Nuclear PDFs

Ingo Schienbein Université Grenoble Alpes/LPSC Grenoble

Workshop on "LHCb Heavy Ion and Fixed Target physics" CERN, January 9-10, 2017

Outline

- Introduction
- Brief review of available nuclear PDFs
- Vector boson production and the strange PDF
- Wishlist and Conclusions

Nuclear modifications of DIS structure functions

$$F_2^A(x) \neq ZF_2^p(x) + NF_2^n(x)$$

Can we translate these modifications into universal nuclear PDFs?

Nuclear PDFs

- There are at least two motivations for NPDFs:
 - I. They encode information on the partonic structure of nuclei
 - 2. They are **crucial tools** for the description of pA and AA collisions at RHIC/LHC and lepton-A DIS
- Predictions for observables have to include reliable
 estimates of the uncertainties due to the NPDFs
- So far NPDFs are determined by performing global analyses of data similar to global analyses of proton PDFs

Theoretical Framework

- Factorization theorems
 - provide (field theoretical) definitions of universal PDFs
 - make the formalism predictive
 - make a statement about the error
- PDFs and predicitions for observables+uncertainities refer to this standard pQCD framework
- There might be breaking of QCD factorization, deviations from DGLAP evolution — in particular in a nuclear environment

Still need solid understanding of standard framework to establish deviations!

In the nuclear case, consider factorization as a working assumption to be tested phenomenologically

Main differences with free-proton PDFs

- Theoretical status of factorization
- Parametrization: more parameters to model A-dependence
- Less data constraints, much(!) smaller kinematic coverage

Main differences with free-proton PDFs

- Theoretical status of factorization
- Parametrization: more parameters to model A-dependence
- Less data constraints, much(!) smaller kinematic coverage

- Less data constraints → more assumptions about input PDFs
- Assumptions "hide" uncertainties!

Available nuclear PDFs (NLO)

• EPPS' 16 (supersedes EPS'09) Eskola, Paakkinen, Paukkunen, Salgado, arXiv:1612.0574

- nCTEQ'15
 nCTEQ collaboration, PRD93(2016)085037, arXiv:1509.00792
- DSSZ'll
 de Florian, Sassot, Stratmann, Zurita, PRD85(2012)074028, arXiv:1509.00792
- HKN'07
 Hirai, Kumano, Nagai, PRC76(2007)065207, arXiv:0709.3038
- AT'12
 Atashbar Tehrani, PRC86(2012)064301

Available nuclear PDFs (NNLO)

• KA'15

Khanpour, Atashbar Tehrani, PRD93(2016)014026, arXiv:1601.00939

Main differences

Used data sets

- charged lepton-nucleus DIS, pA DY:All groups (but different cuts!) (EPPS'16 uses also π -A DY data)
- RHIC single pion production: EPPS'16, nCTEQ'15, DSSZ'11
 (EPPS now with weigth = 1; DSSZ includes nuclear corrections to FFs)
- neutrino-Pb DIS (CHORUS): EPPS'16
- LHC data (dijet production, W/Z production): EPPS'16

Main differences

Used data sets

- charged lepton-nucleus DIS, pA DY: All groups (but different cuts!) (EPPS'16 uses also π -A DY data)
- RHIC single pion production: EPPS'16, nCTEQ'15, DSSZ'11 (EPPS now with weigth = 1; DSSZ includes nuclear corrections to FFs)
- neutrino-Pb DIS (CHORUS): EPPS'16
- LHC data (dijet production, W/Z production): EPPS'16

Parametrization

- Multiplicative nuclear correction factors: EPPS'16, DSSZ'11, HKN'07, AT'12, KA'15 (requires proton baseline, parametrization can be quite complicated)
- Native nuclear PDFs (same treatment as proton PDFs): nCTEQ'16

Parametrization

Multiplicative nuclear correction factors

$$f_i^{\mathbf{p/A}}(x_N,\mu_0) = R_i(x_N,\mu_0,\mathbf{A}) f_i^{\mathbf{free \ proton}}(x_N,\mu_0)$$

