

Masses in perturbative QCD

Ingo Schienbein LPSC/Univ. Joseph Fourier

based on work in collaboration with T. Kneesch, B. Kniehl, G. Kramer, S. Kretzer, F. Olness, H. Spiesberger

Theorieseminar Mainz

- **1** OVERVIEW AND MOTIVATION
- **2** Heavy Flavor Schemes
- **3** One-particle inclusive production in a GM-VFNS
- **③** FRAGMENTATION FUNCTIONS IN A GM-VFNS
- **6** APPLICATIONS
- **6** SUMMARY

Overview and Motivation

QCD: A QFT for the strong interactions

Statement: Hadronic matter is made of spin-1/2 quarks [↔ SU(3)_{fl}]

- Baryons like Δ⁺⁺ = |u[↑]u[↑]u[↑]⟩ forbidden by Pauli exclusion/Fermi-Dirac stat. Need additional colour degree of freedom!
- Local SU(3)-color gauge symmetry:

$$\mathcal{L}_{ ext{QCD}} = \sum_{q=u,d,s,c,b,t} ar{q}(i \partial \!\!\!/ - m_{\! q}) q - g ar{q} \partial \!\!\!/ g q - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a + \mathcal{L}_{gf} + \mathcal{L}_{ghost}$$

- Fundamental d.o.f.: quark and gluon fields
- Free parameters:
 - gauge coupling: g
 - quark masses: m_u, m_d, m_s, m_c, m_b, m_t

QCD: A QFT for the strong interactions

Properties:

- Confinement and Hadronization:
 - Free quarks and gluons have not been observed:
 - $_{\rm A})~$ They are confined in color-neutral hadrons of size \sim 1 fm.
 - B) They hadronize into the observed hadrons.
 - Hadronic energy scale: a few hundred MeV [1 fm \leftrightarrow 200 MeV]
 - Strong coupling large at long distances (\gtrsim 1 fm): 'IR-slavery'
 - · Hadrons and hadron masses enter the game
- Asymptotic freedom:
 - Strong couling small at short distances: perturbation theory

Masses in pQCD

Quarks and gluons behave as free particles at asymptotically large energies

BIRD'S EYE VIEW Asymptotic freedom

Renormalization of UV-divergences: Running coupling constant $a_s := \alpha_s/(4\pi)$

$$a_{
m s}(\mu)=rac{1}{eta_0\ln(\mu^2/\Lambda^2)}$$

• Gross, Wilczek ('73); Politzer ('73)

Non-abelian gauge theories: negative beta-functions

 $\frac{da_s}{d\ln\mu^2} = -\beta_0 a_s^2 + \dots$

where $\beta_0 = \frac{11}{3}C_A - \frac{2}{3}n_f$

 \Rightarrow asympt. freedom: $a_s \searrow$ for $\mu \nearrow$

Nobel Prize 2004

Asymptotic freedom:

- pQCD directly applicable if **all** energy scales large (hard scales)
- However, usually long-distance contributions to the amplitudes present:
 - emission of soft gluons
 - · emission of collinear gluons and quarks

pQCD still useful for two classes of observables:

- IR- and collinear-save observables (insensitive to soft or collinear branching)
- Factorizable observables

Factorization:

- Separate amplitudes into (quantum mechanically) independent factors:
 - Soft parts (long distances/small energies): universal
 - hard parts (short distances/large energies): perturbatively calculable
- Note: Soft parts non-perturbative but universal \rightarrow **Predictive framework**

Parton Model based on QCD factorization theorems:

 $d\sigma = PDF \otimes d\hat{\sigma} + remainder$

- PDF:
 - Proton composed of partons = quarks, gluons
 - Structure of proton described by parton distribution functions (PDF)
 - Factorization theorems provide field theoretic definition of PDFs
 - PDFs universal → predictive power
- Hard part $d\hat{\sigma}$:
 - · depends on the process
 - calculable order by order in perturbation theory
- Remainder suppressed by hard scale

Original factorization proofs considered massless partons

BIRD'S EYE VIEW HEAVY QUARKS IN PQCD

Heavy Quarks: h = c, b, t

- $m_u, m_d, m_s \lesssim \Lambda_{
 m QCD} \ll m_c, m_b, m_t$
- $m_h \gg \Lambda_{\text{QCD}} \Rightarrow \alpha_s(m_h^2) \propto \ln^{-1}(\frac{m_h^2}{\Lambda_{\text{QCD}}^2}) \ll 1$ (asymptotic freedom)
- *m_h* sets hard scale; acts as long distance cut-off → pQCD
- Heavy quark production processes are:
 - Fundamental elementary particle processes
 - Important background to New Physics searches at the LHC

How to incorporate heavy quark masses into the pQCD formalism?

Requirements:

- (1) $\mu \ll m$: Decoupling of heavy degrees of freedom
- (2) $\mu \gg m$: IR-safety
- (3) $\mu \sim m$: Correct threshold behavior

Heavy Flavor Schemes

HEAVY FLAVOR SCHEMES

Requirements:

- (1) $\mu \ll m$: Decoupling of heavy degrees of freedom
- (2) $\mu \gg m$: IR-safety
- (3) $\mu \sim m$: Correct threshold behavior

Problem:

- Multiple hard scales: m_c, m_b, m_t, μ
- Mass-independent factorization/renormalization schemes like MS
- A single $\overline{\mathrm{MS}}$ scheme cannot meet requirements (1) and (3) (is unphysical).

