
Constraints to an Extra Vector Gauge Boson

by Anaysis of the Process e+e− → γνν̄

Dietrich Rothe

Advisor: I. Schienbein

June 11 2007

Contents

1 Introduction 2

1.1 Location of Internship . 2

1.2 My Subject . 2

1.3 The Standard Model . 3

2 Calculations 6

2.1 Analytical Cross Section Calculation in Standard Model . . . 7

2.2 Numerical Integration with Monte Carlo/Vegas 17

2.3 Further Proceeding . 17

A Program Codes 19

A.1 Tracer Code . 19

A.2 ROOT and CUBA usage . 20

1

Chapter 1

Introduction

1.1 Location of Internship

I am doing my internship at the Laboratoire de Physique Subatomique et de
Cosmologie (LPSC) at Grenoble. This institute focusses on experimental and
theoretical research in particle physics, astrophysics, nuclear and hadronic
matter and developement of particle detectors. It has in its employ about
200 researchers, engineers and technical experts and recieves about 60 student
trainees each year. The LPSC also collaborates with CERN and Fermilab.
In my workgroup, research subjects are thereotical and phenomenological
particle physics, including Super Symmetry considerations.

1.2 My Subject

My subject is to analyze data of the process e+e− → γ,< invisible > which
has been recoreded at the Large Electron-Positron Collider (LEP) at CERN.
By < invisible > I mean that I will focus on data where besides a photon
there is produced something else which is not detected, what we know because
of missing energy and momentum. Normally this is the Z boson of the
standard model, which rapidly decays into an antineutrino-neutrino pair of
the same generation, and these cannot be detected. The Z boson can also
decay into visible particles, but those processes are not considered. However if
we assume there is another neutral gauge boson (from beyond the standard
model) which we will call Z ′, there might also occur the process e+e− →
γ, Z ′ followed by Z ′ → ν, ν̄. The goal is to find slight deviations from SM

2

predictions in the data which correspond to this process. If we assume the
additional reaction takes place, we can use the data to find contraints on
the parameters of the Z ′ (these parameters are mass and axial and vector
coupling constants to other particles).

I will start with a short overview of the standard model and motivations
for an additional vector gauge boson Z ′ in extended theories. Then I will
analytically calculate a simplified cross section of the SM process e+e− →
γ, Z. This is done partly by hand and partly with the mathematica Tracer
package. The next step is numerical integration of the cross section and
graphical comparison which the data. The final step, which isn’t yet achieved,
will be the construction of exclusion plots for Z ′ parameters.

A considerable part of my work was learning the usage of computer tools
like ROOT and Tracer and writing the evaluation and analyzation programs,
which are partly included in the appendix.

1.3 The Standard Model

The standard model of electroweak interactions has gauge symmetry
SU(2)L × U(1)Y . At low energy, this symmetry breaks to U(1)em symmetry
of electrodynamics. An often used model to illustrate symmetry breaking is
a 3-dimensional space filled with a ferromagnetic material. At high energy,
above Curie temperature TC , the system becomes paramagnetic and is there-
fore invariant under SO(3) transformations. Below TC the magnetic dipoles
align and symmetry breaks to SO(2), which is a subgroup of SO(3). In gen-
eral one speaks of symmetry breaking when the ground state of a system has
lower symmetry than the system’s Lagrangien.

There is an extended SM which successfully describes the strong and elec-
troweak interactions with a SU(3)c × SU(2)L × U(1)Y gauge group. Many
physicits believe there exists a model describing all fundamental interac-
tions (including gravitation) in such a way. Those theories are called Grand
Unified Theories (GUT). A gauge group GGUT must contain the SM and
break to SU(3)c × SU(2)L × U(1)Y at E ≪ EGUT . GUT predict the pro-
ton must decay, similar to β decay of electroweak theory. Present experi-
ments on proton decay (which has not yet been observed) give the condition
EGUT > 1015 GeV . This bound is still much smaller than the Planck mass
MP =

√

~c/G ≈ 1.2 1019 GeV , which describes the energy scale at which
gravitation is expected to become as strong as the other interactions.

3

It was shown that the smallest gauge group G which can contain the SM,
SU(5), cannot be used to describe all interactions in a unified way. All larger
groups containing the SM predict at least one neutral gauge boson (Z ′). Its
mass is constrained by energies of symmetry breaking: Eweak < M ′

Z < EGUT .

