Review of nuclear PDFs

Ingo Schienbein Université Grenoble Alpes/LPSC Grenoble

CPTGA meeting "Heavy Flavour Issues at the LHC" LPSC Grenoble, September 26, 2017

Available nuclear PDFs

• EPPS' 16 (supersedes EPS'09) Eskola, Paakkinen, Paukkunen, Salgado, arXiv:1612.0574

- nCTEQ'15 nCTEQ collaboration, PRD93(2016)085037, arXiv:1509.00792
- DSSZ'll de Florian, Sassot, Stratmann, Zurita, PRD85(2012)074028, arXiv:1509.00792
- HKN'07
 Hirai, Kumano, Nagai, PRC76(2007)065207, arXiv:0709.3038
- AT'12
 Atashbar Tehrani, PRC86(2012)064301
- KA'15
 Khanpour, Atashbar Tehrani, PRD93(2016)014026, arXiv:1601.00939

Available nuclear PDFs

• EPPS'16 (supersedes EPS'09) Eskola, Paakkinen, Paukkunen, Salgado, arXiv:1612.0574

• nCTEQ'15
nCTEQ collaboration, PRD93(2016)085037, arXiv:1509.00792

• DSSZ'l | de Florian, Sassot, Stratmann, Zurita, PRD85(2012)074028, arXiv:1509.00792

HKN'07
 Hirai, Kumano, Nagai, PRC76(2007)065207, arXiv:0709.3038

AT'12
 Atashbar Tehrani, PRC86(2012)064301

KA'15
 Khanpour, Atashbar Tehrani, PRD93(2016)014026, arXiv:1601.00939

Main differences

Used data sets

- charged lepton-nucleus DIS, pA DY: All groups (but different cuts!) (EPPS'16 uses also π -A DY data)
- RHIC single pion production: EPPS'16, nCTEQ'15, DSSZ'11 (EPPS now with weigth = 1; DSSZ includes nuclear corrections to FFs)
- neutrino-Pb DIS (CHORUS): EPPS'16
- LHC data (dijet production, W/Z production): EPPS'16

Main differences

Used data sets

- charged lepton-nucleus DIS, pA DY: All groups (but different cuts!) (EPPS'16 uses also π -A DY data)
- RHIC single pion production: EPPS'16, nCTEQ'15, DSSZ'11 (EPPS now with weigth = 1; DSSZ includes nuclear corrections to FFs)
- neutrino-Pb DIS (CHORUS): EPPS'16
- LHC data (dijet production, W/Z production): EPPS'16

Parametrization

- Multiplicative nuclear correction factors: EPPS'16, DSSZ'11, HKN'07, AT'12, KA'15 (requires proton baseline, parametrization can be quite complicated)
- Native nuclear PDFs (same treatment as proton PDFs): nCTEQ'16

Main differences with free-proton PDFs

- Theoretical status of factorization
- Parametrization: more parameters to model A-dependence
- Less data constraints, much(!) smaller kinematic coverage

- Less data constraints → more assumptions about input PDFs
- Assumptions "hide" uncertainties!

EPPS'16 framework: Data

- DIS cut: **Q** > 1.3 GeV
- No cut on W
- Underlying assumption: structure function <u>ratios</u> less sensitive to higher twist and TMC

Fig. 2 The approximate regions in the (x, Q^2) plane at which different data in the EPPS16 fit probe the nuclear PDFs.

