Open heavy flavor production in pp collisions at the LHC

I. Schienbein LPSC Grenoble/Univ. Grenoble Alpes

Subatech Nantes, 19 February 2015

I. INTRODUCTION

Quantum Chromodynamics (QCD)

QCD: A QFT for the strong interactions

- Statement: Hadronic matter is made of spin-1/2 quarks [$\leftrightarrow SU(3)_{\rm fl}$]
- Baryons like Δ⁺⁺ = |u[↑]u[↑]u[↑]⟩ forbidden by Pauli exclusion/Fermi-Dirac stat.
 Need additional colour degree of freedom!
- Local SU(3)-color gauge symmetry:

$$\mathcal{L}_{\text{QCD}} = \sum_{q=u,d,s,c,b,t} \bar{q}(i\partial - m_q)q - g\bar{q}Gq - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \mathcal{L}_{gf} + \mathcal{L}_{ghost}$$

- Fundamental d.o.f.: quark and gluon fields
- Free parameters:
 - gauge coupling: g
 - quark masses: $m_u, m_d, m_s, m_c, m_b, m_t$

Quantum Chromodynamics (QCD)

Properties:

• Confinement and Hadronization:

- Free quarks and gluons have not been observed:
 - A) They are confined in color-neutral hadrons of size \sim 1 fm.
 - B) They hadronize into the observed hadrons.
- Hadronic energy scale: a few hundred MeV [1 fm \leftrightarrow 200 MeV]
- Strong coupling large at long distances (\gtrsim 1 fm): 'IR-slavery'
- Hadrons and hadron masses enter the game
- Asymptotic freedom:
 - Strong couling small at short distances: perturbation theory
 - Quarks and gluons behave as free particles at asymptotically large energies

Asymptotic Freedom

Renormalization of UV-divergences: Running coupling constant $a_s := \alpha_s/(4\pi)$

$$a_s(\mu) = rac{1}{eta_0 \ln(\mu^2/\Lambda^2)}$$

• Gross, Wilczek ('73); Politzer ('73)

Non-abelian gauge theories: negative beta-functions

 $\frac{da_s}{d\ln\mu^2} = -\beta_0 a_s^2 + \dots$

where $\beta_0 = \frac{11}{3} C_A - \frac{2}{3} n_f$

 \Rightarrow asympt. freedom: $a_s \searrow$ for $\mu \nearrow$

Nobel Prize 2004

Running strong coupling constant

- soft part : universal
- hard part : perturbative

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

• PDF:

- Proton composed of partons = quarks, gluons
- Structure of proton described by parton distribution functions (PDF)
- Factorization theorems provide field theoretic definition of PDFs
- PDFs universal → **PREDICTIVE POWER**
- Hard part $d\hat{\sigma}$:
 - depends on the process
 - calculable order by order in perturbation theory
 - Factorization theorems prescribe how to calculate $d\hat{\sigma}$: " $d\hat{\sigma}$ = partonic cross section - mass factorization"
- Statement about error: remainder suppressed by hard scale

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

• PDF:

- Proton composed of partons = quarks, gluons
- Structure of proton described by parton distribution functions (PDF)
- Factorization theorems provide field theoretic definition of PDFs
- PDFs universal → **PREDICTIVE POWER**
- Hard part $d\hat{\sigma}$:
 - depends on the process
 - calculable order by order in perturbation theory
 - Factorization theorems prescribe how to calculate $d\hat{\sigma}$: " $d\hat{\sigma}$ = partonic cross section - mass factorization"
- Statement about error: remainder suppressed by hard scale

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

• PDF:

- Proton composed of partons = quarks, gluons
- Structure of proton described by parton distribution functions (PDF)
- Factorization theorems provide field theoretic definition of PDFs
- PDFs universal → PREDICTIVE POWER
- Hard part $d\hat{\sigma}$:
 - depends on the process
 - calculable order by order in perturbation theory
 - Factorization theorems prescribe how to calculate $d\hat{\sigma}$: " $d\hat{\sigma}$ = partonic cross section - mass factorization"
- Statement about error: remainder suppressed by hard scale

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

• PDF:

- Proton composed of partons = quarks, gluons
- Structure of proton described by parton distribution functions (PDF)
- Factorization theorems provide field theoretic definition of PDFs
- PDFs universal → PREDICTIVE POWER
- Hard part $d\hat{\sigma}$:
 - depends on the process
 - calculable order by order in perturbation theory
 - Factorization theorems prescribe how to calculate $d\hat{\sigma}$: " $d\hat{\sigma}$ = partonic cross section - mass factorization"
- Statement about error: remainder suppressed by hard scale

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

• PDF:

- Proton composed of partons = quarks, gluons
- Structure of proton described by parton distribution functions (PDF)
- Factorization theorems provide field theoretic definition of PDFs
- PDFs universal → PREDICTIVE POWER
- Hard part $d\hat{\sigma}$:
 - depends on the process
 - calculable order by order in perturbation theory
 - Factorization theorems prescribe how to calculate $d\hat{\sigma}$: " $d\hat{\sigma}$ = partonic cross section - mass factorization"

• Statement about error: remainder suppressed by hard scale

QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

• PDF:

- Proton composed of partons = quarks, gluons
- Structure of proton described by parton distribution functions (PDF)
- Factorization theorems provide field theoretic definition of PDFs
- PDFs universal → PREDICTIVE POWER
- Harc The pQCD formalism is essential for
 - the physics program at the LHC!
 - Factorization theorems prescribe how to calculate $d\hat{\sigma}$: " $d\hat{\sigma}$ = partonic cross section - mass factorization"
- Statement about error: remainder suppressed by hard scale

