
GM-VENS
VS =196 TeV

l=sy=1

05f
05 75 10 125 15 175 20 225 25
pr (GeV)
2.5 | T T T T = T 0 T
Data/Theory pp—=D X
> L GM-VENS
VS =1.96 TeV
l=sys=l1
15k
1 ++»—l—‘ N
1
e | ——
[
05F
05 75 10 125 15 175 20 225 25

pr (GeV)

25

L5,

| Data/Theory

pp—D'X

GM-VENS
VS =1.96 TeV

l=sys=s1

05F

05 75 10 125 15 175 20 225 25
pr (GeV)
2.5 | T T T T _ T N T
| Data/Theory pp—=D X
2L GM-VENS
I VS =1.96 TeV
L l=ys=1
L5k,

0

05F

5

75 10 125 15 175 20 225 25
pr (GeV)

25

L5F

05

| Data/Theory pp—=D*X ]
GM-VENS
VS =1.96 TeV

l=sys=s1

05 7|.5 ll() 12I.5 l|5 17I.5 2|() 22|.5 25
pr (GeV)
2.5 | T T T T _ T *+I ]
| Data/Theory pp—=D "X
oL GM-VENS

1.5

05F

0

VS =1.96 TeV
l=ys=1

10 125 15 175 20 225 25
pr (GeV)

5 715

e New KKKSc FFs improve agreement w/ CDF data.

25 I T T T T - T ¥ T
| Data/Theory pp—D, X
L GM-VFNS
i VS = 1.96 TeV
-l=y=s1
150
1 ——
05k
0555770 125 15 175 20 225 25

pr (GeV)

[1] Kniehl,Kramer, PRD74(2006)037502
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GM-VFENS PREDICTION VS.CDFII | 1]

do/dp _(pp — B*X) [nb/GeV]

10E

T T=T'H

- —  GM-VFN
- e ZM-VFN
TS FFN (no FF)

[ w=my, m =4.5 GeV

\S=1.96 TeV  _
-06<y<06 -

10 20 30 40 50 60 70 80 90 100

p,[GeV]

CDF Il (preliminary) [1]
URr = U = Mt
for pr > my:

e GM-VFN merges w/
ZM-VFN
e FFN breaks down

data point in bin [29,40] favors
GM-VFN

[1] Kraus, FERMILAB-THESIS-2006-47; Annovi, FERMILAB-CONF-07-509-E
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FFEN vS. CDF II | 1]

| pras do/dp,. (nb/GeV) |
o %
*% b :26}; .| obsolete FFN as above
1sysl e up-to-date FFN evaluated with
2|
o e CTEQ6.1M PDFs
® My = 4.5 GeV

—GM-VEN o NO) =227 MeV ~ af” =0.1181
10 e FFN (no FF) e D(x)=B(b— B)dé(1 — x) with

--------- FFN (old Input) B(b . B) — 398%

w=mg, m =4.5 GeV

A e e

25 5 7.5 10 125 15 175 20 225 25
pr (GeV)

[1] Kniehl,Kramer,|S,Spiesberger,PRD77(2008)014011
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INTRINSIC CHARM IN THE PROTON

D-MESONS AT RHIC

- do/dp, (nb/GeV)  pp—D’X

GM-VENS
VS =200 GeV
l=sys=sl

0 =% 1012 14 16 18 20
pr (GeV)
3 e
575 _ CTEC6.5¢x/CTEC6.5¢c0
5 0
25 pp—D'X
| GM-VENS
225F
L VS =200 GeV
2F
175?
15k
125;
1?
075?
03 = —%""% 10 12 14 16 18 20
pT(GeV)

I. Schienbein (LPSC Grenoble)

:“ T T T T T T T 0 T :
, do/dp,, (nb/GeV) pp—=D X |
10 4F\
3 GM-VENS
[ VS =500 GeV
10 35- l=y=l1
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D and B production in the GM-VFNS
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