

Summary of the Heavy Flavours Working Group

J. Brodzicka (Krakow) M. Corradi (INFN Bologna) I. Schienbein (LPSC Grenoble) R. Schwienhorst (Michigan SU)

HFWG: Theory Talks

- **DIS** structure functions: Blümlein, Olness, Moch
- Open c, b:
 - Inclusive D and B mesons: Spiesberger
 - Jet production in the ACOT scheme: Kotko
 - Photon+Q: Kovarik
 - kT factorization + double parton scattering: Szczurek
- **Charmonium** production and polarization in NRQCD: Kniehl
- **Top**: Yang, Mitov, Bierenbaum, Kidonakis, Moch, Kardos

DIS structure functions at $O(\alpha_s^3)$

DIS structure functions F_2^c , F_L^c

Mass factorization for $Q^2 >> m^2$:

Recent results on Three Loop Corrections to F₂^c, F_L^c

$$\label{eq:Mellin N space:} \begin{array}{ll} H_j = C_i(N, \frac{Q^2}{\mu^2}) A_{ij}(\frac{m^2}{\mu^2}, N) & \mbox{ (for $\mathsf{Q}^2 >> m^2$)} \end{array}$$

Partial results for $A_{ij} O(\alpha_s^3)$

Variable Flavor Number Scheme

Main application: Matching conditions for the VFNS needed in global analyses of PDFs

$$f_i^{(n_f+1)}(x,\mu^2) = A_{ij}(x,\frac{m^2}{\mu^2}) \otimes f_j^{(n_f)}(x,\mu^2)$$

Status of OME calculations

Leading Order: [Witten, 1976 Nucl.Phys.B; Babcock, Sivers, 1978 Phys.Rev.D; Shifman, Vainshtein, Zakharov, 1978 Nucl.Phys.B; Leveille, Weiler, 1979 Nucl.Phys.B; Glück, Reya, 1979 Phys.Lett.B; Glück, Hoffmann, Reya, 1982 Z.Phys.C.] Next-to-Leading Order: [Laenen, van Neerven, Riemersma, Smith, 1993 Nucl. Phys. B] [Large Q^2/m^2 : Buza, Matiounine, Smith, Migneron, van Neerven, 1996 Nucl.Phys.B] IBP[Bierenbaum, Blümlein, Klein, 2007 Nucl.Phys.B] via ${}_{p}F_{q}$'s, more compact results [Bierenbaum, Blümlein, Klein 2008 Nucl.Phys.B, 2009 Phys.Lett.B]: $O(\alpha_s^2 \varepsilon)$ contributions (all N) NNLO: [Bierenbaum, Blümlein, Klein 2009 Nucl.Phys.B] Moments for F_2 : N = 2...10(14)[Blümlein, Klein, Tödtli 2009 Phys. Rev. D] contrib. to transversity: N = 1...13[Ablinger, Blümlein, Klein, Schneider, Wißbrock 2011 Nucl.Phys.B] contrib. $\propto n_f$ to F_2 (all N): At 3-loop order known:

•
$$A_{qq,Q}^{\text{PS}}, A_{qg,Q}$$
: complete

- $A_{Qg}, A_{Qq}^{\text{PS}}, A_{qq,Q}^{\text{NS}}, A_{qq,Q}^{\text{NS,TR}}$: all terms of $O(n_f T_F^2 C_{A/F})$
- $A_{Qq}^{\text{PS}}, A_{qq,Q}^{\text{NS}} A_{qq,Q}^{\text{NS},\text{TR}}$: all terms of $O(T_F^2 C_{A/F})$ $A_{gq,Q}, A_{gg,Q}$: see this talk \longrightarrow all terms of $O(n_f T_F^2 C_{A/F})$

Talk by Sven Moch

Plan

- H. Kawamura, S.M., A. lo Presti and A. Vogt to appear
- ... a determination of the running charm-quark mass
 S. Alekhin, K. Daum, K. Lipka and S.M. to appear
- ... a spin-off on top-quark hadro-production
 S.M., P. Uwer and A. Vogt to appear

