Production of a photon in association with a heavy quark jet in pA and AA collisions

> I. Schienbein LPSC Grenoble/Univ. Grenoble

9th International Workshop on High-pT Physics at LHC LPSC Grenoble, 24 - 28 September 2013

Introduction

$\gamma+Q$ production is a versatile process!

• in pp collisions:

- probe of heavy quark PDFs
- intrinsic charm (IC)/ intrinsic bottom (IB)

• in pA collisions:

- probe of nuclear PDFs (gluon, heavy quarks)
- in AA collisions:
 - probe of heavy quark energy loss

γ +Q production at NLO

[T. Stavreva, J. Owens, PRD79(2009)054017]

• Leading Order - $\mathcal{O}(\alpha \alpha_s)$ - Only one hard-scattering subprocess

- Next-to-Leading Order $\mathcal{O}(\alpha \alpha_s^2)$
 - $\bullet~$ Real Corrections 2 \rightarrow 3 body scattering subprocesses

$g + g ightarrow Q + ar{Q} + \gamma$	$Q+Q ightarrow Q+Q+\gamma$
$g + Q ightarrow g + Q + \gamma$	$Q + ar{Q} ightarrow Q + ar{Q} + \gamma$
$Q + q ightarrow q + Q + \gamma$	$m{q}+ar{m{q}} ightarrow m{Q}+ar{m{Q}}+\gamma$
$Q+ar{q} ightarrow Q+ar{q}+\gamma$	

 Virtual Corrections - interference between LO Born diagram and virtual diagrams

Fragmentation contribution

• LO: include all $2 \to 2$ subprocesses $\sim \mathcal{O}(\alpha_s^2)$, $\mathcal{O}(\alpha_s^2) \otimes D_{\gamma/q,g} \sim \alpha_s^2 \alpha / \alpha_s = \alpha \alpha_s$

• Also need to include NLO fragmentation contributions - convolute all $2 \rightarrow 3 \sim O(\alpha_s^3)$ with γ FF

- Reduced due to isolation requirements
- minimizes background from photons : $\pi^0 \to \gamma \gamma$

Final state collinear singularity in $q\bar{q} \rightarrow Q\bar{Q} + \gamma$

 Unlike for inclusive direct photon the annihilation subprocess does not appear at LO

- Jet observed in final state (not meson \rightarrow no HQ FF)
- Regulate singularity by retaining HQ mass: $(p_Q + p_{\bar{Q}})^2 > 4m_Q^2$

$\gamma+Q$ in pp collisions

References:

T. Stavreva, J. Owens, PRD79(2009)054017 Bednyakov, Demichev, Lykasov, Stavreva, Stockton,arXiv:1305.3548

Is there charm in the nucleon?

- Standard approach: Charm entirely perturbative
- Heavy Flavour Schemes
 - FFNS: charm not in the proton keep logs(Q/m) in fixed order
 - VFNS: charm PDF in the proton resum logs(Q/m)
- Different Heavy Flavour Schemes = different ways to organize the perturbation series
- What is structure? What is interaction?
 Freedom to choose the factorization scale
- However, charm not so much heavier than Lambda_QCD
- There could be a non-perturbative **intrinsic charm** component
- Important to test the charm PDF experimentally

How to access the heavy quark PDFs directly?

 $c g \rightarrow c \gamma$ $b g \rightarrow b \gamma$

 $s g \rightarrow c W$ $c g \rightarrow b$

How to access the heavy quark PDFs directly?

 $c g \rightarrow c \gamma$ $b g \rightarrow b$

 $s g \rightarrow c$ $c g \rightarrow b$

Results from Tevatron

Measurements by DØ Collaboration [arXiv:0901.0739]

- Really good agreement for $\gamma+b$
- Not so for $\gamma + {\it c}$
- Given this: Possible explanation existence of intrinsic charm rather than higher order corrections

Intrinsic Charm effect on Y+c

- BHPS IC: cross section grows at large pT but still below data
- Results inconclusive:
 - new measurements at Tevatron: CDF & D0
 - test at pp colliders: RHIC & LHC

New results from D0

• $\gamma + c$ - left - arXiv:1210.5033 • $\gamma + b$ - right - arXiv:1203.5865

Even larger discrepancy now!

Discussion: Is there a QCD anomaly?

- **Tevatron:** q-qbar channel
 - effectively LO
 - dominant at pT > 70 GeV
 - large NNLO corrections!?

• LHC:

- g & Q initiated subprocesses dominate (>80%)
- expect no anomaly
- important to measure, probe of IC
- For many more details (predictions for RHIC, LHC, used cuts, γ+b, etc.) see:
 - Talk T. Stavreva at DIS 2013
 - arXiv:1305.3548

Discussion: Is there a QCD anomaly?

- **Tevatron:** q-qbar channel
 - effectively LO
 - dominant at pT > 70 GeV
 - large NNLO corrections!?