Way out: Patchwork of $\overline{\text{MS}}$ schemes S^{n_f, n_R}

- Variable Flavor-Number Scheme (VFNS): $S^{3,3} \rightarrow S^{4,4} \rightarrow S^{5,5}$
- Fixed Flavor-Number Scheme (FFNS): $S^{3,3} \rightarrow S^{3,4} \rightarrow S^{3,5}$ (3-FFNS)
- Masses reintroduced by backdoor: threshold corrections (=matching conditions)

HEAVY FLAVOR SCHEMES FFNS OR VFNS

3-FFNS

- charm is not a parton, appears only in final state
- no collinear divergences from c → c + g but terms ∝ log(µ/m) with µ = Q, p_T,... the hard scale
- Collinear logarithms $log(\mu/m)$ kept in fixed order perturbation theory
- + correct threshold behavior
- + finite charm mass terms m/μ exactly taken into account
- not IR-safe: does not meet requirement (2)
- How to include possible intrinsic charm?

The 3-FFNS should fail when $\alpha_s \ln(\mu/m)$ becomes large [or $a_s \ln(\mu/m)$?]

Phenomenological question: When need to resum collinear log's? \rightarrow Not unambigously answered yet! A lot of handwaving...

HEAVY FLAVOR SCHEMES

VFNS

- charm is a parton for $\mu \gtrsim m$
- mass singularities absorbed in PDFs (and FFs)
 - if m = 0: $1/\varepsilon$ poles $\rightarrow \overline{\text{MS}}$ subtraction
 - if $m \neq 0$: $\log(\mu/m)$ + finite $\rightarrow \overline{MS}$ subtraction
- QCD prediction: DGLAP (RG) evolution resums large logarithms $log(\mu/m)$
- + Requirements (1), (2) satisfied
- + finite mass terms m/μ can be taken into account: massive VFNS (GM-VFNS) (otherwise: massless VFNS (ZM-VFNS) which is the original parton model)
- Requirement (3) problematic point:
 - In DIS slow-rescaling prescriptions (ACOT-χ) good approximation of exact threshold kinematics: c(x) → c(χ) where χ = x(1 + 4m²/Q²)
 - What to do in hadron-hadron collisions?
 - What to do in 1-particle inclusive production?
- Intrinsic charm natural to incorporate

HEAVY FLAVOR SCHEMES VFNS: MORE

VFNS

- Factorization proof with massive quarks for inclusive DIS: Collins '98 Remainder ~ O(Λ²/Q²) not ~ O(m²/Q²)
- Many incarnations of VFNS (ACOT, ACOT-χ, TR): Freedom to shift finite *m*-terms without spoiling IR-safety
- S-ACOT scheme: incoming heavy quarks massless (↔ scheme choice) more complex at NNLO
- Massive quarks can be described by massless evolution kernels (↔ scheme choice)
- Matching $n \rightarrow n + 1$: PDFs, *alpha*s, masses
- At NLO matching continuous at $\mu = m$: $f_i^{n_f} = f_i^{n_{f+1}}$
- At higher orders matching discontinuos:
 - for PDFs discontinuous at $\mathcal{O}(\alpha_s^2)$
 - for α_s discontinuous at $\mathcal{O}(\alpha_s^3)$
- Observable discontinuous: $\sigma^{n_f} = \sigma^{n_f+1} + O(\alpha_s^{K+1})$

ACOT type schemes		TR type schemes				
Q < m _H	$Q > m_{_{\rm H}}$	constant term		$Q < m_{_{\rm H}}$	$Q > m_{_{\rm H}}$	constant term
LOØ	~ <u></u>	Ø	LO		~~	S Q = m _H
NLO K	+ Hele	Ø	NLO	مع جومی +	+ اللوه	مومومی
NNLO	مهمهم جمعهم +	Ø	NNLO	مع مع می مع مع می	مع مع م	⁴ وووي وووي مووي
					1	

One-particle inclusive production in a GM-VFNS

OVERVIEW

- One-particle inclusive production of heavy hadrons $H = D, B, \Lambda_c, \ldots$
- General-Mass Variable Flavour Number Scheme (GM-VFNS): [1]
 - Collinear logarithms of the heavy-quark mass $\ln \mu/m_h$ are subtracted and resummed
 - Finite non-logarithmic m_h/Q terms are kept in the hard part/taken into account
 - Scheme guided by the factorization theorem of Collins with heavy quarks [2]

Ongoing effort to compute all relevant processes in the GM-VFNS at NLO:

• Available:

• $e^+ + e^- \rightarrow (D^0, D^+, D^{\star+}) + X$: FFs	[3]
• $\gamma + \gamma \rightarrow D^{\star +} + X$: direct process	[4]
• $\gamma + \gamma \rightarrow D^{\star +} + X$: single-resolved process	[5]
• $\gamma + p \rightarrow D^{\star +} + X$: direct process	[6]
• $\gamma + p \rightarrow D^{\star +} + X$: resolved process	[7]
• $p + \bar{p} \rightarrow (D^0, D^+, D^{*+}D^+_s, \Lambda^+_c, B^0, B^+) + X$	[1]

