Nuclear PDFs at the LHC

Ingo Schienbein LPSC Grenoble

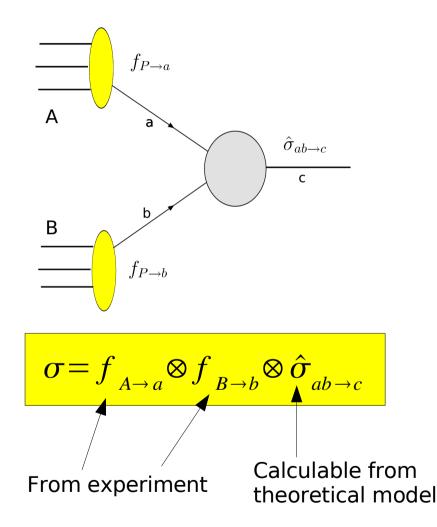
Rencontres QGP-France 2009 Etretat, 15-18 September

Outline

- [Introduction]
- [Introduction to global analyses of PDFs]
- nPDFs from IA DIS and DY data
- nPDFs from Neutrino DIS data
- Conclusions

Introduction

Nuclear PDF (nPDF)


- Information on hadronic structure
- Essential for hard processes in hadronic collisions
 - Deep inelastic scattering (DIS): l-A, v-A
 - Drell-Yan (DY): $A + B \rightarrow \ell^+ + \ell^-$
 - Jets, Photons, Hadrons at large p_T , Heavy Quarks, ... in p-A, A-A, (γ -A, e-A) collisions
- Provide nuclear corrections for global analyses of proton PDFs

Theoretical Basis: Factorization

- Factorization theorems
 - provide (field theoretical) definitions of PDFs
 - make a statement about the error
- PDFs and predictions for observables+uncertainties refer to this standard pQCD framework
- There might be breaking of QCD factorization, deviations from DGLAP evolution, ...

Still need solid understanding of standard framework to establish deviations!

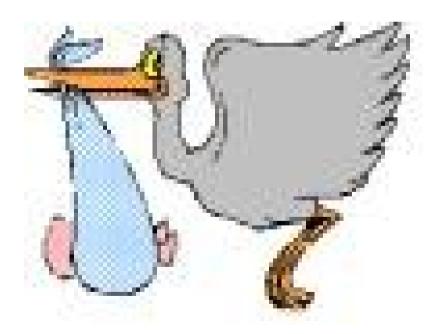
Factorization

Parton Distribution Functions (PDFs) $f_{A \rightarrow a}(x, \mu^2)$

* Universal, non-perturbative
* Describe the structure of hadrons
* Obey DGLAP evolution equations

The hard part $\hat{\sigma}_{_{ab \rightarrow \,c}}(\mu^2)$

- ★ Free of short distance scales
- Calculable in perturbation theory
- Depends on the process


Predictive Power

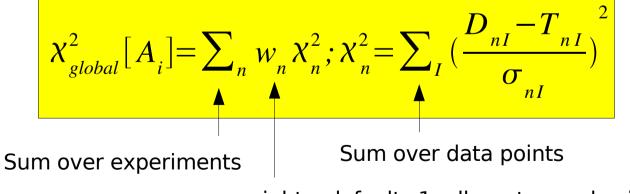
Universality: <u>same</u> PDFs/FFs enter different processes:

- **DIS:** $F_2^A(x,Q^2) = \sum_i [f_i^A \otimes C_{2,i}](x,Q^2)$
- DY: $\sigma_{A+B\to\ell^++\ell^-+X} = \sum_{i,j} f_i^A \otimes f_j^B \otimes \hat{\sigma}^{i+j\to\ell^++\ell^-+X}$
- A+B -> H + X: $\sigma_{A+B\to H+X} = \sum_{i,j,k} f_i^A \otimes f_j^B \otimes \hat{\sigma}^{i+j\to k+X} \otimes D_k^H$
- Predictions for unexplored kinematic regions and for your favorite new physics process

Introduction to global analyses of PDFs

Where do PDFs come from?