• **HKN**: Hirai, Kumano, Nagai

[PRC 76, 065207 (2007), arXiv:0709.3038]

- **EPS**: Eskola, Paukkunen, Salgado [JHEP 04 (2009) 065, arXiv:0902.4154]
- **DSSZ**: de Florian, Sassot, Stratmann, Zurita [PRD 85, 074028 (2012), arXiv:1112.6324]
- Native nuclear PDFs
 - nCTEQ [PRD 93, 085037 (2016), arXiv:1509.00792]

$$f_i^{\mathbf{p}/\mathbf{A}}(x_N, \mu_0) = f_i(x_N, \mathbf{A}, \mu_0)$$
$$f_i(x_N, \mathbf{A} = 1, \mu_0) \equiv f_i^{\mathbf{free} \ \mathbf{proton}}(x_N, \mu_0)$$

EPPS'16 framework

- NLO PDFs with errors (Hessian method, $\Delta \chi^2 = 52$)
- Parametrization ($x_N < I$, $Q_0 = I.3$ GeV, $i = u_v, d_v, ubar, dbar, s,g$)

$$f_i^{p/A}(x_N,\mu_0) = R_i(x_N,\mu_0,A,Z) f_i(x_N,\mu_0),$$

$$R_i(x, A, Z) = \begin{cases} a_0 + (a_1 + a_2 x)(e^{-x} - e^{-x_a}) & x \le x_a \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & x_a \le x \le x_e \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & x_e \le x \le 1 \end{cases}$$

A-dependence of fit parameters: $y_i(A) = y_i(A_{\text{ref}}) \left(\frac{A}{A_{\text{ref}}}\right)^{\gamma_i[y_i(A_{\text{ref}})-1]}$

- CT14NLO free proton baseline, D (A=2) taken as free
- Data: IA DIS, DY, nu-A DIS, π^0 @RHIC, LHC:dijets, W/Z

EPPS'16 framework: Data

- DIS cut: Q > 1.3 GeV
- No cut on W
- Underlying assumption: structure function <u>ratios</u> less sensitive to higher twist and TMC

Fig. 2 The approximate regions in the (x, Q^2) plane at which different data in the EPPS16 fit probe the nuclear PDFs.