[1] Kniehl, Kramer, IS, Spiesberger, PRD71 (2005) 014018; EPJC41 (2005) 199;

PRL96(2006)012001; PRD77(2008)014011; arXiv:0901.4130[hep-ph], PRD (in press)

- [2] Collins, PRD58(1998)094002
- [3] Kneesch, Kniehl, Kramer, IS, NPB799 (2008) 34
- [4] Kramer, Spiesberger, EPJC22(2001)289; [5] EPJC28(2003)495; [6] EPJC38(2004)309

[7] Kniehl,Kramer,IS,Spiesberger, arXiv:0902.3166[hep-ph], EPJC (in press)

I. Schienbein (LPSC Grenoble)

Masses in pQCD

Input for the computation: Fragmentation Functions (FFs) into heavy hadrons H

- FFs from fits to e^+e^- data from Z factories
- Include also B factories → Switch from ZM to GM
- Use initial scale $\mu_0 = m$ (instead of $\mu_0 = 2m$) for consistency with PDFs \rightarrow important for gluon fragmentation

Н	Data	Scheme	Reference
D^{*+}	ALEPH,OPAL	ZM 2 <i>m</i>	BKK, PRD58(1998)014014
$D^0, D^+, D^+_{s}, \Lambda^+_{c}$	OPAL	ZM 2 <i>m</i>	KK, PRD71(2005)094013
$D^{0}, D^{+}, D^{*+}, D^{+}_{s}, \Lambda^{+}_{c}$	OPAL	ZM m	KK, PRD74(2006)037502
D^0, D^+, D^+_{s}	Belle,CLEO,ALEPH,OPAL	GM m	KKKSc, NPB799(2008)34
B^0, B^+	OPAL	ZM 2 <i>m</i>	BKK, PRD58(1998)034016
B^0, B^+	ALEPH,OPAL,SLD	ZM m	KKScSp, PRD77(2008)014011

Goal:

 Test pQCD formalism, scaling violations and universality of FFs in as many processes as possible $A + B \rightarrow H + X$: $d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\sigma(ij \rightarrow kX) \otimes D_k^H(z)$

sum over all possible subprocesses $i + j \rightarrow k + X$

Parton distribution functions: $f_i^A(x_1, \mu_F), f_j^B(x_2, \mu_F)$ non-perturbative input long distance universal Hard scattering cross section: $d\sigma(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{p_T}])$ perturbatively computable short distance (coefficient functions) Fragmentation functions: $D_k^H(z, [\mu_F])$ non-perturbative input long distance universal

Accuracy:

light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2 heavy hadrons: if m_h is neglected in $d\sigma$: $\mathcal{O}((m_h/p_T)^p)$

```
Details (subprocesses, PDFs, FFs; mass terms) depend on the Heavy Flavour Scheme
```

LIST OF SUBPROCESSES: GM-VFNS

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$f gg \to qX$	0 -	$f gg \to QX$
$ 2 gg \to gX $	2 -	2 -
$\textbf{3} \hspace{0.1 cm} qg \rightarrow gX$	3 $Qg \rightarrow gX$	3 -
	4 $Qg \rightarrow QX$	4 -
		5 -
$\mathbf{6} q\bar{q} \to qX$		6 -
		9 -
8 $qg \rightarrow \bar{q}' X$	8 $Qg \rightarrow \bar{q}X$	8 $qg \rightarrow \bar{Q}X$
$ 9 \ qg \to q'X $		
$\textcircled{0} qq \rightarrow gX$	$\textcircled{0} QQ \to gX$	1 -
	$\textcircled{1} QQ \rightarrow QX$	① -
		$\textcircled{P} q\bar{q} \rightarrow QX$
\mathbf{I} $q\bar{q}' \to gX$	${ m I} { m I} { m I} Q ar q o g X, q ar Q o g X$	(B) -
	${f Q} \hspace{15cm} Q \hspace{15cm} ar q ightarrow {\sf Q} X, \hspace{0.15cm} q \hspace{15cm} ar Q ightarrow q X$	() -
$f g q q' \to g X$	$\textcircled{5} Qq \rightarrow gX, qQ \rightarrow gX$	(b) -
		() -
I. Schienbein (LPSC Grenoble)	Masses in pQCD	July 14, 2009 20 / 73

Mass terms contained in the hard scattering coefficients:

```
\mathbf{d}\hat{\sigma}(\mu_F,\mu_{F'},\alpha_s(\mu_R),\frac{m}{p_T})
```

Two ways to derive them:

 Compare massless limit of a massive fixed-order calculation with a massless MS calculation to determine subtraction terms

OR

(2) Perform mass factorization using partonic PDFs and FFs

 Compare limit m → 0 of the massive calculation (Merebashvili et al., Ellis, Nason; Smith, van Neerven; Bojak, Stratmann; ...) with massless MS calculation (Aurenche et al., Aversa et al., ...)