Construct approximate H_i at $O(\alpha_s^3)$

- H_i known at $O(\alpha_s^2)$
- Threshold region dominated by Sudakov log's ln(β) where β =(1-4 m^2/s)^{1/2} close to threshold β =0
- Sudakov log's can be resummed. Predicts fixed orders in perturbation theory
- Asymptotic region Q² >> m² (see talk by Blümlein) complete functional dependence now known to O(α_s³) [Presti,Kawamura,Moch,Vogt]
- High energy limit: k_T-factorization at small x Information on leading and next-to-leading small-x log's
- Combine all limits. Construct approximate result for full kinematic range

Approximate coefficient functions at NNLO

$$\eta = s/(4m^2) - 1, \, \xi = Q^2/m^2$$

- New approximate NNLO result
 - very well constrained at large ξ
 - sizable uncertainties for $\xi \lesssim 10$
- Realistic estimate of uncertainty through combination of all limits
- Progress would require
 - more Mellin moments for A_{ji}
 - computation of $c_{2,k}^{\text{NLL}_{x}}$ (NLO impact factor for k_t -factorization)

Friday, March 30, 12

Approximate charm structure functions at NNLO

- New approximate NNLO result
 - convolution with ABM11 PDF set
- Uncertainty on NNLO dominates kinematic region in Q² relevant for HERA
 - very well constrained at large Q^2
 - sizable uncertainties
 for $Q^2 \lesssim 20 \, \text{GeV}^2$ (even at not so small x)
 - gluon PDF does not fall fast enough as η grows larger

Friday, March 30, 12

Fixed Flavour and Variable Flavour Number Schemes

• Heavy Quark coefficient functions H_i not IR-safe:

$$H_i \to \infty \quad \text{for} \quad \frac{Q^2}{m^2} \to \infty$$

• VFNS:

Subtract large log's from H_i and resum via evolved heavy quark PDF; used in global analyses of PDFs

• Keep finite mass terms m²/Q² in subtracted Wilson coefficients \hat{H}_i

Heavy Quark Production in the ACOT scheme at NNLO and N³LO

- \hat{H}_i in the ACOT scheme known to O(α_s); Need O(α_s^2) for PDF analyses at NNLO
- Idea: Combine exact ACOT scheme at $O(\alpha_s)$ with known massless Wilson coefficients C_i at $O(\alpha_s^2)$ and $O(\alpha_s^3)$
- Observation with exact ACOT at O(α_s): mass effect due to χ-scaling more important than powerlike mass terms m²/Q² in the subtracted massive Wilson coefficients

• Approximation for $O(\alpha_s^2)$ and $O(\alpha_s^3)$ terms: Use C_i combined with χ -scaling prescription

Master formula for decomposing the flavor components

needed to extract F^c

The Goal: Convert from {s, ns, ps} to {q,g, ...}

$$x^{-1}F_a^{ij} = q_i^+ \otimes \left\{ e_i^2 \left[C_{a,q}^{ns}(n_f = 0) \ \delta_{ij} \right] \right\}$$

$$+C_{a,q}^{\mathrm{ns}}(j) - C_{a,q}^{\mathrm{ns}}(j-1) \bigg]$$

$$-\langle e^2 \rangle^{(j)} C^{\mathrm{ps}}_{a,q}(j) - \langle e^2 \rangle^{(j-1)} C^{\mathrm{ps}}_{a,q}(j-1) \bigg\}$$

Issues: Flavor separation: *New diagrams at this order*

- c,b, goes down beam pipe
- both c & b in final state

Fred Olness

19 March 2012 LHC Benchmarks

F_{2,L} **@ N3LO**

Friday, March 30, 12

Open charm and bottom

Less inclusive heavy quark production

- More observables, more tests of pQCD, experimentally more direct (less extrapolation)
- Heavy flavour schemes
 - Mainly for inclusive DIS; used in global analyses of PDFs
 - Schemes have to be applicable to less inclusive cases! Spiesberger, Kotko (otherwise not a general pQCD formalism)
- Exclusive processes useful to probe heavy flavour PDFs. Spiesberger, Kovarik

Most global analyses generate charm/bottom PDFs perturbatively. Should be tested! Important for various SM and BSM processes! (t-channel single top, top+charged Higgs, ..., whenever new physics couples to the SM fermions via the fermion mass)

PRD84(2011)094026; arXiv:1202.0439

GM-VFNS~ACOT

• Theoretical framework:

the General-Mass Variable-Flavor-Number Scheme for 1-particle inclusive heavy-meson production measure p_T and η of observed heavy meson