Original factorization proofs considered massless partons

Thursday, February 19, 15

The Large Hadron Collider

- World records: Largest collider, highest energy, ...
- Main experiments: ATLAS, CMS, ALICE, LHCb
- p-p, p-Pb, Pb-Pb collisions

Heavy quarks

Heavy quarks

Particle content of the SM

Mass scales in QCD

- Light quarks: m_u~2 MeV, m_d~5 MeV, m_s~100 MeV
- Λ_{QCD}~200 MeV
- Heavy quarks: m_c~1.3 GeV, m_b~4.5 GeV, m_t~175 GeV

Heavy quarks

$$\Gamma(t \to W^+ b) = \frac{G_F}{8\pi\sqrt{2}} m_t^3 |V_{tb}|^2 (1 - m_W^2 / m_t^2)^2 (1 + 2m_W^2 / m_t^2)$$

- The top quark is special: it decays before it could hadronize!
- The charm quark hadronizes into D, D*, Lambdac, ...
- The bottom quark hadronizes into B mesons, etc

Heavy quarks in pQCD

Heavy Quarks: h = c, b, t

• $m_u, m_d, m_s \lesssim \Lambda_{\rm QCD} \ll m_c, m_b, m_t$

- $m_h \gg \Lambda_{\rm QCD} \Rightarrow \alpha_s(m_h^2) \propto \ln^{-1}(\frac{m_h^2}{\Lambda_{\rm QCD}^2}) \ll 1$ (asymptotic freedom)
- m_h sets hard scale; acts as long distance cut-off \rightarrow pQCD

How to incorporate heavy quark masses into the pQCD formalism?

Requirements:

- (1) $\mu \ll m$: Decoupling of heavy degrees of freedom
- (2) $\mu \gg m$: IR-safety
- (3) $\mu \sim m$: Correct threshold behavior

Heavy flavor schemes

Heavy flavor schemes

Requirements:

- (1) $\mu \ll m$: Decoupling of heavy degrees of freedom
- (2) $\mu \gg m$: IR-safety
- (3) $\mu \sim m$: Correct threshold behavior

Problem:

- Multiple hard scales: m_c, m_b, m_t, μ
- Mass-independent factorization/renormalization schemes like $\overline{\mathrm{MS}}$
- A single $\overline{\text{MS}}$ scheme cannot meet requirements (1) and (3) (is unphysical).

Way out: Patchwork of \overline{MS} schemes S^{n_f, n_R}

- Variable Flavor-Number Scheme (VFNS): $S^{3,3} \rightarrow S^{4,4} \rightarrow S^{5,5}$
- Fixed Flavor-Number Scheme (FFNS): $S^{3,3} \rightarrow S^{3,4} \rightarrow S^{3,5}$ (3-FFNS)
- Masses reintroduced by backdoor: threshold corrections (=matching conditions)

- Effective theory with N_F active partons (N_F=N_R) $S^{(N_F)}$
- RGE's for PDFs (DGLAP) and α_s (for $\mu_R = \mu_F = \mu$)

$$\frac{\partial}{\partial \ln \mu_2} f_i(x, \mu^2, N_F) = P_{ij}(x, \mu^2, N_F) \otimes f_j(x, \mu^2, N_F)$$
$$\frac{da_s(\mu^2, N_F)}{d \ln \mu^2} = \beta(a_s, N_F)$$

• Flavor thresholds: matching scales $\mu_M^{(4)} \simeq m_c, \mu_M^{(5)} \simeq m_b, \mu_M^{(6)} \simeq m_t$

• Effective theory with N_F active partons ($N_F = N_R$)

 $S^{(N_F)}$

• RGE's for PDFs (DGLAP) and α_s (for $\mu_R = \mu_F = \mu$) $\frac{\partial}{\partial \ln \mu_2} f_i(x, \mu^2, N_F) = P_{ij}(x, \mu^2, N_F) \otimes f_j(x, \mu^2, N_F)$ $\frac{da_s(\mu^2, N_F)}{d \ln \mu^2} = \beta(a_s, N_F)$

• Flavor thresholds: matching scales $\mu_M^{(4)} \simeq m_c, \mu_M^{(5)} \simeq m_b, \mu_M^{(6)} \simeq m_t$

- Effective theory with N_F active partons (N_F=N_R) $S^{(N_F)}$
- RGE's for PDFs (DGLAP) and α_s (for $\mu_R = \mu_F = \mu$)

$$\frac{\partial}{\partial \ln \mu_2} f_i(x,\mu^2,N_F) = P_{ij}(x,\mu^2,N_F) \otimes f_j(x,\mu^2,N_F)$$
$$\frac{da_s(\mu^2,N_F)}{d \ln \mu^2} = \beta(a_s,N_F)$$

• Flavor thresholds: matching scales $\mu_M^{(4)} \simeq m_c, \mu_M^{(5)} \simeq m_b, \mu_M^{(6)} \simeq m_t$

• Flavor thresholds: matching conditions at $\mu = \mu_M$

$$f_i(x,\mu^2,N_F+1) = A^{ij} \otimes f_j(x,\mu^2,N_F)$$

$$\begin{split} A^{ij} &= \delta^{ij} + \frac{\alpha_s}{2\pi} \left(a_1^{ij} + P_0^{ij} \ln\left[\frac{\mu^2}{m^2}\right] \right) \\ &+ \left(\frac{\alpha_s}{2\pi}\right)^2 \left(a_2^{ij} + \left\{ P_1^{ij} + P_0^{ij} \otimes a_1^{ij} - \beta_0 a_1^{ij} \right\} \ln\left[\frac{\mu^2}{m^2}\right] \\ &+ \frac{1}{2} \left\{ P_0^{ij} \otimes P_0^{ij} - \beta_0 P_0^{ij} \right\} \ln^2\left[\frac{\mu^2}{m^2}\right] \right) + \dots \end{split}$$