Experiment	Observable	Collisions	Data points	χ^2
SLAC E139	DIS	$e^{-}\mathrm{He}(4), e^{-}\mathrm{D}$	21	12.2
CERN NMC 95, re.	DIS	$\mu^-\mathrm{He}(4), \mu^-\mathrm{D}$	16	18.0
CERN NMC 95	DIS	I:(6)D	15	18.4
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}\text{Li}(6), \mu^{-}\text{D}$ $\mu^{-}\text{Li}(6), \mu^{-}\text{D}$	15 153	161.2
oblin mic oo, & dep.	DIO	μ $\Pi(0)$, μ D	100	101.2
SLAC E139	DIS	$e^{-}\mathrm{Be}(9), e^{-}\mathrm{D}$	20	12.9
CERN NMC 96	DIS	$\mu^{-} \text{Be}(9), \mu^{-} \text{C}$	15	4.4
SLAC E139	DIS	$e^{-}C(12), e^{-}D$	7	6.4
CERN NMC 95	DIS	$\mu^{-}C(12), \mu^{-}D$	15	9.0
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}C(12), \mu^{-}D$	165	133.6
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}D$	16	16.7
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}Li(6)$	20	27.9
FNAL E772	DY	pC(12), pD	9	11.3
SLAC E139	DIS	$e^{-}\text{Al}(27), e^{-}\text{D}$	20	13.7
CERN NMC 96	DIS	$\mu^{-}\text{Al}(27), \ \mu^{-}\text{C}(12)$	15	5.6
CL A CL E190	DIG	-C (40) -D	7	4.0
SLAC E139 FNAL E772	DIS DY	$e^{-}Ca(40), e^{-}D$ pCa(40), pD	7 9	$4.8 \\ 3.33$
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} D	15	3.33 27.6
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} Li(6)	20	19.5
CERN NMC 96	DIS	μ^{-} Ca(40), μ^{-} C(12)	15	6.4
GL A G F100	DIG	-F (x a) -F	20	22.6
SLAC E139 FNAL E772	DIS DY	e^{-} Fe(56), e^{-} D e^{-} Fe(56), e^{-} D	26 9	$\frac{22.6}{3.0}$
CERN NMC 96	DIS	μ^{-} Fe(56), μ^{-} C(12)	15	10.8
FNAL E866	DY	pFe(56), pBe(9)	28	20.1
CERN EMC	DIS	μ^{-} Cu(64), μ^{-} D	19	15.4
SLAC E139	DIS	e^{-} Ag(108), e^{-} D	7	8.0
CERN NMC 96	DIS	μ^{-} Sn(117), μ^{-} C(12)	15	12.5
CERN NMC 96, Q^2 dep.	DIS	μ^{-} Sn(117), μ^{-} C(12)	144	87.6
FNAL E772	DY	pW(184), pD	9	7.2
FNAL E866	DY	pW(184), pBe(9)	28	26.1
CERN NA10★	DY	$\pi^{-}W(184), \pi^{-}D$	10	11.6
FNAL E615★	DY	$\pi^+ W(184), \pi^- W(184)$	11	10.2
CERN NA3★	DY	π^{-} Pt(195), π^{-} H	7	4.6
SLAC E139	DIS	e^{-} Au(197), e^{-} D	21	8.4
RHIC PHENIX	π^0	dAu(197), e D	20	6.9
	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
CERN NMC 96	DIS	$\mu^{-}\text{Pb}(207), \mu^{-}\text{C}(12)$	15	4.1
CERN CMS*	W^{\pm}	pPb(208)	10	8.8
CERN CMS★ CERN ATLAS★	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	pPb(208) pPb(208)	6 7	$5.8 \\ 9.6$
CERN CMS*	$_{ m dijet}$	pPb(208) pPb(208)	7	9.0 5.5
CERN CHORUS*	DIS	$\nu \text{Pb}(208), \overline{\nu} \text{Pb}(208)$	824	998.6
Total			1811	1789

EPPS'16 vs nCTEQ'15 @Q2=10 GeV2

- Generally good agreement for x>0.01 (nCTEQ has no data constraints for x<0.01) $\Delta \chi^2 = 35$ (nCTEQ'15), $\Delta \chi^2 = 52$ (EPPS'16)
- Valence bands at large-x partly differ (valence at small-x < 10⁻² irrelevant); influence from CHORUS data?
- EPPS'16 bands for light sea more realistic; nCTEQ'15 has fewer fit parameters for sea
- Still quite some parametrization bias even for EPPS'16

Comparison with dijet data

- nCTEQ'15 in agreement with CMS data; including CMS dijet data in global analysis will help
- DSSZ gluon needs to be revised since not enough shadowed OR energy loss effects need to be included?

Conclusions I

- Paradox: The inclusion of LHC data allowed EPPS'16 to have a more flexible parametrization leading to much(!) larger uncertainty bands
- Even still regions where EPPS16 and nCTEQ15 bands don't overlap pointing to a systematic bias (mostly parametrization bias)
- Need more and more precise LHC pA data from as many hard processes as possible! Lead-only analysis possible!

see nCTEQ analysis, arXiv:1610.02925

see also arXiv:1203.1290 for a discussion of experimental constraints on the strange PDF

Strange PDF: experimental constraints

Opposite sign dimuon production in neutrino DIS: $vN \rightarrow \mu^+\mu^-X$

- High-statistics data from CCFR and NuTeV: Main source of information!
- x~[0.01,0.4]
- VFe DIS: need nuclear corrections! Problem: Final State Interactions (FSI)
- CHORUS (vPb): compatible with NuTeV, could be included
- NOMAD (vFe): data not yet published, in principle very interesting