Experiment	Observable	Collisions	Data points	χ^2
SLAC E139	DIS	e^{-} He(4), e^{-} D	21	12.2
CERN NMC 95, re.	DIS	μ^{-} He(4), μ^{-} D	16	18.0
CERN NMC 95 CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}\text{Li}(6), \mu^{-}\text{D}$	15	18.4
	DIS	$\mu^{-}\text{Li}(6), \mu^{-}\text{D}$	153	161.2
SLAC E139	DIS	e^{-} Be(9), e^{-} D	20	12.9
CERN NMC 96	DIS	μ^{-} Be(9), μ^{-} C	15	4.4
SLAC E139	DIS	$e^{-}C(12), e^{-}D$	7	6.4
CERN NMC 95	DIS	$\mu^{-}C(12), \mu^{-}D$	15	9.0
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}C(12), \mu^{-}D$	165	133.6
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}D$	16	16.7
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}Li(6)$	20	27.9
FNAL E772	DY	pC(12), pD	9	11.3
SLAC E139	DIS	e^{-} Al(27), e^{-} D	20	13.7
CERN NMC 96	DIS	μ^{-} Al(27), μ^{-} C(12)	15	5.6
SLAC E139	DIS	e^{-} Ca(40), e^{-} D	7	4.8
FNAL E772	DY	pCa(40), pD	9	3.33
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} D	15	27.6
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} Li(6)	20	19.5
CERN NMC 96	DIS	μ^{-} Ca(40), μ^{-} C(12)	15	6.4
SLAC E139	DIS	e^{-} Fe(56), e^{-} D	26	22.6
FNAL E772	DY	e^{-} Fe(56), e^{-} D	9	3.0
CERN NMC 96	DIS	μ^{-} Fe(56), μ^{-} C(12)	15	10.8
FNAL E866	DY	pFe(56), pBe(9)	28	20.1
CERN EMC	DIS	μ^{-} Cu(64), μ^{-} D	19	15.4
SLAC E139	DIS	e^{-} Ag(108), e^{-} D	7	8.0
CERN NMC 96	DIS	$\mu^{-}\text{Sn}(117), \ \mu^{-}\text{C}(12)$ $\mu^{-}\text{Sn}(117), \ \mu^{-}\text{C}(12)$	15	12.5
CERN NMC 96, Q^2 dep.	DIS		144	87.6
FNAL E772	DY	pW(184), pD	9	7.2
FNAL E866	DY	pW(184), pBe(9)	28	26.1
CERN NA10*	DY	π-W(184), π-D	10	11.6
FNAL E615★ CERN NA3★	DY DY	$\pi^{+}W(184), \pi^{-}W(184)$ $\pi^{-}Pt(195), \pi^{-}H$	11 7	10.2
SLAC E139 RHIC PHENIX	$\mathop{\rm DIS}_{\pi^0}$	e^{-} Au(197), e^{-} D dAu(197), pp	21 20	8.4 6.9
CERN NMC 96 CERN CMS* CERN CMS* CERN ATLAS*	DIS W [±] Z Z	$\mu^{-}\text{Pb}(207), \ \mu^{-}\text{C}(12)$ $p\text{Pb}(208)$ $p\text{Pb}(208)$ $p\text{Pb}(208)$	15 10 6 7	4.1 8.8 5.8 9.6
CERN CMS* CERN CHORUS*	dijet	pPb(208)	7	5.5
	DIS	ν Pb(208), $\overline{\nu}$ Pb(208)	824	998.6
Total			1811	1789

EPPS'16 framework: Results

Table 3 List of parameters defining the central set of EPPS16 at the initial scale $Q_0^2 = 1.69 \,\text{GeV}^2$. The numbers in bold indicate the 20 parameters that were free in the fit.