• LHC:

- g & Q initiated subprocesses dominate (>80%)
- expect no anomaly
- important to measure, probe of IC
- For many more details (predictions for RHIC, LHC, used cuts, γ+b, etc.) see:
 - Talk T. Stavreva at DIS 2013
 - arXiv:1305.3548

Discussion: Is there a QCD anomaly?

$\gamma+Q$ in pA collisions

References: T. Stavreva et al., JHEP1101(2011)152

[EPS09, Eskola, Paukkunen, Salgado, 0902.4154]

[nCTEQ, 0907.2357 & 1012.1178]

nCTEQ PDFs with uncertainties

How to probe the gluon distribution?

- Jets
 - Tevatron incl. jet data already used
- Prompt Photons
 - Arleo et al, JHEP1104(2011)055
 - d'Enterria, Rojo, NPB860(2012)311
- Virtual Photons
 - see talk by M. Klasen
- Photons + Heavy Quarks
 - T. Stavreva et al., JHEP1101(2011)152 (this talk)
- Open heavy quarks?
- Heavy Quarkonia?

How to probe the gluon distribution?

- Tevatron incl. jet data already used
- Prompt Photons
 - Arleo et al, JHEP1104(2011)055
 - d'Enterria, Rojo, NPB860(2012)311
- Virtual Photons
 - see talk by M. Klasen
- Photons + Heavy Quarks
 - T. Stavreva et al., JHEP1101(2011)152 (this talk)
- Open heavy quarks?
- Heavy Quarkonia?

Predictions in pA

• NLO calculations assuming that charm PDF is radiatively generated $(c(x, \mu = m_c) = 0)$

$$\frac{dc(x,Q)}{dt} = \frac{\alpha_s}{2\pi} \int \frac{dy}{y} [c(x/y)P_{Q\leftarrow Q}(y) + g(x/y)P_{g\leftarrow Q}(y)]$$

in the variable flavour number scheme

Probing charm nPDF allows for constraining the gluon sector

Predictions in pA

• NLO calculations assuming that charm PDF is radiatively generated $(c(x, \mu = m_c) = 0)$

$$\frac{dc(x,Q)}{dt} = \frac{\alpha_s}{2\pi} \int \frac{dy}{y} [c(x/y)P_{Q\leftarrow Q}(y) + g(x/y)P_{g\leftarrow Q}(y)]$$

in the variable flavour number scheme

- Predictions at RHIC and LHC
 - RHIC: d Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$
 - LHC: p Pb collisions at $\sqrt{s_{_{\rm NN}}} = 8.8 \text{ TeV}$

Calculation of quenching factors

$$R_{pA}^{\gamma Q} = \frac{\sigma \left(pA \to \gamma \ Q \ X \right)}{A \ \sigma \left(pp \to \gamma \ Q \ X \right)}$$

using different nPDF sets then available: nCTEQ, EPS09, HKN07

Spectra and rates

Absolute cross sections

- Cross section dominated by Compton scattering
- Important NLO corrections

Spectra and rates

Expected rates at RHIC (PHENIX kinematics)

Assuming $\mathcal{L}^{year} = 0.74 \text{ pb}^{-1}$

Photon + charm

- $\mathcal{N}\simeq 3 imes 10^4$ for $p_{\mathcal{T}_\gamma}>7$ GeV
- $\mathcal{N}\simeq 10^2$ for $p_{\mathcal{T}_\gamma}>20$ GeV

Photon + bottom

• < 100 events for $p_{T_\gamma} > 17~{
m GeV}$

Spectra and rates

Expected rates at LHC (ALICE kinematics)

Assuming $\mathcal{L}^{\text{year}} = 0.1 \text{ pb}^{-1}$

	$\sigma^{pPb}_{\gamma+Q}$	$N^{pPb}_{\gamma+Q}$
$\gamma + c$ PHOS	22700 pb	2270
$\gamma + b \; PHOS$	3300 pb	330
$\gamma + c EMCal$	119000 pb	11900
$\gamma + b \; EMCal$	22700 pb	2270

• Large for $\gamma + c$ and $\gamma + b$ events at LHC

Constraining the gluon nPDF

• $R_{pPb}^{\gamma+c}$ follows R_g^{Pb} very closely

- Almost no overlap between EPS09 and HKN07, and nCTEQ decut3
- Measurements with sufficiently small error bars should disentangle the various nPDF sets

Constraining the gluon nPDF

• Same observation than at LHC : $R_{dAu}^{\gamma+c} \simeq R_g^{Au}$

• Kinematic region probed at RHIC ($x = 10^{-1}-2 \times 10^{-1}$) complementary to that at LHC ($x = 5 \times 10^{-3}-2 \times 10^{-2}$)

Conclusions I

- σ+O initiated subprocesses dominate
- In standard approach: Heavy quark PDF dynamically generated; clean probe of gluon PDF
- No isospin effects!
 Quenching factor R=1 if no nuclear effects
- Cross sections large enough at RHIC and LHC