(hep-ph/9601302, 9612398)

$$\alpha_s(\mu^2, N_F + 1) = \alpha_s(\mu^2, N_F) \left[1 + \sum_{k=1}^{\infty} \sum_{l=0}^{k} c_{kl} [\alpha_s(\mu^2, N_F)]^k \ln^l \left(\frac{\mu^2}{m^2}\right) \right]$$

 $c_{10}^{\overline{\mathrm{MS}}} = 0, c_{20}^{\overline{\mathrm{MS}}} \neq 0$ (hep-ph/9706430)

Using $\mu = m$ and restricting to $O(\alpha_s^3)$ terms

$$\alpha_s(m^2, N_F + 1) = \alpha_s(m^2, N_F) + c_{20}\alpha_s^3(m^2, N_F)$$

- Transition scales: change of scheme for **observables** $O(N_F) \rightarrow O(N_F + 1) \text{ at } \mu_T^{(NF+1)}$
 - **Standard VFNS**: $\mu_M = m, \mu_T = m$
 - user has to change the scheme at the heavy quark mass

- Hybrid VFNS (H-VFNS): $\mu_M = m, \mu_T > m$
 - μ_T can depend on kinematic variables, e.g., $\mu_T = \mu_T(x,Q)$ in DIS
 - requires knowledge of PDFs $f_i(x,mu_F,N_F)$ and $\alpha_s(\mu,N_F)$ up to μ_T
 - user can freely choose where to change the scheme

• Transition scales: change of scheme for **observables**

$$O(N_F) \to O(N_F + 1)$$
 at $\mu_T^{(NF+1)}$

- **Standard VFNS**: $\mu_M = m, \mu_T = m$
 - user has to change the scheme at the heavy quark mass

- **Hybrid VFNS** (H-VFNS): $\mu_M = m, \mu_T > m$
 - μ_T can depend on kinematic variables, e.g., $\mu_T = \mu_T(x,Q)$ in DIS
 - requires knowledge of PDFs $f_i(x,mu_F,N_F)$ and $\alpha_s(\mu,N_F)$ up to μ_T
 - user can freely choose where to change the scheme

• Transition scales: change of scheme for **observables**

$$O(N_F) \to O(N_F + 1)$$
 at $\mu_T^{(NF+1)}$

- **Standard VFNS**: $\mu_M = m, \mu_T = m$
 - user has to change the scheme at the heavy quark mass

- **Hybrid VFNS** (H-VFNS): $\mu_M = m, \mu_T > m$
 - μ_T can depend on kinematic variables, e.g., $\mu_T = \mu_T(x,Q)$ in DIS
 - requires knowledge of PDFs $f_i(x,mu_F,N_F)$ and $\alpha_s(\mu,N_F)$ up to μ_T
 - user can freely choose where to change the scheme

arXiv:1306.6553

arXiv:1306.6553

FFNS vs VFNS: Pros and Cons

Heavy flavor schemes: FFNS

3-FFNS

- charm is not a parton, appears only in final state
- no collinear divergences from $c \rightarrow c + g$ but terms $\propto \log(\mu/m)$ with $\mu = Q, p_T, \dots$ the hard scale
- Collinear logarithms $\log(\mu/m)$ kept in fixed order perturbation theory
- + correct threshold behavior
- + finite charm mass terms m/μ exactly taken into account
- not IR-safe: does not meet requirement (2)
- How to include possible intrinsic charm?

The 3-FFNS should fail when $\alpha_s \ln(\mu/m)$ becomes large [or $a_s \ln(\mu/m)$?]

Phenomenological question: When need to resum collinear log's? \rightarrow Not unambigously answered yet! A lot of handwaving ...

Heavy flavor schemes: VFNS

VFNS

- charm is a parton for $\mu \gtrsim m$
- mass singularities absorbed in PDFs (and FFs)
 - if m = 0: $1/\varepsilon$ poles $\rightarrow \overline{\text{MS}}$ subtraction
 - if $m \neq 0$: log(μ/m) + finite $\rightarrow \overline{\text{MS}}$ subtraction
- QCD prediction: DGLAP (RG) evolution resums large logarithms $log(\mu/m)$
- + Requirements (1), (2) satisfied
- + finite mass terms m/μ can be taken into account: massive VFNS (GM-VFNS) (otherwise: massless VFNS (ZM-VFNS) which is the original parton model)
- Requirement (3) problematic point:
 - In DIS slow-rescaling prescriptions (ACOT- χ) good approximation of exact threshold kinematics: $c(x) \rightarrow c(\chi)$ where $\chi = x(1 + 4m^2/Q^2)$
 - What to do in hadron-hadron collisions?
 - What to do in 1-particle inclusive production?
- Intrinsic charm natural to incorporate

Heavy flavor schemes: VFNS

VFNS

- Factorization proof with massive quarks for inclusive DIS: Collins '98 Remainder $\sim O(\Lambda^2/Q^2)$ not $\sim O(m^2/Q^2)$
- Many incarnations of VFNS (ACOT, ACOT-χ, TR): Freedom to shift finite *m*-terms without spoiling IR-safety
- S-ACOT scheme: incoming heavy quarks massless (↔ scheme choice) more complex at NNLO
- Massive quarks can be described by massless evolution kernels (\leftrightarrow scheme choice)
- Matching $n \rightarrow n + 1$: PDFs, α_s , masses
- At NLO matching continuous at $\mu = m$: $f_i^{n_f} = f_i^{n_f+1}$
- At higher orders matching discontinuos:
 - for PDFs discontinuous at $\mathcal{O}(\alpha_s^2)$
 - for α_s discontinuous at $\mathcal{O}(\alpha_s^3)$
- Observable discontinuous: $\sigma^{n_f} = \sigma^{n_f+1} + \mathcal{O}(\alpha_s^{K+1})$

Termes in the perturbation series

FFNS/Fixed Order NLO

ZM-VFNS/Resummed NLO

GM-VFNS/FONLL (NLO+NLL)

II. OPEN HEAVY FLAVOR HADROPRODUCTION

Why interesting?