Extensive research has be done on this Z ′, in particular concerning
stronger contraints to its parameters. This is also our goal.

Here I will try to give a brief description of the electroweak standard
model so far as needed for my work.The standard model was introduced in
the middle of the 1960s in works by S. Glashow, A. Salam and S. Weinberg
aiming to describe electromagnetic and weak interactions in an unified theory.
It is based on the gauge theory by C. N. Yang and R. L. Mills who in
1954 introduced the local gauge invariance of the weak isospin. In the SM
electromagnetic and weak interaction appear as two different aspects of one
single interaction, and are mediated by the γ respective W± and Z0 bosons.

All elementary fermions (leptons and quarks) are sensible to weak inter-
action. In order to describe the interaction the concept of charge-raising,
charge-lowering and unchared currents is introduced.

This is analogous to the describtion of e.g. electron-electron scattering
mediated by a γ as in QED, where the moving electrons are regarded as
currents. By treating charged leptons and neutrinos as two different aspects
of the same particle, it is possible to regard the reaction of muon decay
µ+ → e+νeν̄µ as charge-lowering µ-type current interacting with a charge-
raising electron-type current via a W+ or W− boson. The weak interaction
violates parity, only left-handed matter particles and right-handed antimat-
ter particles interact by charged currents. In fact, there are only left-handed
neutrinos and right-handed antineutrinos. One of the first historical exper-

Figure 1.1: the muon decay µ+ → e+νeν̄µ can be regarded as interaction of
charge-changing currents.

4

iments that verified the parity violation studied β-transitions of polarized
cobalt:

60Co→ 60Ni∗ + e− + ν̄e.

The spins of the cobalt nuclei were aligned by an external magnetic Field ~B
and an asymmetry in the direction of the emitted electrons was observed. On
reversal of ~B, the asymmetry also switched. It is important that ~B ∝ ~I×~er is
an axial variable, that is, it does not change its sign if parity changes, because
it is composed of two vector variables. We conclude there must be an axial
coupling of weak interactions (in addition to a vector coupling constant).

In the γ-algebra of 4×4 Dirac γ matrices used in QED and its extensions,
a vector variable like ψ̄γψ can be made axial by inserting a γ5 like ψ̄γγ5ψ
because of the anticommuting relation {γ5, γµ} = 0. The projector on left-
handed particles can be written as 1

2
γµ(1−γ5). These structures can be seen

in the vertex factors of the feynman rules that I will use later. The vertex
is surrounded by 4-dimensional spinors u and v used for ingoing fermions
respective antifermions and their adjunct counterparts denoted by a bar (ū =
u†γ0) used for outgoing (anti)fermions.

5

Chapter 2

Calculations

6

2.1 Analytical Cross Section Calculation in

Standard Model

The calculation of the matrix element Mfi =< f |M|i > that describes the
electroweak interaction between particles resulting in the final state f and
having initial state i is carried out according to rules developed by R. P.
Feynman in 1949. A Feynman diagram shows the incoming particles on the
left side and outgoing particles on the right side. Particles meet in points
called vertices, and vertices are connected by lines called propagators. The
matrix element is built of vertex factors surrounded by spinors of their in-
and outgoing particles and propagator factors. Antiparticles are formally
treated as particles with negative impulse propagating backwards in time.

We will treat the Z ′ like it was an Z and for the first also use the same
coupling parameters. The vertex factor associated with an electron-electron-

Z coupling (like the lower black circle in fig. 2.1) is − ig
cos θW

γµ 1
2

(

cfV − cfAγ
5

)

,

where g is the weak charge, θW the Weinberg mixing angle (describing the
Mixing of B and W 0 bosons to Z0 and γ bosons), and cfV and cfA are vector
and axial coupling constants which differ for left- and right-handed fermions.
The vertex for electron-electron-γ coupling is ieγµ (for charge −1).