• Numerical results for *D*- and *B*-meson production: $p + p \rightarrow D + X$, $(D = D^{\pm}, D^0, D^{*\pm}, D_s^{\pm})$, $p + p \rightarrow B + X$, $(B = B^{\pm}, B^0, B_s)$

for comparison with LHC data from ATLAS, ALICE, LHCb, CMS

- At the LHC: expect higher statistics, higher transverse momentum
 more reliable test of QCD,
 - better understanding of background for new physics searches

ALICE FFNS Need results at large pT to distinguish FFNS from VFNS

no evolved fragmentation function

Peterson FF: FFNS closer to GM-VFNS, but still too steep

H. Spiesberger (Mainz)

A colleague: "If QCD is right, there has to be IC" (which normalization?)

Intrinsic charm:

 $c(x, \mu_0) \neq 0$ at initial scale $\mu_0 = m_c$

Models implemented in CTEQ 6.5C (PRD75, 2007) global fit allows average momentum $\langle x \rangle_{c+\bar{c}}$ or order 1 %

- 1 Light-cone Fock-space picture (Brodsky et al.), concentrated at large x $\langle x \rangle_{c+\bar{c}} = 0.57, 2.0 \%$
- 2 Meson-cloud model (Navarra et al.) $\langle x \rangle_{c+\bar{c}} = 0.96, 1.8 \%$
- 3 Phenomenological model: sea-like charm, broad in $x \langle x \rangle_{c+\bar{c}} = 1.1, 2.4 \%$

INTRINSIC CHARM: TEVATRON AND RHIC

H. Spiesberger (Mainz)

Friday, March 30, 12

DIS, 27. 3. 2012 29 / 37

INTRINSIC CHARM: LHCB

BHPS, 3.5 % ($c + \overline{c}$) at $\mu = 1.3$ GeV

high-strength sea-like charm

→ large effects expected at large rapidities

H. Spiesberger (Mainz)

Intrinsic charm/bottom PDF via direct photon + heavy quark production

- LO: Compton hard scattering process $g + Q \rightarrow \gamma + Q$ direct access to the gluon PDF and the heavy quark PDF
- Full NLO calculation including photon fragmentation contribution (photon isolation suppresses photon fragmentation)
 [Owens, Stavreva, PRD79]
- In pA collisions useful to constrain nuclear gluon PDF [arXiv:1012.1178]
- In AA collisions probe of heavy quark energy loss
- In pp collisions probe of IC and IB

TEVATRON-DO

Direct photon in association with charm / bottom quark jets @ D0

- comparison of NLO theory predictions with D0 measurements [arXiv:0901.3791, arXiv:0901.0739]
- bottom quark agrees well but charm quark theory is off
- discrepancy in photon+charm description allows for testing models of intrinsic charm

RHIC-PHENIX

© Direct photon in association with charm / bottom quark jets @ RHIC

- smaller c.m.s energy @ RHIC probes higher x - very sensitive to intrinsic charm

	p⊤ min	Rapidity	Isolation
Photon	7 GeV	y _Y <0.35	R=0.5, p _T = 0.7GeV
Heavy Jet	5 GeV	y _Q <0.8	

LHC-CMS

© Direct photon in association with charm / bottom quark jets @ CMS

- CMS cuts on photon & HQ transverse momentum, rapidity & isolation cuts

	p⊤ min	Rapidity	Isolation
Photon	20 GeV	y _Y <1.4442	R=0.4, pt = 4.2GeV
		1.56< y _Y <2.5	
Heavy Jet	18 GeV	y _Q <2.0	

11

Friday, March 30, 12

Charmonium

Testing NRQCD factorization with J/ Ψ yield and polarization

<u>B. Kniehl</u>, M. Butenschön PRL104,106,107,PRD84 arXiv:1201.1872

- NRQCD factorization:
 - Existence of CO states
 - Calculable short distance cross sections
 - <u>Universal</u> Long Distance Matrix Elements (LDMEs)
- First global analysis of unpolarized world J/Y data at NLO

NRQCD factorization in a nutshell

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- *n*: every possible Fock state, including color-octet states.
- $\sigma_{c\overline{c}[n]}$: production rate of $c\overline{c}[n]$, calculated in perturbative QCD.
- $\langle O^{J/\psi}[n] \rangle$: long-distance matrix elements (LDMEs), nonperturbative, extracted from experiment, universal?