Parameter	$\mid u_{ m V}$	$d_{ m V}$	\overline{u}
$y_0(A_{ m ref})$	sum rule	sum rule	0.844
γ_{y_0}	sum rule	sum rule	0.731
x_a	0.0717	as $u_{\rm V}$	0.104
x_e	0.693	as $u_{\rm V}$	as $u_{\rm V}$
$y_a(A_{ m ref})$	1.06	$\boldsymbol{1.05}$	1.03
${\gamma_y}_a$	0.278	as $u_{\rm V}$	0, fixed
$y_e(A_{ m ref})$	0.908	0.943	0.725
γ_{y_e}	0.288	as $u_{\rm V}$	as $u_{\rm V}$
eta	1.3, fixed	1.3, fixed	1.3, fixed
Parameter	$\mid \ \overline{d} \mid$	s	g
$\frac{\text{Parameter}}{y_0(A_{\text{ref}})}$	$oxed{ar{d}}$	s 0.723	$\frac{g}{\text{sum rule}}$
	1		
$y_0(A_{ m ref})$	0.889	0.723	sum rule
$y_0(A_{ m ref}) \ \gamma_{y_0}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c} 0.723 \\ \mathrm{as} \ \overline{u} \end{array}$	sum rule sum rule
$y_0(A_{ m ref}) \ \gamma_{y_0} \ x_a$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c} 0.723 \ \mathrm{as} \ \overline{u} \ \mathrm{as} \ \overline{u} \ \end{array}$	sum rule sum rule 0.0820
$y_0(A_{ m ref}) \ \gamma_{y_0} \ x_a \ x_e$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c} 0.723 \ \mathrm{as} \ \overline{u} \ \mathrm{as} \ \overline{u} \ \mathrm{as} \ u_{\mathrm{V}} \ \end{array}$	$\begin{array}{c} \mathrm{sum} \ \mathrm{rule} \\ \mathrm{sum} \ \mathrm{rule} \\ 0.0820 \\ \mathrm{as} \ u_{\mathrm{V}} \end{array}$
$y_0(A_{ m ref}) \ y_0 \ x_a \ x_e \ y_a(A_{ m ref})$	$egin{array}{c c} 0.889 \\ \mathrm{as} \ \overline{u} \\ \mathrm{as} \ \overline{u} \\ \mathrm{as} \ u_{\mathrm{V}} \\ 0.919 \\ \end{array}$	$egin{array}{l} {f 0.723} \ { m as} \ \overline{u} \ { m as} \ \overline{u} \ { m as} \ u_{ m V} \ {f 1.24} \end{array}$	$egin{array}{c} ext{sum rule} \\ ext{ sum rule} \\ ext{ 0.0820} \\ ext{ as } u_{ ext{V}} \\ ext{ 1.12} \\ \end{array}$
$y_0(A_{ m ref}) \ egin{array}{c} \gamma_{y_0} \ x_a \ x_e \ y_a(A_{ m ref}) \ \gamma_{y_a} \end{array}$	$\begin{array}{ c c } \textbf{0.889} \\ \text{as } \overline{u} \\ \text{as } \overline{u} \\ \text{as } u_{\text{V}} \\ \textbf{0.919} \\ 0, \text{ fixed} \end{array}$	$egin{array}{ll} {f 0.723} \ { m as} \ \overline{u} \ { m as} \ \overline{u} \ { m as} \ u_{ m V} \ {f 1.24} \ { m 0, fixed} \end{array}$	$egin{array}{c} ext{sum rule} \\ ext{ sum rule} \\ ext{ 0.0820} \\ ext{ as } u_{ ext{V}} \\ ext{ 1.12} \\ ext{ as } u_{ ext{V}} \\ ext{ } \end{array}$

EPPS'16 framework: Results

- Considerably larger uncertainties than EPS'09 despite more data (more flexible param., larger tolerance).
 Main impact from CHORUS and CMS dijet data.
- No notable tensions with previous data sets. Supports validity of theoretical framework!
- Still some parametrization bias (shape of PDFs), still quite a number of assumptions on parametrization
- Some aggressive choices (low DIS cuts, π -A DY data, RHIC π^0 data)

EPPS' 16 framework: Results

- Large uncertainties for nuclear gluon distribution
- Nuclear strange PDF poorly constrained
- Clearly more LHC pPb data required
 - from LHC5
 - from LHC8 (much higher statistics)

nCTEQ'15 framework

• Functional form of the bound proton PDF same as for the free proton (CTEQ6M, x restricted to 0 < x < 1)

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \qquad i = u_v, d_v, g, \dots$$
$$\bar{d}(x,Q_0)/\bar{u}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}$$

• A-dependent fit parameters (reduces to free proton for A = 1)

$$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}} \right), \quad k = \{1, \dots, 5\}$$

ullet PDFs for nucleus (A, Z)

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

(bound neutron PDF $f_i^{n/A}$ by isospin symmetry)

nCTEQ'15 framework: Data sets

• NC DIS & DY

CERN BCDMS & EMC & **NMC**

N = (D, Al, Be, C, Ca, Cu, Fe,Li, Pb, Sn, W)

FNAL E-665

N = (D, C, Ca, Pb, Xe)

DESY Hermes

N = (D, He, N, Kr)

SLAC E-139 & E-049

N = (D, Ag, Al, Au, Be, C, Ca,Fe, He)

FNAL E-772 & E-886

N = (D, C, Ca, Fe, W)

RHIC - PHENIX & STAR

N = Au

Single pion production (new)
 Neutrino (to be included later)

CHORUS CCFR & NuTeV

N = Pb N = Fe

Fit details

Fit properties:

- fit @NLO
- $Q_0 = 1.3 \text{GeV}$
- using ACOT heavy quark scheme
- kinematic cuts: Q > 2 GeV, W > 3.5 GeV $p_T > 1.7 \text{ GeV}$
- 708 (DIS & DY) + 32 (single π^0) = 740 data points after cuts
- 16+2 free parameters
 - 7 gluon
 - 7 valence
 - 2 sea
 - 2 pion data normalizations
- $\chi^2 = 587$, giving $\chi^2/\text{dof} = 0.81$

Error analysis:

• use Hessian method

$$\chi^2 = \chi_0^2 + \frac{1}{2} H_{ij} (a_i - a_i^0) (a_j - a_j^0)$$

$$H_{ij} = \frac{\partial^2 \chi^2}{\partial a_i \partial a_j}$$

- tolerance $\Delta \chi^2 = 35$ (every nuclear target within 90% C.L.)
- eigenvalues span 10 orders of magnitude → require numerical precision
- use noise reducing derivatives

Fit details

Kinematic cuts

- fit @1

Fit propert

nCTEQ:

$$Q > 2 \text{ GeV}$$

 $W > 3.5 \text{ GeV}$

EPS: Q > 1.3 GeV

 $\underline{\text{HKN:}} \ Q > 1 \text{ GeV}$

 $\overline{\text{DSSZ:}} Q > 1 \text{ GeV}$

 $\Delta \chi^2 = 35$ (every arget within 90% C.L.)

es span 10 orders of $le \rightarrow require numerical$

nCTEQ: 740 data points reducing derivatives

EPS09: 929 data points

Fit details

Fit properties:

Fit quality

•
$$\chi^2/dof = 0.81$$

Q > 2 GeV, W > 3.5 GeV $p_T > 1.7 \text{ GeV}$

- 708 (DIS & DY) + 32 (singl = 740 data points after cuts
- 16+2 free parameters
 - 7 gluon
 - 7 valence
 - 2 sea
 - 2 pion data normalizations

• $\chi^2 = 587$, giving $\chi^2/\text{dof} = 0.81$

Error analysis:

nCTEQ results

- First global analysis with Hessian error PDFs: [PRD93(2016]085037]
- Figure: PDFs inside lead at
 Q=10 GeV vs x
- nCTEQ features larger uncertainties than previous nPDFs
- better agreement between different groups

Valence distributions

Full lead nucleus distribution:

$$f^{Pb} = \frac{82}{208} f^{p/Pb} + \frac{208 - 82}{208} f^{n/Pb}$$

DSSZ'II framework

- NLO PDFs with errors
- ► Error PDFs produced with *Hessian method*
- ightharpoonup Parametrization ($Q_0=1 \text{GeV}$)

$$f_i^{p/A}(x_N, Q_0) = R_i^A(x_N, Q_0) f_i^p(x_N, Q_0), \qquad i = \text{valence, sea, } g$$

$$R_v^A(x, Q_0) = \epsilon_1 x^{\alpha_1} (1 - x)^{\beta_1} \left[1 + \epsilon_2 (1 - x)^{\beta_2} \right] \left[1 + a_v (1 - x)^{\beta_3} \right]$$

$$R_s^A(x, Q_0) = R_v^A(x, Q_0) \frac{\epsilon_s}{\epsilon_1} \frac{1 + a_s x^{\alpha_s}}{1 + a_s}$$

$$R_g^A(x, Q_0) = R_v^A(x, Q_0) \frac{\epsilon_g}{\epsilon_1} \frac{1 + a_g x^{\alpha_g}}{1 + a_g}$$

A-dependence of fitting parameters $(\xi = \alpha_v, \alpha_s, \dots)$

$$\xi = \gamma_{\xi} + \lambda_{\xi} A^{\delta_{\xi}}$$

- ► MSTW 2008 free proton baseline
- ightharpoonup Neglects $x_N > 1$
- ▶ Data: DIS, DY, $\pi^{0\pm}$ @ RHIC, Neutrino DIS