Drell-Yan production of W/Z at the LHC

Kinematic plane

Uncertainty of strange-PDF will feed into benchmark process

VRAP code: Anastasiou, Dixon, Melnikov, Petriello, PRD69(2004)094008

nCTEQ study of W,Z production at LHC

arXiv:1610.02925

		Observable	Cuts (GeV)	Figure
pPb	14	$d\sigma(Z \to \ell^+\ell^-)/dy_Z$ [2]	$ y_Z^{\text{CM}} < 3.5; 60 < m_{\ell^+\ell^-} < 120$	Fig. 3
		$\frac{d\sigma(Z \to \ell^+ \ell^-)/dy_Z [2]}{d\sigma(W^+ \to \ell^+ \nu)/dy_{\ell^+} [6]}$	$p_T^{\ell^{\pm}} > 25; m_T^{\ell^{\pm}} > 40; \eta_{lab}^{\ell^{\pm}} < 2.4$	Fig. 7a
		$d\sigma(W^- \to \ell^- \bar{\nu})/dy_{\ell^-}[6]$	$p_T^{\ell^{\pm}} > 25; m_T^{\ell^{\pm}} > 40; \eta_{lab}^{\ell^{\pm}} < 2.4$	Fig. 7b
	70	$d\sigma(Z \to \ell^+\ell^-)/dy_Z[3]$	$ \eta_{lab}^{\ell^{\pm}} < 2.4; 60 < m_{\ell^{+}\ell^{-}} < 120; p_{T}^{\ell^{+}(\ell^{-})} > 20$	Fig. 4
	CMS	$d\sigma(W^+ \to \ell^+ \nu)/dy_{\ell^+}[5]$	$p_T^{\ell^{\pm}} > 25; \eta_{lab}^{\pm} < 2.4$	Fig. 6a
		$d\sigma(W^- \to \ell^- \bar{\nu})/dy_{\ell^-}[5]$	$p_T^{\ell^{\pm}} > 25; \eta_{lab}^{\pm} < 2.4$	Fig. 6b
	LHCb	$\sigma(Z \to \ell^+ \ell^-) \ [4]$	$60 < m_{\ell^{+}\ell^{-}} < 120; p_{T}^{\ell^{+}(\ell^{-})} > 20; 2.0 < \eta^{\ell^{\pm}} < 4.5; -4.5 < \eta_{\ell^{\pm}} < -2.0$	Fig. 5
	ALICE	$\sigma(W^+ \to \ell^+ \nu) \ [7]$	$p_T^{\ell^{\pm}} > 10; \ 2.03 < \eta_{lab}^{\ell^{\pm}} < 3.53; \ -4.46 < \eta_{lab}^{\ell^{\pm}} < -2.96$	Fig. 8a
		$\sigma(W^- \to \ell^- \bar{\nu}) \ [7]$	$p_T^{\ell^{\pm}} > 10; \ 2.03 < \eta_{lab}^{\ell^{\pm}} < 3.53; \ -4.46 < \eta_{lab}^{\ell^{\pm}} < -2.96$	Fig. 8b
PbPb	ATLAS	$1/\sigma_{tot}d\sigma/dy_Z[8]$	$66 < m_{\ell^+\ell^-} < 116; y_Z < 2.5$	Fig. 9a
		A_{ℓ} [10]	$p_T^{\ell} < 25; \eta_{lab}^{\ell} < 2.5; m_T > 40; p_T^{miss} < 25$	Fig. 10a
	CMS	$1/\sigma_{tot}d\sigma/dy_Z[9]$	$60 < m_{\ell^+\ell^-} < 120; y_Z < 2.0$	Fig. 9b
		A_{ℓ} [11]	$p_T^{\ell} < 25; \eta_{lab}^{\ell} < 2.1; m_T > 40$	Fig. 10b

Table I: LHC data sets considered in this analysis.

nCTEQ study of W,Z production at LHC

- $y < -1:x > 5 \times 10^{-2} ... 0.3$ (region where nPDFs are constrained by data in global analysis)
- $|y| < 1:x \sim 10^{-2}$ (transition region from anti-shadowing to shadowing)
- $y > 1: x < 5 \times 10^{-3}$ (pure extrapolation!)

W-boson rapidity distributions

W-boson rapidity distributions from ALICE

Z-boson rapidity distributions

(W⁺,W⁻) Correlation

(Z,W) Correlation

Importance of strange PDF

- y<-I (large x): s > sbar could help!
- y<1: delayed transition from anti-shadowing to shadowing could help as seen in NuTeV neutrino data
- y>1: Extrapolation, rather no shadowing at small $x \sim 10^{-3}$?