Scaling rules: LDMEs scale with relative velocity v ($v^2 \approx 0.2$). For J/ψ :

scaling
$$v^3$$
 v^7 v^{11} n ${}^3S_1^{[1]}$ ${}^1S_0^{[8]}, {}^3S_1^{[8]}, {}^3P_{0/1/2}^{[8]}$...

- Double expansion in v and α_s .
- Leading term in v ($n = {}^{3}S_{1}^{[1]}$) corresponds to color-singlet model.

Testing NRQCD factorization with J/ψ yield and polarization

Global fit at NLO in NRQCD

Fit CO	LDMEs to	all available	world data	on J/ψ inclusive production:	
type	\sqrt{s}	collider	collaboration	reference	
рр	200 GeV	RHIC	PHENIX	PRD82(2010)012001	
p p	1.8 TeV	Tevatron I	CDF	PRL97(1997)572; 578	
pp	1.96 TeV	Tevatron II	CDF	PRD71(2005)032001	
рр	7 TeV	LHC	ALICE	NPB(PS)214(2011)56	
			ATLAS	PoS(ICHEP 2010)013	
			CMS	EPJC71(2011)1575	
			LHCb	EPJC71(2011)1645	
γρ	300 GeV	HERA I	H1, ZEUS	EPJ25(2002)25; 27(2003)173	
γp	319 GeV	HERA II	H1	EPJ68(2010)401	
γγ	197 GeV	LEP II	DELPHI	PLB565(2003)76	
<i>e</i> + <i>e</i> -	10.6 GeV	KEKB	BELLE	PRD79(2009)071101	
• Fit valu 10 ⁻² G	es: eV ^{3+2L}				
$\langle \mathcal{O}(^{1})$	$\langle O(^{1}S_{0}^{[8]}) \rangle = 4.97 \pm 0.44$				
$\langle \mathscr{O}(^{3}S_{1}^{[8]}) \rangle = 0.224 \pm 0.059$					
$\langle \mathscr{O}({}^{3}P_{0}^{[8]}) \rangle = -1.61 \pm 0.20$					
• χ^2 /d.o.f. = 857/194 = 4.42 for default prediction					
• $\propto v^4 \langle O_1(^3S_1) \rangle \rightsquigarrow NRQCD$ velocity scaling rules $$					

Testing NRQCD factorization with J/ψ yield and polarization

Introduction	Technology	Global fit	Polarized photoproduction	Polarized hadroproduction	Summary
000000	0	00000000	0000000	00	00

Comparison with world data

Polarized J/ψ photoproduction

Decay angular distribution:

 $\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda_\theta \cos^2\theta + \lambda_\phi \sin^2\theta \cos(2\phi) + \lambda_{\theta\phi} \sin(2\theta) \cos\phi$

Polarization observables in spin density matrix formalism:

$$\lambda_{\theta} = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \qquad \lambda_{\phi} = \frac{d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}, \qquad \lambda_{\theta\phi} = \frac{\sqrt{2}\operatorname{Re}d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}$$

 $\lambda = 0, +1, -1$: unpolarized, transversely and longitudinally porarized.

Testing NRQCD factorization with J/ψ yield and polarization

Introduction 000000 Technology

Ο

Global fit Polarize

Polarized photoproduction

Comparison with CDF and ALICE

- CDF I and II data mutually inconsistent for $p_T < 12$ GeV.
- CDF J/ψ polarization anomaly persits at NLO (10–20 σ).
- 4/8 ALICE points agree w/ NLO NRQCD within errors, others $< 2\sigma$ away.