Why open heavy flavor production is interesting

- Provides important probes for (our understanding of) QCD
- m_h acts as long distance cut-off: pQCD applicable down to $p_T \sim 0$, σ_{tot} calculable
- multi-scale problem (m, p_T): $p_T < m$, $p_T > m$ confronted to data!

testing ground for other multi-scale problems: production of W/Z/Higgs, BSM processes

- Heavy flavor production sensitive to gluon, heavy quark PDFs pp and pA collisions: constraints on these PDFs
- AA collisions: heavy flavors important probes of the QGP
- Solid understanding of charm production needed in cosmic ray and neutrino astrophysics

Theoretical approaches: Fixed Flavor Number Scheme (FFNS)

FFNS/Fixed Order

Factorization formula for inclusive heavy quark (Q) production:

FFNS/Fixed Order

Factorization formula for inclusive heavy quark (Q) production:

Inclusive heavy-flavored hadron (H) production:

$$d\sigma^{H} = d\sigma^{Q} \otimes D_{Q}^{H}(z)$$

with a endent FF

* non-perturbative

* describes hadronization

* not based on a fact. theorem

Leading Order (LO)

Leading order subprocesses:

1. $gg \rightarrow Q\bar{Q}$

2. $q\bar{q} \rightarrow Q\bar{Q}$ (q = u, d, s)

- The gg-channel is dominant at the LHC ($\sim 85\%$ at $\sqrt{S} = 14$ TeV).
- The total production cross section for heavy quarks is finite.
 The minimum virtuality of the t-channel propagator is m². Sets the scale in α_s.
 Perturbation theory should be reliable.
- Note: For $m^2 \rightarrow 0$ total cross section would diverge.

[See M. Mangano, hep-ph/9711337; Textbook by Ellis, Stirling and Webber]

Next-to-leading Order (NLO)

Next-to-leading order (NLO) subprocesses:

- 1. $gg \rightarrow Q\bar{Q}g$
- 2. $q\bar{q} \rightarrow Q\bar{Q}g \quad (q = u, d, s)$
- 3. $gq \rightarrow Q\bar{Q}q, g\bar{q} \rightarrow Q\bar{Q}\bar{q}$ [new at NLO]
- 4. Virtual corrections to $gg \rightarrow Q\bar{Q}$ and $q\bar{q} \rightarrow Q\bar{Q}$

NLO corrections for σ_{tot} and differential cross sections $d\sigma/dp_T dy$ known since long:

- Nason, Dawson, Ellis, NPB303(1988)607; Beenakker, Kuif, van Neerven, Smith, PRD40(1989)54 [σ_{tot}]
- NDE, NPB327(1989)49; (E)B335(1990)260; Beenakker *et al.*,NPB351(1991)507
 [*dσ*/*dp*_T*dy*]

Well tested by recalculations and zero-mass limit:

- Bojak, Stratmann, PRD67(2003)034010 [$d\sigma/dp_T dy$ (un)polarized]
- Kniehl, Kramer, Spiesberger, IS, PRD71(2005)014018 [$m \rightarrow 0$ limit of diff. x-sec]
- Czakon, Mitov, NPB824(2010)111 [σ_{tot} , fully analytic]

Next-to-leading Order (NLO)

• Fixed order NLO calculation also useful to obtain predictions of heavy quark correlations!

Mangano, Nason, Ridolfi ('92)

Next-to-next-to-leading Order (NNLO)

Channels: $q\bar{q}, gg, qg$

- Two-loop virtual most difficult
 - Analytic approach: Bonciani, Ferroglia, Gehrmann, Maitre, Studerus, von Manteuffel ('08-'10)
 - Numeric approach: Czakon, Mitov et al.
- Virtual + Real Dittmaier, Uwer, Weinzierl ('08)
- Subtraction method for IR singularities in double real Czakon ('10-'11)

 $M_2^{(0)} + M_2^{(1)} + M_2^{(2)}$

 $M_3^{(0)} + M_3^{(1)}$

 $M_4^{(0)}$

Next-to-next-to-leading Order (NNLO)

- Available now for top pair production!
- Total cross section Czakon, Mitov, PRLI10(2013)252004
- Differential distributions

- Czakon, Mitov, arXiv:1411.3007
- Analytic approach not yet complete [Bonciani et al.]

Very large scale uncertainties at NLO in c,b production NNLO will be crucial to make progress!