 $\lim_{m\to 0} \mathrm{d}\tilde{\sigma}(m) = \mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}} + \Delta \mathrm{d}\sigma$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{sub}}\equiv\Delta\mathrm{d}\sigma=\lim_{m
ightarrow0}\mathrm{d}\tilde{\sigma}(m)-\mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}}$$

Subtract dσ_{sub} from massive partonic cross section while keeping mass terms

 $\mathrm{d}\hat{\sigma}(m) = \mathrm{d}\tilde{\sigma}(m) - \mathrm{d}\sigma_{\mathrm{sub}}$

 \rightarrow d $\hat{\sigma}(m)$ short distance coefficient including *m* dependence

 \rightarrow allows to use PDFs and FFs with $\overline{\rm MS}$ factorization \otimes massive short distance cross sections

- Treat contributions with <u>charm in the initial state</u> with m = 0
- Massless limit: technically non-trivial, map from phase-space slicing to subtraction method

I. Schienbein (LPSC Grenoble)

Mass factorization

Subtraction terms are associated to mass singularities: can be described by partonic PDFs and FFs for collinear splittings $a \rightarrow b + X$

• initial state: $f_{g \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(x) \ln \frac{\mu^2}{m^2}$ $f_{Q \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} C_F \left[\frac{1+z^2}{1-z} (\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1)\right]_+$ $f_{g \to g}^{(1)}(x, \mu^2) = -\frac{\alpha_s(\mu)}{2\pi} \frac{1}{3} \ln \frac{\mu^2}{m^2} \delta(1-x)$

• final state: $\begin{aligned} d_{g \to Q}^{(1)}(z, \mu^2) &= \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(z) \ln \frac{\mu^2}{m^2} \\ d_{Q \to Q}^{(1)}(z, \mu^2) &= C_F \frac{\alpha_s(\mu)}{2\pi} \left[\frac{1+z^2}{1-z} \left(\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1 \right) \right]_+ \end{aligned}$

Other partonic distribution functions are zero to order α_s

Mele, Nason; Kretzer, Schienbein; Melnikov, Mitov

(2) SUBTRACTION TERMS VIA $\overline{\text{MS}}$ MASS FACTORIZATION: $a(k_1)b(k_2) \rightarrow Q(p_1)X$ [1]

$$\begin{array}{ll} \mbox{Fig. (a):} & d\sigma^{\rm sub}(ab \to QX) &= \int_0^1 dx_1 \ f_{a \to i}^{(1)}(x_1, \mu_F^2) \ d\hat{\sigma}^{(0)}(ib \to QX)[x_1k_1, k_2, p_1] \\ &\equiv \ f_{a \to i}^{(1)}(x_1) \otimes d\hat{\sigma}^{(0)}(ib \to QX) \end{array}$$

$$\begin{array}{lll} \underline{\text{Fig. (b):}} & d\sigma^{\text{sub}}(ab \to QX) & = & \int_0^1 dx_2 \, f_{b \to j}^{(1)}(x_2, \mu_F^2) \, d\hat{\sigma}^{(0)}(aj \to QX)[k_1, x_2 k_2, \rho_1] \\ & \equiv & f_{b \to j}^{(1)}(x_2) \otimes d\hat{\sigma}^{(0)}(aj \to QX) \end{array}$$

 $\begin{array}{ll} \underline{\mathsf{Fig.}} \ (\mathsf{c}): & \mathsf{d}\sigma^{\mathrm{sub}}(ab \to \mathsf{Q}X) & = & \int_0^1 \mathsf{d}z \, \mathrm{d}\hat{\sigma}^{(0)}(ab \to kX)[k_1, k_2, \mathbf{z}^{-1}p_1] \, d_{k \to \mathsf{Q}}^{(1)}(z, {\mu_F'}^2) \\ & \equiv & \mathsf{d}\hat{\sigma}^{(0)}(ab \to kX) \otimes d_{k \to \mathsf{Q}}^{(1)}(z) \end{array}$

[1] Kniehl, Kramer, I.S., Spiesberger, EPJC41(2005)199

I. Schienbein (LPSC Grenoble)

Masses in pQCD

GRAPHICAL REPRESENTATION OF SUBTRACTION TERMS FOR $q\bar{q} \rightarrow Q\bar{Q}g$ and $gq \rightarrow Q\bar{Q}q$

$$\frac{d\hat{\sigma}^{(0)}(q\bar{q} \rightarrow Q\bar{Q}) \otimes d^{(1)}_{Q \rightarrow Q}(z):}{d\hat{\sigma}^{(0)}(q\bar{q} \rightarrow gg) \otimes d^{(1)}_{g \rightarrow Q}(z):} \xrightarrow{\tau \sigma \sigma \sigma \sigma \sigma \sigma} \xrightarrow{\tau \sigma}$$

$$rac{\mathsf{d}\hat{\sigma}^{(0)}(gq
ightarrow gq)\otimes d^{(1)}_{g
ightarrow \mathsf{Q}}(z):}{}$$

$${}^{1)}_{
ightarrow \mathsf{Q}}(x_1)\otimes \mathsf{d}\hat{\sigma}^{(0)}(\mathsf{Q}q
ightarrow \mathsf{Q}q)$$
:

Fragmentation Functions in a GM-VFNS

D^0 , D^+ , D^{*+} FFs with finite-mass corrections [1]

• $\mathbf{e}^+ + \mathbf{e}^- \to (\gamma, Z) \to H + X, \qquad H = D^0, D^+, D^{*+}, \dots$