DSSZ'II framework

Some comparisons (taken from EPPS'16 paper)

EPPS'16 vs nCTEQ'15 @Q2=10 GeV2

- Generally good agreement for x>0.01 (nCTEQ has no data constraints for x<0.01) $\Delta \chi^2 = 35$ (nCTEQ'15), $\Delta \chi^2 = 52$ (EPPS'16)
- Valence bands at large-x partly differ (valence at small-x < 10⁻² irrelevant); influence from CHORUS data?
- EPPS'16 bands for light sea more realistic; nCTEQ'15 has fewer fit parameters for sea
- Still quite some parametrization bias even for EPPS'16

Comparison with dijet data

- nCTEQ'15 in agreement with CMS data; including CMS dijet data in global analysis will help
- DSSZ gluon needs to be revised since not enough shadowed OR energy loss effects need to be included?

Vector boson production and the strange PDF

see arXiv:1203.1290 for a discussion of experimental constraints on the strange PDF

Strange PDF: experimental constraints

Opposite sign dimuon production in neutrino DIS: $vN \rightarrow \mu^+\mu^-X$

- High-statistics data from CCFR and NuTeV: Main source of information!
- x~[0.01,0.4]
- VFe DIS: need nuclear corrections! Problem: Final State Interactions (FSI)
- CHORUS (vPb): compatible with NuTeV, could be included
- NOMAD (vFe): data not yet published, in principle very interesting

Drell-Yan production of W/Z at the LHC

Kinematic plane

Uncertainty of strange-PDF will feed into benchmark process

VRAP code: Anastasiou, Dixon, Melnikov, Petriello, PRD69(2004)094008

nCTEQ study of W,Z production at LHC

arXiv:1610.02925

		Observable	Cuts (GeV)	Figure
pPb	S	$d\sigma(Z \to \ell^+\ell^-)/dy_Z$ [2]	$ y_Z^{\text{CM}} < 3.5; 60 < m_{\ell^+\ell^-} < 120$	Fig. 3
	7	$d\sigma(Z \to \ell^+ \ell^-)/dy_Z [2]$ $d\sigma(W^+ \to \ell^+ \nu)/dy_{\ell^+} [6]$	$p_T^{\ell^{\pm}} > 25; m_T^{\ell^{\pm}} > 40; \eta_{lab}^{\ell^{\pm}} < 2.4$	Fig. 7a
		$d\sigma(W^- \to \ell^- \bar{\nu})/dy_{\ell^-}[6]$	$p_T^{\ell^{\pm}} > 25; m_T^{\ell^{\pm}} > 40; \eta_{lab}^{\ell^{\pm}} < 2.4$	Fig. 7b
	7.0	$d\sigma(Z \to \ell^+ \ell^-)/dy_Z[3]$	$ \eta_{lab}^{\ell^{\pm}} < 2.4; 60 < m_{\ell^{+}\ell^{-}} < 120; p_{T}^{\ell^{+}(\ell^{-})} > 20$	Fig. 4
		$d\sigma(W^+ \to \ell^+ \nu)/dy_{\ell^+}[5]$	$p_T^{\ell^{\pm}} > 25; \eta_{lab}^{\pm} < 2.4$	Fig. 6a
		$d\sigma(W^- \to \ell^- \bar{\nu})/dy_{\ell^-}[5]$	$p_T^{\ell^{\pm}} > 25; \eta_{lab}^{\pm} < 2.4$	Fig. 6b
	LHCb	$\sigma(Z \to \ell^+ \ell^-) [4]$	$60 < m_{\ell^+\ell^-} < 120; \ p_T^{\ell^+(\ell^-)} > 20; \ 2.0 < \eta^{\ell^{\pm}} < 4.5; \ -4.5 < \eta_{\ell^{\pm}} < -2.0$	Fig. 5
	ALICE	$\sigma(W^+ \to \ell^+ \nu) \ [7]$	$p_T^{\ell^{\pm}} > 10; \ 2.03 < \eta_{lab}^{\ell^{\pm}} < 3.53; \ -4.46 < \eta_{lab}^{\ell^{\pm}} < -2.96$	Fig. 8a
	ALI	$\sigma(W^- \to \ell^- \bar{\nu}) \ [7]$	$p_T^{\ell^{\pm}} > 10; \ 2.03 < \eta_{lab}^{\ell^{\pm}} < 3.53; \ -4.46 < \eta_{lab}^{\ell^{\pm}} < -2.96$	Fig. 8b
PbPb	ATLAS	$1/\sigma_{tot}d\sigma/dy_Z[8]$	$66 < m_{\ell^+\ell^-} < 116; y_Z < 2.5$	Fig. 9a
	ATI	A_{ℓ} [10]	$p_T^{\ell} < 25; \eta_{lab}^{\ell} < 2.5; m_T > 40; p_T^{miss} < 25$	Fig. 10a
	CMS	$1/\sigma_{tot}d\sigma/dy_Z[9]$	$60 < m_{\ell^+\ell^-} < 120; y_Z < 2.0$	Fig. 9b
		A_{ℓ} [11]	$p_T^{\ell} < 25; \eta_{lab}^{\ell} < 2.1; m_T > 40$	Fig. 10b