Some NLO results for B-meson production

NLO FFNS works very well for pT up to roughly 5m

Remarks:

- Fixed order theory in reasonable agreement with Tevatron data up to $p_T \simeq 5 m_b$
- At $p_T \leq m_b$ factorization less obvious. Depends on definition of convolution variable *z*: $p_B = zp_b$ or $p_T^B = zp_T^b$ or $p_B^+ = zp_b^+$ or $\vec{p}_B = z\vec{p}_b$
- Less hadronization effects than originally believed: ϵ -parameter small corresponding to a hard fragmentation function. Harder FF \rightarrow harder p_T -spectrum
- Larger $\alpha_s(M_Z) \rightarrow$ harder p_T -spectrum
- Mass dependence imortant for $p_T \leq m$ (peak) $\rightarrow \sigma_{tot}$
- Only the 4th or 5th Mellin-moment of the FF is relevant for large p_T [M. Mangano]: $d\sigma^b/dp_T(b) \simeq A/p_T(b)^n$ with $n \simeq 4, \dots, 5$

 $\frac{d\sigma^{B}/dp_{T}(B)}{A/p_{T}(B)^{n}} \leq \int \frac{dz}{z} \frac{D(z)}{D(z)} \frac{d\sigma^{b}}{dp_{T}(b)} [p_{T}(b) = p_{T}(B)/z] = A/p_{T}(B)^{n} \times \int \frac{dz}{z} \frac{z^{n-1}}{D(z)} D(z)$

Theoretical approaches: Zero Mass Variable Flavor Number Scheme (ZM-VFNS)

ZM-VFNS/RS

Factorization formula for inclusive heavy quark (Q) production:

$$d\sigma^{H+X} \simeq \sum_{a,b,c} \int_0^1 dx_a \int_0^1 dx_b \int_0^1 dz \ f_a^A(x_a,\mu_F) f_b^B(x_b,\mu_F) d\hat{\sigma}_{ab\to c+X} D_c^H(z,\mu_F') + \mathcal{O}(m^2/p_T^2)$$

- Same factorization formula as for inclusive production of pions and kaons
- Quark mass neglected in kinematics and the short distance cross section
- Allows to compute p_T spectrum for $p_T >> m$
- Needs scale-dependent FFs of quarks and gluons into the observed heavy-flavored hadron (H)

List of subprocesses in the ZM-VFNS

Massless NLO calculation: [Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105]

- 1. $gg \rightarrow qX$
- 2. $gg \rightarrow gX$
- 3. *qg* → *gX*
- 4. $qg \rightarrow qX$
- 5. $q\bar{q} \rightarrow gX$
- 6. $q\bar{q} \rightarrow qX$
- 7. $qg \rightarrow \bar{q}X$
- 8. $qg \rightarrow \bar{q}' X$
- 9. $qg \rightarrow q'X$
- 10. $qq \rightarrow gX$
- 11. *qq* → *qX*
- 12. $q\bar{q} \rightarrow q'X$
- 13. $q\bar{q}' \rightarrow gX$
- 14. $q\bar{q}' \rightarrow qX$
- 15. $qq' \rightarrow gX$
- 16. $qq' \rightarrow qX$

 \oplus charge conjugated processes

Fragmentation functions

way as FFs into pions or kaons

Non-pert. boundary conditions $D_i^H(z,m)$ from fit to e^+e^- data; Determine FFs directly in x-space; evolved with DGLAP

FFs into D mesons

FF for $c \rightarrow D^*$ from fitting to e^+e^- data

2008 analysis based on GM-VFNS $\mu_0 = m$

global fit: data from ALEPH, OPAL, BELLE, CLEO

BELLE/CLEO fi t

[KKKS: Kneesch, Kramer, Kniehl, IS NPB799 (2008)]

tension between low and high energy data sets \rightarrow speculations about non-perturbative (power-suppressed) terms

FFs into B mesons [1] from LEP/SLC data [2]

Petersen

$$D(x, \mu_0^2) = N \frac{x(1-x)^2}{[(1-x)^2 + \epsilon x]^2}$$

Kartvelishvili-Likhoded

 $D(x, \mu_0^2) = Nx^{lpha} (1-x)^{eta}$

[1] Kniehl,Kramer,IS,Spiesberger,PRD77(2008)014011
[2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300;
PRD65(2002)092006

Theoretical approaches: General Mass Variable Flavor Number Scheme (GM-VFNS)

GM-VFNS

Factorization Formula:

$$d\sigma(p\bar{p} \to D^*X) = \sum_{i,j,k} \int dx_1 \ dx_2 \ dz \ f_i^p(x_1) \ f_j^{\bar{p}}(x_2) \times d\hat{\sigma}(ij \to kX) \ D_k^{D^*}(z) + \mathcal{O}(\alpha_s^{n+1}, (\frac{\Lambda}{Q})^p)$$

Q: hard scale, p = 1, 2

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), \frac{m_h}{p_T})$: hard scattering cross sections free of long-distance physics $\rightarrow m_h$ kept
- PDFs $f_i^p(x_1, \mu_F)$, $f_j^{\bar{p}}(x_2, \mu_F)$: i, j = g, q, c [q = u, d, s]
- FFs $D_k^{D^*}(z, \mu_F')$: k = g, q, c

 \Rightarrow need short distance coefficients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