• $x = 2(p_H \cdot q)/q^2 = 2E_H/\sqrt{s}$ $\sqrt{\rho_H} \le x \le 1$ $(\rho_H = 4m_H^2/s)$

$$\frac{d\sigma}{dx}(x,s) = \sum_{a} \int_{y_{\min}}^{y_{\max}} \frac{dy}{y} \frac{d\sigma_{a}}{dy}(y,\mu,\mu_{f}) D_{a}\left(\frac{x}{y},\mu_{f}\right)$$

 $d\sigma_a/dy$ at NLO with $m_q = 0$ [2] and $m_q \neq 0$ [1,3]

• $x_{\rho} = \rho/\rho_{\max} = \sqrt{(x^2 - \rho_H)/(1 - \rho_H)}$ $0 \le x_{\rho} \le 1$

$$\frac{d\sigma}{dx_{\rho}}(x_{\rho}) = (1 - \rho_{H})\frac{x_{\rho}}{x}\frac{d\sigma}{dx}(x)$$

[1] Kneesch,B.K.,Kramer,Schienbein, NPB799(2008)34 [2] Baier, Fey, ZPC2(1979)339; Altarelli et al. NPB160(1979)301

[3] Nason, Webber, NPB421(1994)473

I. Schienbein (LPSC Grenoble)

Masses in pQCD

• Use radiator $D_{e^{\pm}}$ [1]

[1] Kuraev, Fadin, SJNP41(1985)466; Nicrosini, Trentadue, PLB196(1987)551

I. Schienbein (LPSC Grenoble)

Masses in pQCD

Experimental data

Туре	\sqrt{s} [GeV]	Н	Collaboration
$d\sigma/dx_{ ho}$	10.52	D^{0}, D^{+}, D^{*+}	Belle 06
$d\sigma/dx_{ ho}$	10.52	D^0, D^+, D^{*+}	CLEO 04
$(1/\sigma_{\rm tot}) d\sigma/dx$	91.2	D^{*+}	ALEPH 00
$(1/\sigma_{ m tot}) d\sigma/dx$	91.2	D^0, D^+, D^{*+}	OPAL 96,98

- Theoretical input
 - $m_c = 1.5 \text{ GeV}, m_b = 5.0 \text{ GeV}, \alpha(m_{\Upsilon}) = 1/132, \alpha_s(m_Z) = 0.1176 \rightsquigarrow \Lambda_{\text{QCD}}^{(5)} = 221 \text{ MeV}$
 - Bowler ansatz [1]

$$D_Q^{H_c}(z,\mu_0) = N z^{-(1+\gamma^2)} (1-z)^a \mathrm{e}^{-\gamma^2/z}$$

[1] Bowler, ZPC11(1981)169

I. Schienbein (LPSC Grenoble)

• $\chi^2/d.o.f.$

Н	VFNS	Belle/CLEO	ALEPH/OPAL	Global
D^0	GM	3.15	0.794	4.03
	ZM	3.25	0.789	4.66
D^+	GM	1.30	0.509	1.99
	ZM	1.37	0.507	2.21
D^{*+}	GM	3.74	2.06	6.90
	ZM	3.69	2.04	7.64

- Quark mass effects improve global fits and Belle/CLEO fits for D^0, D^+ , but have no impact on ALEPH/OPAL fits.
- Belle and CLEO data on D^0 , D^{*+} moderately compatible.
- OPAL fits for D^0 , D^+ excellent; ALEPH and OPAL data on D^{*+} moderately compatible.
- Tension between Belle/CLEO and ALEPH/OPAL data.

• Belle/CLEO data push $\langle z \rangle_c(m_Z)$ up by 0.03–0.04

Hadron mass effects on FFs important, quark mass effects marginal

- Strong pull of Belle/CLEO data on $c \rightarrow D^+$ FF
- Reduction in μ_0 increases $g \rightarrow D^+$ FF

Applications

Applications available for

- γ + γ → D^{*±} + X direct and resolved contributions
- $\gamma^* + p \rightarrow D^{*\pm} + X$ photoproduction
- *p* + *p*→ (*D*⁰, *D*^{*±}, *D*[±], *D*[±]_s, Λ[±]_c) + X good description of Tevatron data
- $p + \bar{p} \rightarrow B + X$ works for Tevatron data at large p_T
- work in progress for $e + p \rightarrow D + X$

EPJC22, EPJC28

EPJC38, arXiv:0902.3166 [EPJC]

PRD71, PRL96, arXiv:0901.4130

PRD77
Input parameters:

- $\alpha_s(M_Z) = 0.1181$
- $m_c = 1.5 \text{ GeV}, m_b = 5 \text{ GeV}$
- PDFs: CTEQ6M (NLO)
- FFs: NLO FFs from fits to LEP-OPAL data, initial scale for evolution: μ₀ = m_c (D-mesons) resp. μ₀ = m_b (B-mesons)
- Default scale choice: $\mu_R = \mu_F = \mu'_F = m_T$ where $m_T = \sqrt{p_T^2 + m^2}$

HADROPRODUCTION OF D^0 , D^+ , D^{*+} , D_s^+ GM-VFNS results W/ KKKSc FFs [1]

• $d\sigma/dp_T [nb/GeV]$ $|y| \le 1$ prompt charm

- Uncertainty band: $1/2 \le \mu_R/m_T, \mu_F/m_T \le 2$ $(m_T = \sqrt{p_T^2 + m_c^2})$
- CDF data from run II [2]
- GM-VFNS describes data within errors

[1] Kniehl, Kramer, IS, Spiesberger, arXiv:0901.4130[hep-ph], PRD(to appear)

[2] Acosta et al., PRL91(2003)241804

I. Schienbein (LPSC Grenoble)

Masses in pQCD

COMPARISON W/ PREVIOUS KK FFs [1]

• New KKKSc FFs improve agreement w/ CDF data.