General Remarks


- PDFs are non-perturbative objects
- Lattice: calculate moments of certain PDFs. Not yet precise enough even for the proton
- Only possibility: extract PDFs from exp. data (scale dependence is of course perturbative)
- Many different PDF flavors: need as many different observables as possible to disentangle and constrain them ('global')

Global Analysis: General Procedure

1.) Parameterize x-dependence of PDFs at input scale Q_0 :

$$f(x, Q_0) = A_0 x^{A_1} (1-x)^{A_2} P(x; A_3, ...); f = u_v, d_v, g, \overline{u}, \overline{d}, s, \overline{s}$$

- 2.) Evolve from $Q_0 \rightarrow Q$ by solving the DGLAP evolution equations --> f(x,Q)
- 3.) Define suitable Chi² function and minimize w.r.t. fit parameters

weights: default=1, allows to emphasize certain data sets

PDF Uncertainties

Sources:

- Experimental Errors to be propagated to the PDFs
- Theoretical Uncertainties
- Details of the Global Fits
- Inconsistencies in the use of the PDFs/application of the theoretical framework

There are known Unknowns ...

Errors of experimental data

Methods: to propagate exp. errors to PDFs

• Hesse Matrix

- Eigenvector PDFs
- Quadratic approximation
- Simple computation of correlations

Lagrange Multipliers

- No quadratic approximation
- Time consuming

Monte Carlo Methods

- generate N data samples by varying data within errors
- N fits to the N samples -> Estimate uncertainty

Hessian method:

Assume only one fit parameter a --> Expand $\chi^2(a)$ around Minimum a_0

$$\chi^{2}(a) = \chi^{2}(a_{0}) + \frac{1}{2}\chi^{2''}(a_{0})(a - a_{0})^{2} + \dots$$

Determine Tolerance T <--> 1-sigma uncertainty: $T = \Delta \chi^2$

--> 1- σ uncertainty range for parameter a such that:

$$\chi^{2}(a) = \chi^{2}(a_{0}) + \Delta \chi^{2} \Rightarrow \Delta a = T \sqrt{2/\chi^{2''}(a_{0})}$$

--> best fit PDF: a_0 , two 'Eigenvector' PDFs: $a_0 + \Delta a$, $a_0 - \Delta a$

1- σ uncertainty for Observable X:

$$\Delta X = \frac{X(PDF[a_0 + \Delta a]) - X(PDF[a_0 - \Delta a])}{2} \propto \Delta a \propto T$$

Generalization to n parameters: add in quadrature

Eigenvalue of

Hessian 'matrix'

Details of a global analysis

'Internal choices':

- Choice/Weight of data sets used
- Assumptions on PDFs (replace uncertainty!)
- Choice of Nuclear corrections to be applied to data taken with nuclear targets (D, Fe)
- Estimate/Choice of tolerance T corresponding to 1-sigma uncertainties
- Choice of the input scale
- Choice of the functional form of the PDFs at the input scale
- Scale evolution: x-space or n-space, spurious terms, soft-gluon resummation (evolution)

Details of a global analysis

'Public choices':

- Perturbative Order (LO, NLO, NNLO)
- Parameters: mc, mb, alphas(Mz)
- Factorization Scheme
- Heavy Flavour Scheme
- Central Factorization/Renormalization Scales
- Include?
 - Resummations (hard part)
 - Target Mass Corrections (TMC), Higher Twist
 - QED-effects

Remarks:

- 'Public choices' are choices also to be made by the user of the PDFs.
- For each public choice need in principle consistent set of PDFs
- Note: Changes in the "details" may lead to results which lie outside previous error bands!
- Certain items on the list become relevant due to the ever increasing demand for precision

Conclusion: Useful and necessary to have several different global analyses of PDFs.