Thursday, February 19, 15

List of subprocesses in the GM-VFNS

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$f g g \to q X$	1 -	$ 1 \ gg \rightarrow QX $
$\bigcirc gg \to gX$	2 -	2 -
$\textbf{3} qg \rightarrow gX$	3 $Qg \rightarrow gX$	3 -
	4 $Qg \rightarrow QX$	4 -
5 $q\bar{q} \rightarrow gX$	5 $Q\bar{Q} \rightarrow gX$	5 -
$6 q\bar{q} \rightarrow qX$	$\bigcirc Q\bar{Q} \rightarrow QX$	6 -
	$ 7 Qg \rightarrow \bar{Q}X $	7 -
8 $qg \rightarrow \bar{q}' X$	8 $Qg \rightarrow \bar{q}X$	8 $qg \rightarrow \bar{Q}X$
$ 9 qg \rightarrow q' X $	9 $Qg \rightarrow qX$	$ 9 \ qg \rightarrow QX $
$\textcircled{0} qq \rightarrow gX$	$\textcircled{0} QQ \rightarrow gX$	1 -
$\textcircled{1} qq \rightarrow qX$	$\textcircled{1} QQ \rightarrow QX$	1 -
$ (p \ q \ \bar{q} \rightarrow q' \ X) $	$\textcircled{0} Q\bar{Q} \rightarrow qX$	$\textcircled{P} q\bar{q} \rightarrow QX$
$\textcircled{B} q\bar{q}' \to gX$	igodot g Q ar q o g X, $q ar Q o g X$	1 3 -
	$igvee Q \ Q \ ar q ightarrow Q X$, $q \ ar Q ightarrow q X$	(() -
(b) $qq' \rightarrow gX$	(5) $Qq \rightarrow gX, qQ \rightarrow gX$	15 -
$ \begin{array}{c} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} $	for $Qq \rightarrow QX, qQ \rightarrow qX$ rocesses	1 6 -

Thursday, February 19, 15

Example diagrams

FIG. 2: Examples of Feynman diagrams leading to contributions of (a) class (i), (b) class (ii), and (c) class (iii).

Limiting cases

• **GM-VFNS** \rightarrow **ZM-VFNS** for $p_T >> m$

(this is the case by construction)

• **GM-VFNS** \rightarrow **FFNS** for $p_T \sim m$

(formally this can be shown; numerically problematic in the S-ACOT scheme)

The GM-VFNS at low pT

Problem: current implementation in S-ACOT scheme b+g channel with m=0 diverges at small p_T !

The GM-VFNS at low pT

Problem can be solved by suitable scale choice

arXiv:1502.01001

Figure 5: $d\sigma/dp_T$ for $p\bar{p} \rightarrow B^+ + X$ at $\sqrt{S} = 1.96$ TeV, |y| < 1.0, in the GM-VFNS (data from CDF [6]). Left panel: $\xi_R = 1$, $\xi_I = 0.5$ and $\xi_F = 0.5$ (full curve), $\xi_F = 0.6$ (upper dashed curve), $\xi_F = 0.4$ (lower dashed curve). Right panel: $\xi_i = (1, 0.5, 0.5)$ for the central curve; upper curve: $\xi_R = 0.5$, lower curve: $\xi_R = 2$.

The GM-VFNS at low pT

Comparison with LHCb data

arXiv:1502.01001

Figure 6: $d\sigma/dp_T$ for $pp \to B^+ + B^- + X$ at $\sqrt{S} = 7$ TeV with 2.0 < y < 4.5, compared with results from the FFNS (left) and the GM-VFNS (right). $\xi_{R,I,F} = (1, 0.5, 0.5)$. The error band is obtained from variations by factors 2 up and down (maximum: $\xi_R = 0.5$, minimum: $\xi_R = 2$). The factorization scale parameters are frozen below $\mu_{I,F} = m_b$. Data points are taken from [15].

GM-VFNS: Comparison with ATLAS data

arXiv:1502.01001

Figure 9: $pp \to B^+ + X$ at $\sqrt{S} = 7$ TeV in the GM-VFNS compared with data from ATLAS [13]. $\mu_{I,F}$ are frozen below m_b and $\xi_i = (1, 1, 1)$.

Thursday, February 19, 15

GM-VFNS

- FFs in x-space in the BKK approach
- Heavy-quark initiated contributions $(Q+g \rightarrow Q+X, ...)$ get very large at small p_T in the massless case:

(i) switch off heavy-quark PDF sufficiently quickly OR(ii) calculate these subprocesses with mass

- Error bands: μ_R , μ_F , μ_F' varied independently
- Predictions for D and B prod. at Tevatron, RHIC, LHC: arXiv:1502.01001, 1202.0439, 1109.2472, 0901.4130, 0705.4392, hep-ph/0508129, ph/0502194, ph/0410289
- Predictions including D-decay and B-decay: arXiv: 1310.2924, 1212.4356

Theoretical approaches: Fixed Order plus Next-to-Leading Logarithms (FONLL)

FONLL=FO+NLL [1]

 $FONLL = FO + (RS - FOM0)G(m, p_T)$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m, p_T) = rac{p_T^2}{p_T^2 + 25m^2} \simeq egin{cases} 0.04 & : & p_T = m \ 0.25 & : & p_T = 3m \ 0.50 & : & p_T = 5m \ 0.66 & : & p_T = 5m \ 0.80 & : & p_T = 7m \ 0.80 & : & p_T = 10m \end{cases}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & p_T \lesssim 3m \\ \text{RS} & : & p_T \gtrsim 10m \end{cases}$$

[1] Cacciari, Greco, Nason, JHEP05(1998)007

Thursday, February 19, 15

FONLL

- FFs in N-space in the PFF approach
- RS-FOM0 gets very large at small pT:

$$G(m,p_T) = p_T^2/(p_T^2 + a^2 m^2)$$
 with **a=5**

needed to suppress this contribution sufficiently rapidly

- Central scale choice for FO, RS, FOM0: mT
- Error bands: $\mu_F = \mu_F'$ (only two scales varied)
- Predictions for LHC7 in arXiv:1205.6344

NLO Monte Carlo generators: MC@NLO and POWHEG

NLO MC generators

- MC@NLO, POWHEG: hep-ph/0305252, arXiv:0707.3088 consistent matching of NLO matrix elements with parton showers (PS)
- Flexible simulation of hadronic final state (PS, hadronization, detector effects)