[1] Kniehl, Kramer, PRD74(2006)037502

I. Schienbein (LPSC Grenoble)

Masses in pQCD

- c, c, b, b PDFs relatively weakly constrained by global QCD analyses
- Knowledge important
 - inherently: fundamental structure of the nucleon
 - phenomenologically: signifi cant for physics at Tevatron II and LHC, e.g. charm, bottom, single-top, Higgs production etc.
- Global QCD analyses usually adopt *radiatively generated* HQ PDFs:
 - $f_Q(\mathbf{x}, \mu_0) \equiv 0$ at $\mu_0 = m_Q$ for $\mathbf{Q} = \mathbf{c}, \mathbf{b}$
 - completely determined by gluon and light-quark d.o.f. via QCD evolution
 - properly resums collinear logs of m_Q appearing in fixed-order pQCD
 - theoretical: heavy-quark d.o.f. perturbatively calculable
 - practical: lack of clearly identifyable experimental constraints

INTRINSIC CHARM IN THE PROTON Generalities (cont.)

- Room for additional, genuinely non-perturbative, intrinsic component with f_Q(x, μ₀) ≠ 0
- Especially for charm because $m_c \gtrsim m_p \rightsquigarrow intrinsic charm$ (IC)
- Constrain/determine IC through general global analysis with $m_Q \neq 0$ and comprehensive experimental inputs, such as extension of CTEQ6.5 [1]
- Consider 3 representative IC models: BHPS, meson-cloud, sealike
- Open charm hadroproduction as a laboratory to probe IC [2]

[1] Pumplin, Lai, Tung, PRD75 (2007) 054029

[2] Kniehl, Kramer, IS, Spiesberger, arXiv:0901.4130[hep-ph], PRD(to appear)

INTRINSIC CHARM IN THE PROTON IC MODELS

BHPS model [1]

- Invokes light-cone Fock space picture of nucleon structure
- states with heavy quarks suppressed by off-shell distance $(p_T^2 + m^2)/x \rightsquigarrow$ large x preferred
- Predicts $c(x) = \overline{c}(x)$
- $c(x, \mu_0) = \overline{c}(x, \mu_0) = Ax^2[6x(1+x)\ln x + (1-x)(1+10x+x^2)]$
- A controls magnitude of IC, characterized by

$$\langle x \rangle_{c+\overline{c}} = \int_{0}^{1} \mathrm{d}x \, x[c(x) + \overline{c}(x)]$$

- Meson-cloud model [2]
 - Another light-cone model → large x preferred
 - IC from virtual $uudc\overline{c}$ components, e.g. $\overline{D}^0 \Lambda_c^+$
 - Predicts $c(x) \neq \overline{c}(x)$
 - $c(\underline{x},\mu_0) \approx A x^{1.897} (1-x)^{6.095}, \quad \overline{c}(x,\mu_0) \approx \overline{A} x^{2.511} (1-x)^{4.929}$
 - A/\overline{A} determined by quark number sum rule

$$\int_0^\infty \mathrm{d}x\,x[c(x)-\overline{c}(x)]=0$$

INTRINSIC CHARM IN THE PROTON IC models (cont.)

Sealike model [3]

- Purely phenomenological scenario
- Assume $c(x, \mu_0) = \overline{c}(x, \mu_0) \propto \overline{u}(x, \mu_0) + \overline{d}(x, \mu_0)$ at $\mu_0 = m_c$ w/ overall mass suppression
- IC interchangable w/ light sea-quark components → softer x spectrum

[1] Brodsky, Hoyer, Peterson, Sakai, PLB93(1980)451

[2] Navarra et al., PRD54(1996)842; Melnitchouk, Thomas, PLB414(1997)134

[3] Pumplin, Lai, Tung, PRD75(2007)054029

INTRINSIC CHARM IN THE PROTON IC from QTEQ6.5 global analysis [1]

[1] Pumplin, Lai, Tung, PRD75(2007)054029

After evolution from $\mu_0 = 1.3 \text{ GeV}$ to $\mu = 2 \text{ GeV}$.

Enhancements get washed out as μ increases.