Reweighting

- Improvements after reweighting
- However, strange PDF not fitted independently in nCTEQ15
- Need to include data in global analysis and open up strange PDF

Conclusions II

- LHC W/Z production data provide important constraints on the light quarks AND the strange quark
- Data favor an unsuppressed quark sea at small x~10-3!
- nCTEQ has performed a reweighting analysis and plans to include these data in the next global analysis

Impact of LHC heavy quark data on NPDFs

Shao, Cacciari, Kusina, Lansberg, IS, work in progress

Introduction

- Use data for D⁰, J/ Ψ , B \rightarrow J/ Ψ , Y(1S) production in p-Pb collsions at LHC at 5.02 and 8.16 TeV
- Comparison with predictions from nCTEQ15 and EPPS16
- Perform reweighting analysis of nuclear effects
- Goal: constrain small-x gluon in lead (down to $x\sim 10^{-6}$)

Data-driven approach

Lansberg & Shao arXiv:1610.05382

- Parameterize the squared amplitude for the partonic scattering process $g+g\rightarrow H+X$
- Convolute with modern proton PDFs
- Use data for D^0 , J/Ψ , $B \rightarrow J/\Psi$, $\Upsilon(IS)$ production in pp collisions at the LHC to determine the squared amplitude
- Depends on the framework of proton PDF (scheme, order, scale choice, ...)
- Convolute squared amplitude with nuclear PDFs (same scheme, order, scale choice) to obtain predictions for p-Pb collisions

Results for R_{pA} vs rapidity

Results for R_{pA} vs rapidity

R_gPb vs x

Conclusions III

- A consistent description of LHC heavy quark data p-Pb data is possible in the standard pQCD framework
- Reweighting of nCTEQ15 and EPPS'16 nPDF shows unambiguosly a suppressed ('shadowed') gluon for x<10-2
- Much reduced uncertainty band for both EPPS'16 and nCTEQ'15+gluons in arXiv:1012.1178
- Interesting situation since W/Z data seem to prefer unsuppressed quark distributions at small $x\sim10^{-3}$.

Outlook/Discussion

- Perform global anlysis of heavy quark data
- Other cold nuclear matter effects have been proposed which should be tested in a global analysis and which might drastically change the nuclear effects, for example:
 - Energy loss in p-A collisions proposed by Arleo & Peigne
 - Gluon saturation
- To test the standard pQCD framework one should include gluon-dominated processes with uncolored final states (where little or no energy loss effects are expected)
 - inclusive prompt photon production (with little energy loss expected)
 - di-photon production (no energy loss)
 - photon + heavy quark production (heavy quark energy loss in p-Pb?)

Available pPb LHC data

- W/Z production
 - ATLAS [arXiv:1507.06232, ATLAS-CONF-2015-056]
 - CMS [arXiv:1512.06461, arXiv:1503.05825]
 - LHCb [arXiv:1406.2885]
 - ALICE [arXiv:1511.06398]
- Jets
 - ATLAS [arXiv:1412.4092]
 - \bullet CMS [arXiv:1401.4433, CMS-PAS-HIN-14-001]
- Charged particle production (FFs dependence)
 - CMS [CMS-PAS-HIN-12-017]
 - ALICE [arXiv:1405.2737, arXiv:1505.04717]
- Isolated photons (PbPb)
 - ATLAS [arXiv:1506.08552]
 - CMS [arXiv:1201.3093]
 - ALICE [arXiv:1509.07324]

PROSA study O. Zenaiev et al, EPJC75(2015)396

- NLO QCD analysis of impact of data for heavy quark production in ep and pp collisions on PDFs
- Theory for heavy quark production in ep, pp: FFNS at NLO
- Data:
 - HERA: Inclusive DIS cross sections in ep
 - HERA: Heavy flavour production cross sections in ep
 - LHCb: Differential cross sections for c (D^0 , D^+ , D^{*+} , D_s^+ , Λ_c) and b (B^+ , B^0 , B_s^0) production in pp at LHC7
- Result:
 LHCb data impose constraints on low-x gluon and quark sea

Kinematic range O. Zenaiev et al, EPJC75(2015)396

gluon momentum fraction x

- HERA inclusive DIS data: x-range is indicated where the gluon PDF uncertainties are less than 10% (at $\mu_F^2=10$ GeV²)
- Mayor impact of LHCb data expected at $5 \times 10^{-6} < x < 10^{-4}$

NLO QCD predictions for charm LHCb data

- Central scale $\mu_0 = m_T$
- Large scale uncertainties!
- Mostly change the normalization, shape less affected

NLO QCD predictions for charm LHCb data

- Normalized cross sections w.r.t. $d\sigma/dy$ in the bin 3 < y < 3.5
- Very small scale uncertainties now!
- Shape remains sensitive to gluon

NLO QCD predictions for beauty LHCb data

- Central scale $\mu_0 = m_T$
- Large scale uncertainties!
- Mostly change the normalization, shape less affected

NLO QCD predictions for beauty LHCb data

- Normalized cross sections w.r.t. $d\sigma/dy$ in the bin 3 < y < 3.5
- Very small scale uncertainties now!
- Shape remains sensitive to gluon

Results for the gluon and the sea

- The uncertainties on the gluon and the sea are significantly reduced using LHCb data
- In the normalised case by a factor 3 at $x\sim5x10^{-6}$