We set V = − g
2 cos θW

cfV and A = − g
2 cos θW

cfA, so V and A are real and the

vertex rule for weak neutral couplings becomes iγµ(V −Aγ5). By combining
vertices surrounded by in- and outgoing spinors and the electron propagator

i
/p−m

we get

�
Z ′

γ

e− : u, p2

e+ : v̄, p1 k1, ǫ
∗

k2, ǫ
′∗

Figure 2.1: Feynman diagram for e+e− → γZ ′ (t channel, M1)

7

�γ

Z ′

e− : u, p2

e+ : v̄, p1 k2, ǫ
′∗

k1, ǫ
∗

Figure 2.2: Feynman diagram for e+e− → γZ ′ (u channel, M2)

−iM1 = v̄(p1)(ieγ
µ)ǫ∗µ

i

/p2 − /k2 −m
ǫ′∗ν iγ

ν(V − Aγ5)u(p2)

Because we intend to study high energies we may neglect the electron mass,
and using t = (k1 − p1)

2 = (p2 − k2)
2

−iM1 = −ie
t
ǫ∗µǫ

′∗
ν v̄γ

µ(/k1 − /p1)γ
ν(V − Aγ5)u

iM∗
1 =

ie

t
ǫµ′ǫ′ν′ ū(V + Aγ5)γν′

(/k1 − /p1)γ
µ′

v

As the γ is a real photon, we can simplify with
∑

polariz. ǫµ′ǫ∗µ = −gµ′µ.

For the massive Z ′ the relation is
∑

polariz. ǫ
′
ν′ǫ′∗ν = −gν′ν + 1

M2

Z

k2,ν′k2,ν. The

in-going particles can have any spin state. Spin averaging thus gives (note
the 1/4 factor)

|M1|2 =
−e2
4t2

(−gν′ν +
1

M2
Z

k2,ν′k2,ν) ·

·
∑

spins s,s′

ǫ′ν′ǫ′∗ν ū
s′(V + Aγ5)γν′

(/k1 − /p1)γµv
sv̄sγµ(/k1 − /p1)γ

ν(V −Aγ5)us′

=
e2

4t2
(gν′ν −

1

M2
Z

k2,ν′k2,ν)Tr
[

/p2(V + Aγ5)γν′

(/k1 − /p1)(−2 /p1)(/k1 − /p1)γ
ν(V − Aγ5)

]

8

The other topology for e+e− → γ, Z is shown in fig. 2.2.

−iM2 = v̄iγµ(V −Aγ5)ǫ′∗µ
i

/p2 − /k1

ǫ∗ν(ieγ
ν)u

= −ie
u
ǫ∗νǫ

′∗
µ v̄γ

µ(V −Aγ5)(/k2 − /p1)γ
νu

iM∗
2 =

ie

u
ǫν′ǫ′µ′ ūγν′

(/k2 − /p1)(V + Aγ5)γµ′

v

|M2|2 =
e2

4u2
(gµ′µ−

1

M2
Z

k2,µ′k2,µ)Tr
[

/p1γ
µ(V − Aγ5)(/k2 − /p1)γ

ν
/p2γν(/k2 − /p1)(V + Aγ5)γµ′

]

=
e2

4u2
(gµ′µ−

1

M2
Z

k2,µ′k2,µ)Tr
[

/p1γ
µ(V −Aγ5)(/k2 − /p1)(−2 /p2)(/k2 − /p1)(V + Aγ5)γµ′

]

for this I exchanged ν ′ ↔ µ′ in M∗
2 :

M1M∗
2 =

e2

4tu
ǫ′∗ν ǫ

′
ν′ǫ∗µǫµ′ [v̄γµ(/k1− /p1)γ

ν(V−Aγ5)u][ūγµ′

(/k2− /p1)(V+Aγ5)γν′

v]

=
e2

4tu
(gν′ν−

1

M2
Z

k2,ν′k2,ν)Tr
[

/p1γ
µ(/k1 − /p1)γ

ν(V − Aγ5) /p2γµ(/k2 − /p1)(V + Aγ5)γν′

]

Tracer is a Mathematica package which implements γ-algebra rules and
can simplify above expressions. For the Tracer code (see appendix) we use
the Mandelstam variables

s = (p1 + p2)
2 = 2p1p2

t = (p1 − k1)
2 = −2p1k1

u = (p1 − k2)
2 = −2p1k2 +M2

Z

The Tracer result is:

|M|2 = |M1|2 + 2Re[M1M∗
2] + |M2|2

=
8πα(A2 + V 2) (2M4

Z + t2 + u2 − 2M2
Z(t+ u))

tu

=
8πα(A2 + V 2) (M4

Z + s2 − 2tu)

tu
(2.1)

9

Kinetic substitutions: In CMS with s = (2E)2, we have

p1 = (E, ~pi) =

√
s

2
(1, ~ez)

p2 = (E,−~pi) =

√
s

2
(1,−~ez)

if we neglect the electron mass. In the final state we have k1 = (|~p|, ~p) for
the photon and k2 = (