Inconsistencies

Examples:

- Use NLO PDFs with LO cross sections
- Use LO PDFs with NLO cross sections
- Use different schemes for PDFs and hard scattering cross sections
- Use different mc, mb, alphas than utilized in the global fit
- Use intrinsic k_T

nPDFs from IA DIS and DY data

Work in collaboration with:

- People from Grenoble: K. Kovarik, J. Y. Yu, IS
- CTEQ-members: F. Olness (SMU), J. Morfin (FNAL), J. Owens (FSU), C. Keppel (JLAB)

arXiv:0907.2357

nPDFs from IA DIS and DY data

- Global analyses of nPDF:
 - HKN'07 [PRC76(2007)065207] LO,NLO,error PDFs,chi^2/dof = 1.2
 - EPS'09 [JHEP0904(2009)065] LO,NLO,error PDFs, chi^2/dof = 0.8
 - DS'04 [PRD69(2004)074028] first NLO analysis, 'semi-global', no error PDFs, chi^2/dof = 0.76
- Based on IA DIS+DY data (EPS'09 uses also inclusive pi^0 data at midrap. from d+Au and p+p coll. at RHIC)
- In our analysis use same data sets as HKN'07 (up to cuts)

	R	Nucleus	Experiment	EPS09	HKN07	DS04
		D/p	NMC		0	
DIS	A/D	4He	SLAC E139	0	0	0
			NMC95	0 (5)	0	0
		Li	NMC95	0	0	
		Be	SLAC E139	0	0	0
		С	EMC-88, 90		0	
			NMC 95	0	0	0
			SLAC E139	0	0	0
			FNAL-E665		0	
		N	BCDMS 85		0	
			HERMES 03		0	
		AI	SLAC E49		0	
			SLAC E139	0	0	0
		Ca	EMC 90		0	
			NMC 95	0	Ō	0
			SLAC E139	0	0	0
			FNAL-E665		0	
		Fe	SLAC E87		0	
			SLAC E139	O (15)	0	0
			SLAC E140		0	
			BCDMS 87		Ō	
		Cu	EMC 93	0	Ō	
		Kr	HERMES 03	Ť	ŏ	
		Ag	SLAC E139	0	0	0
		Sn	EMC 88		0	
		Au	SLAC E139	0	õ	0
			SLAC E140	-	Ō	
		Pb	FNAL-E665		ŏ	
	A/C	Be	NMC 96	0	Ō	0
		AI	NMC 96	ŏ	õ	ŏ
		Ca	NMC 95	-	Õ	-
			NMC 96	0	ŏ	0
		Fe	NMC 96	ŏ	ŏ	ŏ
		Sn	NMC 96	O (10)	ŏ	ŏ
		Pb	NMC 96	0	ŏ	ŏ
	A/Li	c	NMC 95	ŏ	ŏ	~
		Ca	NMC 95	ŏ	0	
DY	A/D	C	FNAL-E772	ŏ	0	0
		Ca		O (15)	ŏ	ŏ
		Fe		O (15)	ŏ	ŏ
		Ŵ		O (10)	ŏ	0
	A/Be	Fe	FNAL E866	0(10)	ŏ	0
		Ŵ		ŏ	ŏ	
pro	dA/pp	Au	RHIC-PHENIX	O (20)	~	
pro		Au		0 (20)		

<u>General conclusion</u>: see H. Paukkunen, Talk at DIS'09

Excellent agreement between NLO pQCD and the IA DIS, DY, and pi 0 data in the kinematical range 0.005 < x < 1, $m_c^2 < Q^2 < 150 \text{ GeV}^2$ is found.

Factorization theorem in hard nuclear processes seems to work well.

Two up-to-date sets including PDF uncertainties (HKN'07, EPS'09) ready for use at LHC.

Why yet another set of nPDF?

- Generally, the more global analyses available the better since quite a lot of physical assumptions and technical details enter the game. (Note that PDF error bands tend to <u>underestimate</u> the true error.)
- Want close connection to the CTEQ proton analysis. Use nPDF to calculate nuclear correction factors in a flexible way (Observable and Q^2 dependent).
- Work has been triggered by our analysis of Neutrino DIS data (see below).