INTRINSIC CHARM IN THE PROTON D-mesons at the Tevatron

INTRINSIC CHARM IN THE PROTON D-mesons at RHIC

HADROPRODUCTION OF B^0 , B^+ [1] New FFs from LEP1/SLC data [2]

Petersen

 $D(x, \mu_0^2) = N \frac{x(1-x)^2}{[(1-x)^2 + \epsilon x]^2}$

Kartvelishvili-Likhoded

 $D(x,\mu_0^2) = N x^{\alpha} (1-x)^{\beta}$

[1] Kniehl, Kramer, IS, Spiesberger, PRD77 (2008) 014011

[2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300; PRD65(2002)092006

I. Schienbein (LPSC Grenoble)

Masses in pQCD

GM-VFNS PREDICTION VS. CDF II [1,2]

- CDF (1.96 TeV):
 - open squares J/ψX [1]
 - solid squares $J/\psi K^+$ [2]
- CTEQ6.1M PDFs

•
$$\Lambda_{\overline{\rm MS}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_{\rm S}^{(5)} = 0.1181$$

•
$$1/2 \le \mu_R/m_T, \mu_F/m_T, \mu_R/\mu_F \le 2$$

 $(m_T = \sqrt{p_T^2 + m_b^2})$

[1] CDF, PRD71(2005)032001[2] CDF, PRD75(2007)012010

- CDF II (preliminary) [1]
- $\mu_R = \mu_F = m_T$
- for $p_T \gg m_b$:
 - GM-VFN merges w/ ZM-VFN
 - FFN breaks down
- data point in bin [29,40] favors GM-VFN

[1] Kraus, FERMILAB-THESIS-2006-47; Annovi, FERMILAB-CONF-07-509-E

Masses in pQCD

FFN vs. CDF II [1]

- obsolete FFN as above
- up-to-date FFN evaluated with
 - CTEQ6.1M PDFs
 - m_b = 4.5 GeV

•
$$\Lambda_{\overline{MS}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_s^{(5)} = 0.1181$$

• $D(x) = B(b \rightarrow B)\delta(1 - x)$ with $B(b \rightarrow B) = 39.8\%$

[1] Kniehl, Kramer, IS, Spiesberger, PRD77 (2008) 014011

LOW-*p*_T IMPROVEMENT OF GM-VFNS [1]

- evaluate $d\hat{\sigma}_{\text{ZM}}^{(1)}(Q + g/q \rightarrow Q + X)$ @ LO to match $f_{g \rightarrow Q}^{(1)} \otimes d\hat{\sigma}^{(0)}(Q + g/q \rightarrow Q + g/q)$
- evaluate $d\hat{\sigma}^{(0)}(gg/q\overline{q} \to Q\overline{Q}) \otimes d^{(1)}_{Q \to Q}$ w/ $m_Q \neq 0$ to match $d\hat{\sigma}^{(1)}_{GM}(gg/q\overline{q} \to Q/\overline{Q} + X)$
- impose $\theta(\hat{s} 4m_Q^2)$ on massless kinematics
- choose $\mu_F^2 = m_Q^2 + \xi p_T^2$ so that $\mu_F \xrightarrow{p_T \to 0} m_Q = \mu_0$
- $G(m, p_T) \equiv 1$ in contrast to FONLL

[1] Kniehl, Kramer, IS, Spiesberger, in preparation

Exemplify results for

- p_T , η distributions
- photoproduction: $Q^2 \le 2 \text{ GeV}^2$ 1.5 GeV $\le p_T \le 12.5 \text{ GeV}, |\eta| \le 1.5, 100 \text{ GeV} \le W_{\gamma p} \le 285 \text{ GeV}$
- → compare with H1 preliminary data: H1prelim-08-073
- $e^{\pm}p$ at low Q²: 0.05 < Q² < 0.7 GeV², 1.5 < p_T < 9.0 GeV, $|\eta|$ < 1.5, 0.02 < y < 0.85
- → compare with ZEUS data: PLB649
 - charm mass: *m* = 1.5 GeV
 - α_s at NLO with $\Lambda_{N_f=4}^{\overline{\text{MS}}} = 0.328$ GeV, i.e. $\alpha_s(M_Z^2) = 0.1180$
- independent choice of renormalization and factorization scales: $\mu_i = \xi_i \sqrt{p_T^2 + m^2}, i = R, F, F'$, default: $\xi_i = 1$
- PDFs: proton: CTEQ6.5, photon: GRV
- fragmentation functions: KKKS 2008

DIRECT AND RESOLVED PARTS

direct and resolved contributions: p_T distribution

resolved part dominated by charm PDF

direct and resolved contributions: η distribution

ratio of cross sections: $\sigma(m = 0) / \sigma(m \neq 0)$

mass effects suppressed in $\sigma_{\rm tot}$

SCALE DEPENDENCE

$$\mu_i = \xi_i \sqrt{p_T^2 + m^2}$$

for $i = R, F, F'$

renormalization scale: *R* factorization scales: *F*: initial state (PDF) *F'*: final state (FF)

variation by factor 2 up/down:

 $^{+84/}_{+13/}-\overset{53\,\%}{_{16\,\%}}$ at $\overset{low}{_{high}}$ p_{T}

large scale uncertainties at small p_T determines scale uncertainty for all η

→ improvement: matching to $N_f = 3$, threshold for *c*-initiated subprocesses

PDF INPUT

ratio of cross sections normalized to CTEQ6.5

largest influence from varying PDF input at small p_T

but small compared to scale uncertainty

FRAGMENTATION FUNCTIONS

FF for $c \rightarrow D^*$ from fitting to e^+e^- data 2008 analysis based on GM-VFNS $\mu_0 = m$

global fit: data from ALEPH, OPAL, BELLE, CLEO

BELLE/CLEO fit

KKKS: Kneesch, Kramer, Kniehl, IS NPB799 (2008)

tension between low and high energy data sets \rightarrow speculations about non-perturbative (power-suppressed) terms