√

M2
Z + ~p2,−~p) for the Z ′, from what we get

s =

(

|~p| +
√

M2
Z + ~p2

)2

⇒ (
√
s− |~p|)2 = M2

Z + ~p2 ⇒

|~p| =
|s−M2

Z |
2
√
s

(2.2)

t = (

√
s

2
−|~p|,

√
s

2
~ex−~p)2 = ~p2 +

s

4
−|~p|

√
s−(~p2 +

s

4
−
√
spx) =

√
s(−|~p|+px)

The deflection angle θ to the beam is cos θ = px

|~p|
⇒

t =
1

2
(s−M2

Z)(cos θ − 1) (2.3)

From s+ t+ u = M2
Z we now get

u =
1

2
(s−M2

Z)(− cos θ − 1) (2.4)

The cos θ-dependant cross section is given by

dσ

d cos θ

∣

∣

∣

CM
=

1

64π

pf

pis
|M|2 (2.5)

=
1

64π

|s−M2
Z |

s
|M|2

with the initial momentum pi =
√
s/2 and the final momentum pf from (2.2).

The final result is

dσ

d cos θ

∣

∣

∣

CM
=

α(A2 + V 2)

2s2(s−M2
Z)

(

s2 +M4
Z

sin2 θ
− (s−M2

Z)2

2

)

(2.6)

10

The cuts for the experimental data to be used, i.e. the range of θ in that
the detector is sensitive and over which we have to integrate, are given in
two ways: In the form xmin < cos θ < xmax and in the form pγ

⊥ > fc

√
s/2,

as parameter fc, where pγ
⊥ is the photon impulse component transversal to

the collider axis. For given s, this is equivalent to

| sin θ| > 2fcs

|s−M2
Z |

and can be combined with the former cut during integration.

In general the energies of the outgoing particles in a two to two process like
e+e− → γZ are normally fixed by kinetics. The narrow-width approximation
in the calculation of |M|2, that is the assumption that the Z is not virtual,
fixes the photon energy for given (s, θ), therefore there is no pγ dependency
in (2.6). This also means that for s < M2

Z , the process cannot take place.
Therefore, in fig. 2.3 the dashed cross section is set zero for

√
s < MZ ,

although this is not seen in (2.6). However because the Z boson quickly
disintegrates it does not have to be on-shell. In that case the energy of the
visible photon may vary.

If we consider the process e+e− → γνν̄, there are also Feynman diagrams
with W± bosons; however we will neglect those. Our method to calculate
the e+e− → γνν̄ cross section from e+e− → γZ is called the narrow-width-
approximation: we simply multiply the latter section by the “branching rate
to invisible” of the Z boson, which is 20 %. [4] gives a more complete
result for the examined cross section, obtained whithout using the narrow-
width approximation, but still neglecting the contribution of the W± and not
yet considering radiative corrections. Radiative corrections are often made
because electrons (as all charged, accellerated particles) may already strongly
radiate before the reaction takes place, thus enlargening the measured signal.
We take the formulae of [4] as comparison:

e+(p+) + e−(p−) → ν̄(q+) + ν(q−) + γ(k) (2.7)

dσ

d cos θdk
=

α

12π2
G2M4

W

s′k

sκ+κ−

[

η2
+F (η+) + η2

−F (η−)
]

(2.8)

with the G being the Fermi constant, Nν the number of neutrino generations
(=3) and

η± =
s− κ±
M2

W

, κ± = 2p±k, s
′ = (q+ + q−)2, Z = s′ −M2

Z + iMZΓZ (2.9)

11

F (η±) = Nν
1

2

(

(gv + ga)
2 + (gv − ga)

2
) M4

Z

|Z|2

+3(gv + ga)
M2

ZReZ

|Z|2
1

η±

(

3 +
2

η±
− 2

(

1 +
1

η±

)2

ln(1 + η±)

)

+
6

η2
±

(

(1 + η±)

(

1 − 2

η±
ln(1 + η±)

)

+ 1

)

(2.10)

This cross section is numerically integrated for 1 GeV < |~k| < 100 GeV
and also shown in fig. 2.3. Here, a non-zero cross section at

√
s < MZ is

allowed.

Comparision with experimental data from ALEPH at LEP, CERN [6]
(table 2.1) shows neither curve fits well (fig. 2.3). The dashed curve fits if
multiplied by a factor 2.75, the continous does not even fit if scaled.