Global fit package

- CTEQ global fit package extended:
 - handle various nuclear targets
 - included new observables:
 - structure function ratios: $F_2^A(x,Q^2)/F_2^{A'}(x,Q^2)$
 - ratio of DY cross sections: $\sigma_{DY}^{pA'}/\sigma_{DY}^{pA'}$
 - neutrino cross sections
 - included all the relevant data:
 - I-A DIS, DY
 - NuTeV (iron), CHORUS (lead)
 - modeled the A-dependence of our fit parameters

- Use same framework as in CTEQ6M proton fit:
 - $Q_0 = m_c = 1.3 \text{ GeV}$, $m_b = 4.5 \text{ GeV}$, $\alpha_s(M_z) = 0.118$
 - Heavy quark treatment: ACOT scheme
 - Functional form for bound proton PDFs same as for free proton PDFs: (restrict x to 0<x<1)

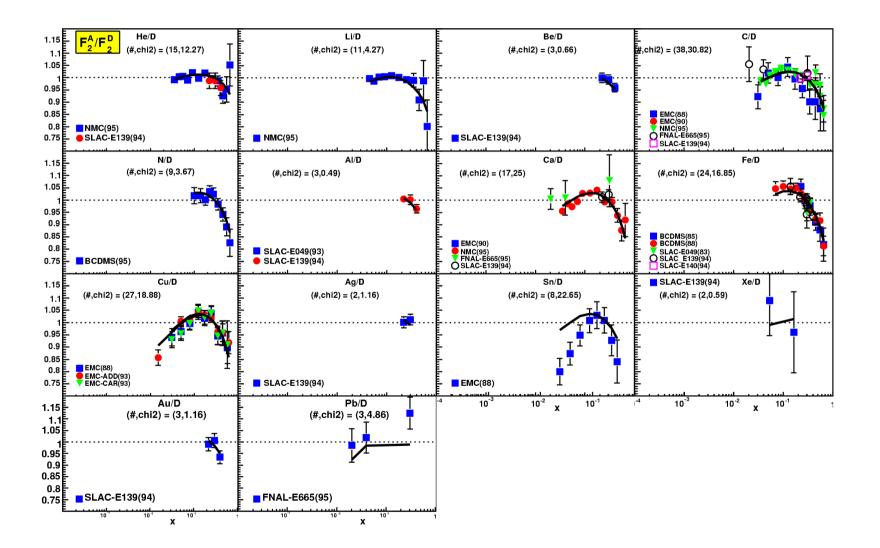
 $x f_k(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5} \qquad k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s},$ $\bar{d}(x, Q_0) / \bar{u}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x) (1-x)^{c_4},$

(bound neutron PDFs by iospin symmetry)

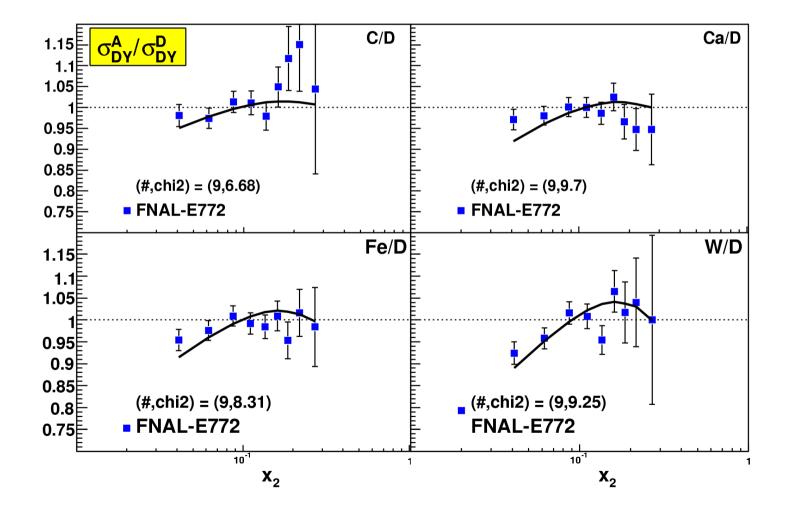
simple A-dependence: (reduces to proton for A=1)