Top quark pair production

- Two channels at tree-level
- Quark-antiquark annihilation dominant at the Tevatron (~ 90%)
- Gluon fusion dominant at the LHC (~ 75% for 7 TeV)

Top quark pair production

- Observables:
 - Cross section
 - Distributions: t-tbar invariant mass M, pT, y
 - Asymmetries: A_{FB}, A_C (charge asymmetry)
- Calculations:
 - exact NNLO (talk by A. Mitov)
 - NLO + Resummed: NLO+NNLL (L.Yang, N. Kidonakis) (Note: different resummations are used)
 - approximate NNLO (L.Yang)

Status of fixed-order calculations

NLO results known since ~20 years

Nason, Dawson, Ellis ('88-'90); Beenakker, Kujif, van Neerven, Smith, Schuler ('89-'91); Mangano, Nason, Ridolfi ('92); Czakon, Mitov ('08)

- Scale uncertainty ~15%, need to go beyond for LHC!
- Off-shell effects found to be small

Denner, Dittmaier, Kallweit, Pozzorini ('10);

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ('10)

- NNLO in progress Channels: $q\bar{q}, gg, qg$
 - Two-loop virtual is the main obstacle

 $M_2^{(0)} + M_2^{(1)} + M_2^{(2)}$

Analytic approach: Bonciani, Ferroglia, Gehrmann, Maitre, Studerus, von Manteuffel ('08-'10); Numeric approach: Czakon et al. **a** $M_3^{(0)} + M_3^{(1)}$

- Virtual+real Dittmaier, Uwer, Weinzierl ('08)
- New subtraction method for double real $_{\rm Czakon}$ ('10-'11) $M_{\star}^{(0)}$
- May be available in the near future!

Talk by Alexander Mitov

NNLO result for qq \rightarrow tT at Tevatron and LHC

Work with M. Czakon, P. Barnreuther

✓ First ever hadron collider calculation at NNLO with more than 2 colored partons.

 \checkmark First ever NNLO hadron collider calculation with massive fermions.

Partonic cross-section, convoluted with partonic flux:

Recent results

✓ We have also prepared the tools for top physics:

Top++ : a C++ program for the calculation of the total cross-section:

Czakon, Mitov `11

✓ Includes:

Fixed order (NLO and NNLO_approx at present)
 and resummation (full NNLL already there)

✓ It is meant to incorporate the full NNLO once available (to appear)

✓ Very user friendly.

The singular behavior of one-loop massive QCD amplitudes with one external soft gluon

talk by Isabella Bierenbaum, based on work with M. Czakon and A. Mitov Nucl. Phys. B **856** (2012) 228 [arXiv:1107.4384]

Contributing "virtual + real diagrams" in the framework of the NNLO $t\bar{t}$ calculation:

Integration over the real external gluon generates a divergence when the gluon is soft and/or collinear to the external legs

 \rightarrow Construct a subtraction term in the soft limit for the squared amplitude $|M|^2$

 \rightarrow Following the approach for the massless case by Catani & Grazzini, (2000):

"Factorize" the singularities:
$$M_a^{(1)}(n+1,q) \simeq \underbrace{J_a^{(0)}(q)M^{(1)}(n)}_{factorizable} + \underbrace{J_a^{(1)}(q)M^{(0)}(n)}_{non-factorizable}$$

 $J_a^{(1)}(q)$ is the universal gene-loop soft-gluon current in the massive case. $J_a^{(1)}(q)$ is calculated here for three kinematical cases of one or two massive external fermions.

Talk by Li Lin Yang

Threshold enhancement and resummation

- Can improve fixed-order results by adding or resumming *threshold enhanced* terms in higher orders
- Schematically, the threshold enhanced terms looks like (in Laplace or Mellin space)

$$d\hat{\sigma} = 1 + \alpha_s \left(L^2 + L + 1 \right) + \alpha_s^2 \left(L^4 + L^3 + L^2 + L + 1 \right) + \cdots$$

- Can be resummed to all orders at certain logarithmic accuracy using refactorization and renormalization-group equations
 NLO+NNLL
- Alternatively, can construct an *approximate NNLO* cross section

Three types of threshold

• Production threshold (small- β) — relevant for total cross section

$$\beta = \sqrt{1 - \frac{4m_t^2}{\hat{s}}} \to 0$$

Berger, Contopanagos, Bonciani, Catani, Mangano, Nason, Langenfeld, Moch, Uwer, Beneke, Falgari, Klein, Schwinn, Cacciari, Czakon, Mitov...

• PIM threshold — relevant for invariant mass distribution, charge asymmetry in *tt* frame (and total cross section)

$$z = \frac{M_{t\bar{t}}^2}{\hat{s}} \to 1$$

Sterman, Kidonakis, Oderda, Vogelsang, Laenen, Moch, Vogt, Almeida...