Table I: LHC data sets considered in this analysis.

nCTEQ study of W,Z production at LHC

- $y < -1:x > 5 \times 10^{-2} ... 0.3$ (region where nPDFs are constrained by data in global analysis)
- $|y| < 1:x \sim 10^{-2}$ (transition region from anti-shadowing to shadowing)
- $y > 1: x < 5 \times 10^{-3}$ (pure extrapolation!)

W-boson rapidity distributions

Importance of strange PDF

- y<-I (large x): s > sbar could help!
- y<1: delayed transition from anti-shadowing to shadowing could help as seen in NuTeV neutrino data
- y>I: Extrapolation, rather no shadowing at very small x?

Reweighting

- Improvements after reweighting
- However, strange PDF not fitted independently in nCTEQ15
- Need to include data in global analysis and open up strange PDF

Available pPb LHC data

- W/Z production
 - ATLAS [arXiv:1507.06232, ATLAS-CONF-2015-056]
 - CMS [arXiv:1512.06461, arXiv:1503.05825]
 - LHCb [arXiv:1406.2885]
 - ALICE [arXiv:1511.06398]
- Jets
 - ATLAS [arXiv:1412.4092]
 - \bullet CMS [arXiv:1401.4433, CMS-PAS-HIN-14-001]
- Charged particle production (FFs dependence)
 - CMS [CMS-PAS-HIN-12-017]
 - ALICE [arXiv:1405.2737, arXiv:1505.04717]
- Isolated photons (PbPb)
 - ATLAS [arXiv:1506.08552]
 - CMS [arXiv:1201.3093]
 - ALICE [arXiv:1509.07324]

Wishlist

- More precise data for W/Z production
 - Advantage: uncolored final state!
 - sensitive to strange PDF at y<-1 assuming light sea known;
 comparison with dimuon data from NuTeV
 - **small-x**: constraints on light sea (and strange sea but flavour separation difficult)
- Inclusive D-meson production
 - Very sensitive to gluon production at small-x!
 see PROSA study (for the gluon in the proton): EPJC75(2015)396, arXiv: 1503.04581
 - at large p_T and forward rapidites: probe of IC
- Inclusive photon+charm production
 - probe of intrinsic charm

Wishlist: Fixed target mode

- several different nuclei, constrain large-x nuclear PDFs
- Modern measurement of DY lepton pair production
- Inclusive D-meson production
 - probe nuclear gluon at large-x
 - constrain heavy quark (charm) distribution, test models of intrinsic charm
- Inclusive photon+charm production
 - ideal testing ground for intrinsic charm [recent review, arXiv:1504.06287]