 $c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}} \right), \quad k = \{1, \dots, 5\}.$

•
$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{(A-Z)}{A} f_i^{n/A}(x,Q)$$


Standard cuts: Q>2 GeV, W>3.5 GeV

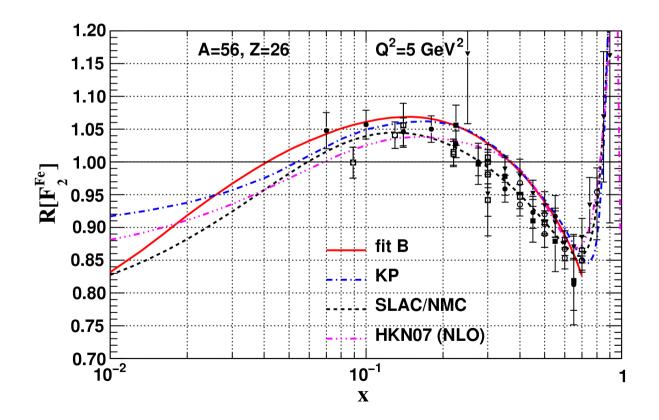
Some results


arXiv:0907.2357

- 708 (1233) data points after (before) cuts
- 32 free paramters; 675 d.o.f.
- overall $\chi^2/dof = 0.95$
- individually:
 - for F_2^A/F_2^D : $\chi^2/pt = 0.92$
 - for $F_2^A/F_2^{A'}$: $\chi^2/pt = 0.69$
 - for DY: $\chi^2/pt = 1.08$
- Our simple approach works!

Fit to nuclear DIS data

Fit to Nuclear DY data



Nuclear correction factor R

$$R[\mathcal{O}] = \frac{O[\text{nuc.PDF}]}{O[\text{freePDF}]}$$

Use nPDF from our fit of IA DIS and DY data.

Results are compatible!

Next steps

- Error PDFs
- Try to relax cuts on Q^2 and W to study problematic large-x region
 - Target mass correction (TMC) [see arXiv:0709.1775]
 - Higher twist contributions
 - nPDF not zero at x=1 (but our functional forms vanish)
 - soft gluon resummation
 - resonances at low W, quark-hadron duality

see C. Keppel, Talk at DIS'09

nPDFs from neutrino DIS data

Work in collaboration with:

- People from Grenoble: K. Kovarik, J. Y. Yu, IS
- CTEQ-members: F. Olness (SMU), J. Morfin (FNAL), J. Owens (FSU), C. Keppel (JLAB)

PRD77(2008)054013

Why neutrino DIS?

• Flavor separation:

Neutrino sfs depend on different combinations of PDFs

• Dimuon production:

- Main source of information on the strange sea
- Large uncertainty on s(x) has significant influence on the W and Z benchmark processes at LHC
- Data interesting for proton PDF and nPDF
- For proton PDF: need nuclear corrections!

Why neutrino DIS?

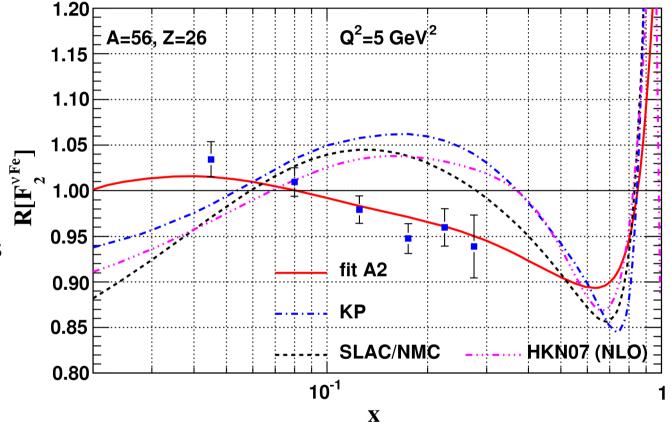
- LBL precision neutrino experiments: Need good understanding of v-A cross sections (A=Oxygen, Carbon)
- **EW precision measurements:** Paschos-Wolfenstein: extraction of $\sin^2 \theta_W$