Note: FONLL and GM-VFNS only one-particle inclusive observables

- High accuracy: NLO+LL* (FONLL and GM-VFNS have NLO+NLL accuracy)
- Simulation of hadronic final state involves tuning; NOT a pure theory prediction!
Theoretical approaches: k_T factorization

III. COMPARISON OF GM-VFNS, FONLL, POWHEG with ALICE DATA

^B Comparison with ALICE data

arXiv:1405.3083

arXiv:1405.3083

arXiv:1405.3083

$$pp \rightarrow b+X (\rightarrow c+X) \rightarrow e+X at s = 7 TeV$$

10⁻² ALICE 10⁻³ 95/9£ (Å 10⁻⁴) Thursday, February 19, 15 POWHEG **GM-VFNS** FONLL

IV. SUMMARY

Summary

- Discussed different theoretical approaches to open heavy flavor hadroproduction
- GM-VFNS, FONLL, POWHEG in good agreement with data within large uncertainties!
- GM-VFNS at low p_T improved; more work in progress
- Need NNLO to reduce scale uncertainties!

Back up slides

Mass terms contained in the hard scattering coeffi cients:

```
d\hat{\sigma}(\mu_F, \mu_{F'}, \alpha_s(\mu_R), \frac{m}{p_T})
```

Two ways to derive them:

(1) Compare massless limit of a massive fixed-order calculation with a massless $\overline{\rm MS}$ calculation to determine subtraction terms

[Kniehl,Kramer,IS,Spiesberger,PRD71(2005)014018]

OR

(2) Perform mass factorization using partonic PDFs and FFs

[Kniehl,Kramer,IS,Spiesberger,EPJC41(2005)199]

skip details

 Compare limit m → 0 of the massive calculation (Merebashvili et al., Ellis, Nason; Smith, van Neerven; Bojak, Stratmann; ...) with massless MS calculation (Aurenche et al., Aversa et al., ...)

 $\lim_{m\to 0} \mathrm{d}\tilde{\sigma}(m) = \mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}} + \Delta \mathrm{d}\sigma$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{sub}} \equiv \Delta \mathrm{d}\sigma = \lim_{m \to 0} \mathrm{d}\tilde{\sigma}(m) - \mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}}$$

• Subtract $d\sigma_{sub}$ from massive partonic cross section while keeping mass terms

 $\mathrm{d}\hat{\sigma}(m) = \mathrm{d}\tilde{\sigma}(m) - \mathrm{d}\sigma_{\mathrm{sub}}$

 \rightarrow d $\hat{\sigma}(m)$ short distance coeffi cient including m dependence

 \rightarrow allows to use PDFs and FFs with $\overline{\rm MS}$ factorization \otimes massive short distance cross sections

- Treat contributions with charm in the initial state with m = 0
- Massless limit: technically non-trivial, map from phase-space slicing to subtraction method

I. Schienbein (LPSC Grenoble)

D and B production in the GM-VFNS

Mass factorization

Subtraction terms are associated to mass singularities: can be described by partonic PDFs and FFs for collinear splittings $a \rightarrow b + X$

• initial state: $f_{g \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(x) \ln \frac{\mu^2}{m^2}$ $f_{Q \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} C_F \left[\frac{1+z^2}{1-z} \left(\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1 \right) \right]_+$ $f_{g \to g}^{(1)}(x, \mu^2) = -\frac{\alpha_s(\mu)}{2\pi} \frac{1}{3} \ln \frac{\mu^2}{m^2} \delta(1-x)$

• fi nal state:

$$d_{g \to Q}^{(1)}(z, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(z) \ln \frac{\mu^2}{m^2}$$

$$d_{Q \to Q}^{(1)}(z, \mu^2) = C_F \frac{\alpha_s(\mu)}{2\pi} \left[\frac{1+z^2}{1-z} (\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1) \right]_+$$

• Other partonic distribution functions are zero to order α_s

[Mele, Nason; Kretzer, Schienbein; Melnikov, Mitov]

I. Schienbein (LPSC Grenoble)

D and **B** production in the GM-VFNS

(2) SUBTRACTION TERMS VIA $\overline{\text{MS}}$ MASS FACTORIZATION: $a(k_1)b(k_2) \rightarrow Q(p_1)X$ [1]

$$\begin{array}{lll} \text{Fig. (a):} & \mathsf{d}\sigma^{\mathrm{sub}}(ab \to QX) & = & \int_0^1 \mathsf{d}x_1 \; f_{a \to i}^{(1)}(x_1, \mu_F^2) \; \mathsf{d}\hat{\sigma}^{(0)}(ib \to QX)[x_1 \, k_1, k_2, p_1] \\ & \equiv & f_{a \to i}^{(1)}(x_1) \otimes \mathsf{d}\hat{\sigma}^{(0)}(ib \to QX) \end{array}$$

$$\begin{array}{lll} \hline \text{ig. (b):} & \mathsf{d}\sigma^{\mathrm{sub}}(ab \to QX) &=& \int_0^1 \mathsf{d}x_2 \ f_{b \to j}^{(1)}(x_2, \mu_F^2) \ \mathsf{d}\hat{\sigma}^{(0)}(aj \to QX)[k_1, x_2k_2, p_1] \\ & \equiv & f_{b \to j}^{(1)}(x_2) \otimes \mathsf{d}\hat{\sigma}^{(0)}(aj \to QX) \end{array}$$

$$\begin{array}{lll} \text{Fig. (c):} & d\sigma^{\text{sub}}(ab \to QX) & = & \int_0^1 dz \, d\hat{\sigma}^{(0)}(ab \to kX)[k_1, k_2, z^{-1}p_1] \, d_{k \to Q}^{(1)}(z, \mu_F'^2) \\ \\ & \equiv & d\hat{\sigma}^{(0)}(ab \to kX) \otimes d_{k \to Q}^{(1)}(z) \end{array}$$