Conclusions

- Much recent progress (EPPS'16, NCTEQ'15, W/Z analysis)
- nPDF uncertainties still substantial
- Need more precise LHC pA data (LHC5, LHC8) from as many hard processes as possible! Lead-only analysis possible!
- Coloured and un-coloured final states to test shadowing vs energy loss effects
- Bright future: future fixed target experiments, EIC, LHeC, π -A data from COMPASS
- A lot of room for theoretical progress

EPS'09 framework

- ► LO & NLO PDFs with errors
- ▶ Error PDFs produced with *Hessian method*
- ▶ Parametrization $(Q_0=1.3\text{GeV})$

$$f_i^{p/A}(x_N, \mu_0) = R_i(x_N, \mu_0, A, Z) f_i(x_N, \mu_0), \qquad i = \text{valence, sea, } g$$

$$R_{i}(x, A, Z) = \begin{cases} a_{0} + (a_{1} + a_{2}x)(e^{-x} - e^{-x_{a}}) & x \leq x_{a} \\ b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} & x_{a} \leq x \leq x_{e} \\ c_{0} + (c_{1} - c_{2}x)(1 - x)^{-\beta} & x_{e} \leq x \leq 1 \end{cases}$$

A-dependence of fitting parameters $(d_i = a_i, b_i, \ldots)$

$$d_i^A = d_i^{A_{ref}} \left(\frac{A}{A_{ref}}\right)^{p_{d_i}} \quad 1.0$$

- ► CTEQ6.1M free proton baseline
- ightharpoonup Neglects $x_N > 1$
- Data: DIS, DY, π^0 @ RHIC

EPS'09 framework

NLO fit: $\chi^2/dof = 0.79$

HKN'07 framework

- ► LO & NLO PDFs with errors
- ► Error PDFs produced with *Hessian method*
- ightharpoonup Parametrization ($Q_0=1 \text{GeV}$)

$$f_i^{p/A}(x_N, Q_0) = R_i^A(x_N, Q_0) f_i^p(x_N, Q_0),$$
 $i = \text{valence, sea}, g$

$$R_i(x, Q_0, A) = 1 + \left(1 - \frac{1}{A^{\alpha}}\right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{\beta_i}}$$

- ► MRST 1998 free proton baseline
- ightharpoonup Neglects $x_N > 1$
- ► Data: DIS & DY

HKN'07 framework

NLO fit: $\chi^2/dof = 1.21$

Z-boson rapidity distributions

W-boson rapidity distributions

(W⁺,W⁻) Correlation

(Z,W) Correlation

NUCLEAR CORRECTION FACTOR $R[F_2^{\nu Fe}]$

- Are nuclear corrections in charged-lepton and neutrino DIS different?
- Obviously the PDFs from fi ts to ℓA + DY data do not describe the neutrino DIS data.
- However, a better flavor decomposition could be possible resulting from a global analysis of ℓA , DY and νA data.

Note: $x_{min} = 0.02$ in these figures.

TOLERANCE CRITERION

Probability distribution for the χ^2 function

$$P_N(\chi^2) = \frac{(\chi^2)^{N/2-1}e^{-\chi^2/2}}{2^{N/2}\Gamma(N/2)}$$

Determine ξ_{50}^2 and ξ_{90}^2 (i.e. p = 50, p = 90):

$$\int_0^{\xi_p^2} d\chi^2 P_N(\chi^2) = p/100$$

Condition for compatibility of two fits:

The 2nd fit (χ_n^2) should be within the 90% C.L. region of the first fit (χ_n^2)

$$\chi_{n}^{2}/\chi_{n,0}^{2} < \xi_{90}^{2}/\xi_{50}^{2} \qquad \Leftrightarrow \qquad C_{90} \equiv \frac{\Delta\chi^{2}}{\frac{\chi_{n,0}^{2}}{\xi_{50}^{2}}(\xi_{90}^{2} - \xi_{50}^{2})} < 1$$

see CTEQ'01, PRD65(2001)014012; MSTW'09, EPJC(2009)63,189-285