•
$$R_{pPb}^{\gamma+c}$$
 follows R_g^{Pb} very closely

Baseline for photon+Q production in AA collisions

$\gamma+Q$ in AA collisions

References: T. Stavreva, F. Arleo, IS, JHEP1302(2013)072

Probing (massive) parton energy loss in QGP

Energy loss of massive partons

- Heavy quark mass acts as a collinear cutoff for medium-induced gluon radiation, just like in vacuum (dead cone) [Doskhitzer Kharzeev 2001]
- Clear hierarchy expected

$$\left(\Delta E\Big|_{g}>\right)\Delta E\Big|_{q}>\Delta E\Big|_{c}>\Delta E\Big|_{b}$$

Probing (massive) parton energy loss in QGP

[ALICE]

Probing (massive) parton energy loss in QGP

Energy loss of massive partons

- Heavy quark mass acts as a collinear cutoff for medium-induced gluon radiation, just like in vacuum (dead cone) [Doskhitzer Kharzeev 2001]
- Clear hierarchy expected

$$\left(\Delta E\Big|_{g}>\right)\Delta E\Big|_{q}>\Delta E\Big|_{c}>\Delta E\Big|_{b}$$

 $\gamma + {\it Q}$ unique tool to probe ${\it Q}$ energy loss in the plasma

Analysis in AA collisions

- Calculations performed at NLO accuracy at $\sqrt{s} = 5.5$ TeV
- Heavy quark energy loss ϵ_{q} estimated on an event-by-event basis from the quenching weight (probability distribution) obtained perturbatively

[Armesto Dainese Salgado Wiedemann 2005]

- Various observables investigated
 - Photon–jet energy asymmetry A_J

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \Delta \phi > \pi/2$$

• Momentum imbalance $z_{\gamma Q}$

$$z_{\gamma Q} = -\frac{\vec{p}_{T\gamma}.\vec{p}_{TQ}}{p_{T\gamma}^2}$$

• Photon-jet pair momentum q_{\perp}

$$q_{\perp} = |p_{T\gamma} + p_{TQ}|$$

Transverse momentum distributions

- No (or little) modifications of the photon p_{\perp}
- Stronger effects on the heavy quark jet spectrum

Transverse momentum distributions

Nuclear production ratios R_{AA}

Sensitive to the amount of energy loss assumed in the calculation

• Needs to be compared to $\gamma +$ inclusive jet production

Pair momentum distribution

Why q_{\perp} distribution

 $q_{\perp} \simeq \epsilon_o$ at LO accuracy if the photon is produced directly

• The shift in the q_{\perp} distributions should reflect the strength of heavy quark energy loss in the medium

Conclusions II

- $AA \rightarrow \gamma + Q$ very interesting process Allows to study heavy quark energy loss in the QGP calibrated against the photon
- Performed first exploratory study at NLO for the LHC

Merci!

Intrinsic Charm

A colleague: "If QCD is right, there has to be IC" (which normalization?)

Intrinsic charm:

 $c(x, \mu_0) \neq 0$ at initial scale $\mu_0 = m_c$

Models implemented in CTEQ 6.5C (PRD75, 2007) global fit allows average momentum $\langle x \rangle_{c+\bar{c}}$ or order 1 %

- 1 Light-cone Fock-space picture (Brodsky et al.), concentrated at large x $\langle x \rangle_{c+\bar{c}} = 0.57, 2.0 \%$
- 2 Meson-cloud model (Navarra et al.) $\langle x \rangle_{c+\bar{c}} = 0.96, 1.8 \%$
- 3 Phenomenological model: sea-like charm, broad in $x \langle x \rangle_{c+\bar{c}} = 1.1, 2.4 \%$

Recent CTEQ-TEA analysis of IC: 1309.0025

Results for LHC - ATLAS

	p _T	Rapidity	Isolation Cuts
Photon	$p_{T,\gamma}^{min} = 45 { m GeV}$	$ y_{\gamma} < 1.37$	$R = 0.4, E_T = 7 \text{ GeV}$
	$p_{T,\gamma}^{max} = 1000 \text{ GeV}$	$1.52 < y_{\gamma} < 2.37$	
Heavy Jet	$p_{T,Q}^{min} = 20 \text{ GeV}$	$ y_Q < 2.4$	$R_{jet} > 0.4, R_{Q\gamma} > 1$

γ+c, central rapidity

Results for LHC - ATLAS

	p _T	Rapidity	Isolation Cuts
Photon	$p_{T,\gamma}^{min} = 45 { m GeV}$	$ y_{\gamma} < 1.37$	$R = 0.4, E_T = 7 { m GeV}$
	$p_{T,\gamma}^{max} = 1000 \text{ GeV}$	$1.52 < y_{\gamma} < 2.37$	
Heavy Jet	$p_{T,Q}^{min} = 20 \text{ GeV}$	$ y_Q < 2.4$	$R_{jet} > 0.4, R_{Q\gamma} > 1$

γ+c, forward rapidity

Results for RHIC - PHENIX

- Small center of mass energy probes high $x \sim p_T / \sqrt{S}$
- Cross section is very sensitive to IC especially BHPS