[1] Kniehl, Kramer, I.S., Spiesberger, EPJC41(2005)199

I. Schienbein (LPSC Grenoble)

D and B production in the GM-VFNS

July 11–15, 2011 31 / 58

I. Schienbein (LPSC Grenoble)

D and **B** production in the GM-VFNS

Graphical representation of subtraction terms for $q\bar{q}
ightarrow Q\bar{Q}g$ and $gq
ightarrow Q\bar{Q}q$

$$\mathrm{d}\hat{\sigma}^{(0)}(gq
ightarrow gq)\otimes d^{(1)}_{g
ightarrow Q}(z)$$
:

$$f^{(1)}_{g \to Q}(x_1) \otimes \mathrm{d}\hat{\sigma}^{(0)}(Qq \to Qq)$$
:

I. Schienbein (LPSC Grenoble) *D* and *B* production in the GM-VFNS

July 11–15, 2011 33 / 58

Production of two $c\bar{c}$ pairs in double-parton scattering

Consider two hard (parton) scatterings

Not consider so far in the literature Luszczak, Maciula, Szczurek, arXiv:1111.3255

Formalism

Consider reaction: $pp \rightarrow c\bar{c}c\bar{c}X$ Modeling double-parton scattering Factorized form:

$$\sigma^{DPS}(pp \rightarrow c\bar{c}c\bar{c}X) = rac{1}{2\sigma_{eff}}\sigma^{SPS}(pp \rightarrow c\bar{c}X_1) \cdot \sigma^{SPS}(pp \rightarrow c\bar{c}X_2).$$

The simple formula can be generalized to include differential distributions

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1t} dy_3 dy_4 d^2 p_{2t}} = \frac{1}{2\sigma_{eff}} \cdot \frac{d\sigma}{dy_1 dy_2 d^2 p_{1t}} \cdot \frac{d\sigma}{dy_3 dy_4 d^2 p_{2t}} \cdot \frac{\sigma_{eff}}{dy_3 dy_4 dy_4 dy_4 dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_3 dy_4 dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_3 dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_3 dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_3 dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_4} \cdot \frac{\sigma_{eff}}{dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_4} \cdot \frac{\sigma_{eff}}{dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_4} \cdot \frac{\sigma_{eff}}{dy_4 dy_4} \cdot \frac{\sigma_{eff}}{dy_4} \cdot \frac{\sigma$$

General framework	D meson production	DPS production of cccc	SPS production of <i>cccc</i>
Formalism			

$$d\sigma^{DPS} = \frac{1}{2\sigma_{eff}} F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2) F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2) d\sigma_{gg \to c\bar{c}}(x_1, x_1', \mu_1^2) d\sigma_{gg \to c\bar{c}}(x_2, x_2', \mu_2^2) dx_1 dx_2 dx_1' dx_2'.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Ē.

$$F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2), F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2)$$

are called double parton distributions

dPDF are subjected to special evolution equations single scale evolution: Snigireev double scale evolution: Ceccopieri, Gaunt-Stirling

DPS results

Inclusive cross section more difficult to calculate σ_{SS} , $2\sigma_{DS} < \sigma_{c}^{inclusive} < \sigma_{SS} + 2\sigma_{DS}$

HADROPRODUCTION OF D^0 , D^+ , D^{*+} , D_s^+ GM-VFNS results w/ KKKSc FFs [1]

• $d\sigma/dp_T$ [nb/GeV] $|y| \le 1$ prompt charm

- Uncertainty band: $1/2 \le \mu_R/m_T, \mu_F/m_T \le 2$ $(m_T = \sqrt{p_T^2 + m_c^2})$
- CDF data from run II [2]
- GM-VFNS describes data within errors

[1] Kniehl, Kramer, IS, Spiesberger, arXiv:0901.4130[hep-ph], PRD(to appear)

[2] Acosta et al., PRL91(2003)241804

I. Schienbein (LPSC Grenoble)

D and B production in the GM-VFNS

COMPARISON W/ PREVIOUS KK FFs [1]

• New KKKSc FFs improve agreement w/ CDF data.

[1] Kniehl, Kramer, PRD74(2006)037502

I. Schienbein (LPSC Grenoble)

D and **B** production in the GM-VFNS

July 11–15, 2011 51 / 58

• CDF II (preliminary) [1]

•
$$\mu_R = \mu_F = m_T$$

- for $p_T \gg m_b$:
 - GM-VFN merges w/ ZM-VFN
 - FFN breaks down
- data point in bin [29,40] favors GM-VFN

[1] Kraus, FERMILAB-THESIS-2006-47; Annovi, FERMILAB-CONF-07-509-E

I. Schienbein (LPSC Grenoble)

D and **B** production in the GM-VFNS

July 11–15, 2011 53 / 58

FFN vs. CDF II [1]

- obsolete FFN as above
- up-to-date FFN evaluated with
 - CTEQ6.1M PDFs
 - $m_b = 4.5 \, \text{GeV}$

•
$$\Lambda_{\overline{\text{MS}}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_s^{(5)} = 0.1181$$

•
$$D(x) = B(b \rightarrow B)\delta(1 - x)$$
 with $B(b \rightarrow B) = 39.8\%$

[1] Kniehl, Kramer, IS, Spiesberger, PRD77 (2008) 014011

I. Schienbein (LPSC Grenoble)

D and **B** production in the GM-VFNS

July 11–15, 2011 54 / 58

INTRINSIC CHARM IN THE PROTON D-MESONS AT RHIC

I. Schienbein (LPSC Grenoble)