 1PI threshold — relevant for transverse momentum and rapidity distribution, charge asymmetry in *pp̄* frame (and total cross section)

 $s_4=\hat{s}+\hat{t}_1+\hat{u}_1
ightarrow 0$ Sterman, Oderda, Laenen, Kidonakis, Moch, Vogt...

We work in these two

Additional differences between PIM vs PIM_{SCET} and PI vs PI_{SCET}

Approximate NNLO

Two-loop anomalous dimension matrices

Ferroglia, Neubert, Pecjak, LLY [arXiv:0907.4791] [arXiv:0908.3676]

• One-loop hard matrix

Ρ

Ahrens, Ferroglia, Neubert, Pecjak, LLY [arXiv:1003.5827]

- One-loop soft matrix for PIM kinematics
- One-loop soft matrix for 1PI kinematics

Ahrens, Ferroglia, Neubert, Pecjak, LLY [arXiv:1103.0550]

$$d\hat{\sigma}^{(2)} \approx \alpha_s^2 \left(L^4 + L^3 + L^2 + L + 1 \right)$$

$$f$$
missing: exact NNLO

Total cross section

Ahrens, Neubert, Pecjak, Ferroglia, LLY [arXiv:1105.5824]

- Can integrate both PIM and 1PI distributions to get the total cross section
- We find nice agreement between the two kinematics use the difference as an additional uncertainty
- Computer code available (parallel enabled):
 <u>http://www.physik.uzh.ch/~llyang/TopNNLO.tar.gz</u>

$m_t = 173.1 \text{ GeV}$	Tevatron	LHC7	LHC8
NLO	$6.72_{-0.76-0.45}^{+0.41+0.47}$	159^{+20+14}_{-21-13}	228^{+28+19}_{-30-17}
NNLO approx.	$6.63\substack{+0.07+0.63\\-0.41-0.48}$	155_{-9-14}^{+8+14}	221^{+12+19}_{-12-19}

Charge asymmetry — $M_{t\bar{t}}$ and y dependence

Ahrens, Ferroglia, Neubert, Pecjak, LLY [arXiv:1106.6051]

Higher order predictions consistent with NLO

Of course, exact NNLO can change the picture!

• Discrepancies at high invariant mass and rapidity not resolved

Charge asymmetry at the LHC

Ahrens, Ferroglia, Neubert, Pecjak, LLY [arXiv:1106.6051]

• Increase with higher rapidity cut — but less statistics

• NLO prediction depends a lot on whether or not to expand the ratio in α_s

Single top

- Large number of results/figures for LHC7, LHC8, LHC14 and Tevatron
- t-channel, Wt production, s-channel
- cross section vs m_t
- p_T-distribution
- see slides for details

Talk by S. Moch

Top-quark pairs with one jet

Production of $t\bar{t}$ +jet at fixed order

- LHC: large rates for production of $t\bar{t}$ -pairs with additional jets
- Scale dependence at LO large

Feynman diagrams (sample) for $t\bar{t}$ + jet production at LO

Sven-Olaf Moch

t-tbar + j

- NLO corrections calculated. Considerably reduced scale dependence
- Implemented in POWHEGBOX
 - NLO + Parton Shower. Public release soon
 - Important for A_{FB} and A_C in t-tbar+jet samples
 - Top quark decay in included
 - \rightarrow generate events with stable t-tbar with POWHEG
 - \rightarrow generate decay products using ME for full production and decay
 - \rightarrow reshuffle momenta of t-tbar decay products
 - \rightarrow obtain off-shell t, tbar, W
- New observables:
 - independent measurement of m_t
 - spin-correlations

t-tbar + j, t-tbar +Z, t-tbar+ H/A,W⁺W⁻b-bbar in POWHEL

- POWHEL = POWHEG-BOX + HELAC-ILOOP (NLO + Parton Shower)
- New: HELAC-ILOOP@dd (more than double precision)
- New: Decay with DECAYER
 - Post-event generation run
 - Spin correlations
 - CPU efficient

$W^+ W^- b \bar{b}$

Transverse momentum and rapidity distribution for the b at 7TeV LHC

based on the full NLO calculation by Bevilacqua in arXiv:1012:4230

Tuesday, March 27, 2012