Analysis of NuTeV data

- NuTeV cross section data
 - more than 1000 neutrino cross section data
 - more than 1000 anti-neutrino cross section data
 - correlated errors, radiative corrections, with and w/ o/ isoscalar corrections
- NuTeV/CCFR dimuon data (172 pts) to fix s(x) PDF
- Idea: Analyse iron data only (iron neutrino data)
 - Advantage: no A-dependence needs to be modeled
 - Only 2 Observables: not all PDFs constrained Need to be careful.

Analysis of NuTeV data -cont.-

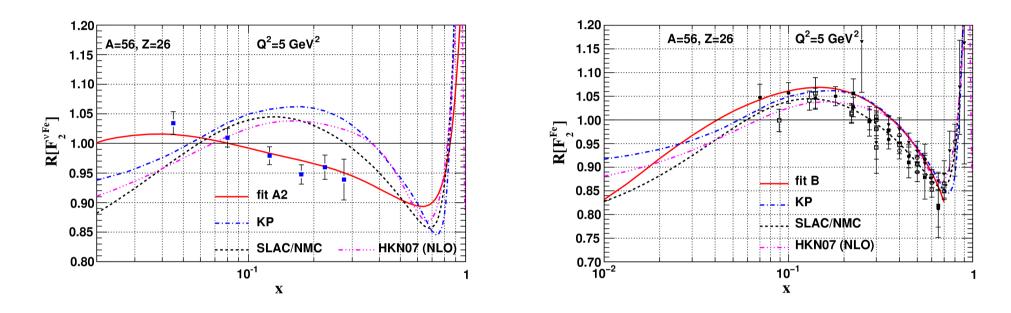
Assumptions


- Gluon PDF not constrained: Fix gluon to free proton gluon (supported by result of DS'04)
- Assume corrections to dbar similar to corrections to ubar at moderate and small x
- 'Perform regression analysis' where only one parameter is left free at a time
- Band of fits with similar χ^2/dof

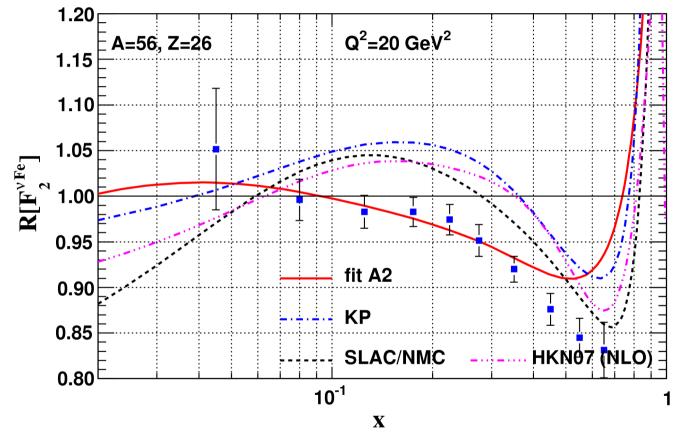
Nuclear correction factors for F_2(iron)

Are nuclear corrections in charged-lepton and neutrino DIS different?

Note that the correction factors for different observables are expected to differ!


Correction factor for F_3 could be different!

NuSOnG can study these issues and test the <u>universality of the NPDFs</u>! **VERY IMPORTANT**


arXiv: 0906.3563, 0803.0354

Current picture

IS there a compromise fit? A better flavor decomposition?

Need global analysis of I-A DIS + DY + nu-A DIS for definite conclusions!

Conclusions

- A new set of nPDFs is on the way. Extension of the CTEQ fitting framework.
- Results for neutrino-iron DIS have triggered a lot of interest. Need fully global analysis

Backup Slides