FF INPUT

uncertainties from $c \rightarrow D^*$ FF:

global fit: data from ALEPH, OPAL, BELLE, CLEO

BELLE/CLEO fit

Kneesch, Kramer, Kniehl, IS NPB799 (2008) $ep \rightarrow D^* + X$ at low Q^2

scales at $\mu_{R,F} = \xi_{R,f} \sqrt{p_T^2 + m^2}$ varied by factor 2 up and down

 $ep \rightarrow D^* + X$ at low Q^2

scales at $\mu_{R,F} = \xi_{R,f} \sqrt{p_T^2 + m^2}$ varied by factor 2 up and down uncertainty for all η dominated by smallest p_T

• Phase Space: $2 < Q^2 < 100 \text{ GeV}^2, 0.05 < y < 0.7, \\ 1.5 \le p_{T,Lab}(D^*) \le 15 \text{ GeV}, |\eta_{Lab}(D^*)| < 1.5,$

•
$$\mu_R^2 = \mu_F^2 = {\mu'_F}^2 = \xi \frac{Q^2 + (p_T^*)^2}{2}$$

• Uncertainty band: variation of $\xi \in [1/2, 2]$

- Phase Space: $2 < Q^2 < 100 \text{ GeV}^2$, 0.05 < y < 0.7, $1.5 \le p_{T,Lab}(D^*) \le 15 \text{ GeV}$, $|\eta_{Lab}(D^*)| < 1.5$,
- Additional Cut: $p_T^*(D^*) > 2 \text{ GeV} (\gamma^* p\text{-CMS})$

•
$$\mu_R^2 = \mu_F^2 = {\mu'_F}^2 = \xi \frac{Q^2 + (p_T^*)^2}{2}$$

Uncertainty band: variation of ξ ∈ [1/2, 2]

More distributions

- Discussion of 1-particle inclusive production of heavy quarks in a massive VFNS (GM-VFNS)
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \rightarrow HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- Work in progress:
 - $ep \rightarrow HX$
- Generell expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

- Discussion of 1-particle inclusive production of heavy quarks in a massive VFNS (GM-VFNS)
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \rightarrow HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- Work in progress:
 - $ep \rightarrow HX$
- Generell expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

- Discussion of 1-particle inclusive production of heavy quarks in a massive VFNS (GM-VFNS)
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \rightarrow HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- Work in progress:
 - $ep \rightarrow HX$
- Generell expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

- Discussion of 1-particle inclusive production of heavy quarks in a massive VFNS (GM-VFNS)
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \rightarrow HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- Work in progress:
 - $ep \rightarrow HX$
- Generell expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

Backup Slides

description of the second second
FONLL = FO+NLL [1]

$FONLL = FO + (RS - FOM0)G(m, p_T)$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m,p_T)=\frac{p_T^2}{p_T^2+25m^2}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & \text{p}_{\text{T}} \lesssim 5\text{m} \\ \text{RS} & : & \text{p}_{\text{T}} \gtrsim 5\text{m} \end{cases}$$

back to schemes

[1] Cacciari, Greco, Nason, JHEP05(1998)007

I. Schienbein (LPSC Grenoble)

Masses in pQCD

COMPARISON WITH FONLL

FONLL = FO + (RS - FOM0)G(m, p_T) with

$$G(m, p_T) = \frac{p_T^2}{\rho_T^2 + 25m^2}$$

$$\label{eq:GM-VFNS} \begin{split} \text{GM-VFNS} &= \text{FO} + (\text{RS} - \text{FOM0})\text{G}(\text{m},\text{p}_{\text{T}}) \text{ with } \\ & \tilde{\textit{G}}(\textit{m},\textit{p}_{\text{T}}) = 1 \end{split}$$

FO: Fixed Order; FOM0: Massless limit of FO; RS = ZM-VFNS: Resummed

- Both approaches interpolate between FO and ZM-VFNS
 - FONLL: obvious;
 - GM-VFNS: matching with FO at quark level (see Olness, Scalise, Tung, PRD59(1998)014506)
- Factor $\tilde{G}(m, p_T)$ follows from calculation; $\tilde{G}(m, p_T) = 1 \leftrightarrow$ S-ACOT scheme
- Different point-of-view: GM-VFNS fi nally needs PDFs and FFs in this scheme.
- Numerical comparisons interesting and should be done!

Mass effects: GM-VFNS vs. ZM-VFNS $p\bar{p} \rightarrow D^{\star+}X$

- Results with old FFs with initial scale μ₀ = 2m_c
- Uncertainty band: independent variation of $\mu_R, \mu_F, \mu'_F = \xi m_T, \xi \in [1/2, 2]$

- In this example still p_T > 3m_c
- Mass effects bigger for small μ_R (large $\alpha_s(\mu_R)$)

STRONG COUPLING CONSTANT

- PDG'04: $\alpha_s(M_Z) = 0.1187 \pm 0.0020$
- CTEQ6M PDFs: $\alpha_s(M_Z) = 0.118$; MRST03 $\alpha_s(M_Z) = 0.1165$;
- $d\sigma(p\bar{p} \rightarrow DX) \propto \alpha_s^2(1 + \alpha_s K)$