All calculations were done using a running α coupling constant as shown
in fig. 2.4 but taking fixed values for all other couplings and masses. However
this does not change much the quality of the fit.

The cut condition pγ
⊥ < 0.0375

√
s/2 has some interesting effects in the

region of ca. 80 GeV – 104 GeV (see fig. 2.7), but is covered by the condition
| cos θ| < 0.95 in the region of the data points.

Clearly considering the left-out W± contribution or radiative corrections
would both increase the seen cross section, however this is already too high.
Considering the W± would not increase σ by a significant factor, but consid-
ering radiative corrections could.

√
s (GeV) σ (pb) total error (pb)

189 3.43 0.16
192 3.47 0.39
196 3.03 0.22
200 3.23 0.21
202 2.99 0.29
205 2.84 0.21
207 2.67 0.16

Table 2.1: experimental data for single photon events plus missing energy
from ALEP at LEP, CERN ([6]), for pγ

⊥ < 0.0375
√
s/2 and | cos θ| < 0.95.

12

 (GeV)s
60 80 100 120 140 160 180 200 220

 (
p

b
)

σ

1

10

210

Figure 2.3: cross section calculated with narrow-width approximation. The
curve is normed by 1/2.75 so it goes through the data. Continuous line:
cross section without narrow-width approximation, but still neglecting W±

contributions. Both curves are calculated only with the cut | cos θ| < 0.95

13

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 0 50 100 150 200

s (GeV2)

1/α (version f)

Figure 2.4: running α function used in all calculations

 [GeV]s
180 190 200 210

 [
pb

]
σ

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Figure 2.5: dashed line: cross section calculated with narrow-width approx-
imation (see eq. 2.6). The curve is normed by the factor 1/2.75 so it goes
through the data points. Cut condition is | cos θ| < 0.95

14

 (GeV)s
60 80 100 120 140 160 180 200 220

 (
p

b
)

σ

1

10

210

Figure 2.6: settings like fig. 2.5 but also with cut pγ
⊥ < 0.0375

√
s/2. Compare

fig. 2.7

15

 (GeV)s
50 60 70 80 90 100 110 120 130 140

 (
p

b
)

σ

1

10

210

Figure 2.7: The effect of the additional cut pγ
⊥ < 0.0375

√
s/2: The continuous

curve is calculated only with the cut | cos θ| < 0.95, the dashed one with both
cuts. The other parameters are as in fig. 2.5, continuous curve.

16

2.2 Numerical Integration with Monte

Carlo/Vegas

The idea of Monte Carlo integration, is to calculate a d-dimensional inte-
gral by approximating the d+1-dimensinal volume enclosed by the integrand
function graph. This can be done by choosing random points in an enclosing
domain of the function graph and then testing if they are inside the volume of
the graph. An equivalent, but much faster method is calculation of the mean
function value of the points. Advanced implementions like the Vegas method
of the CUBA library ([7]), which I used, use quasi-random numbers instead
of pseudo-random numbers. The term pseudo-random stands for computer
generated “random” numbers (non-periodic & equally distributed, but not
truly random). This method is quite slow (convergence rate O(1/

√

(n)),
where n is the number of evaluations).

Choosing numbers from a fixed grid makes convergence much quicker

(O(logd n
n

)), but a high-dimensional grid cannot be easily refined during inte-
gration. Quasi-random numbers try to fill the gap: they behave randomly
in a global way, but at the same time try to avoid areas where point density
is already high. Monto-carlo based integration methods are especially useful
when trying to handle bad-behaving or statistical functions, where classical
taylor series based integration methods do not perform well.

2.3 Further Proceeding

In order to be able to extract contraints for a Z ′, first the data must be quite
precisely reproducable by means of the standard model. Therefore we will
have to further investigate for errors or unmatched assumptions in this so-
far description. The original idea was that we would perhaps already achieve
high precision in the relevant area of energy already with the simple formula
(2.6). When the problem of the current calculation will be known, we will
again be able to test this approach. The final aim is a exclusion plot in Z ′

parameters, probably done by the χ2 method which can give an exclusion
probability for each tested point in the space of Z ′ couplings and masses.

17

Bibliography

[1] Francis Halzen and Alan D. Martin, “Quarks & Leptons: An Introductory
Course in Modern Particle Physics”, John Wiley & Sons, 1984

[2] Course of 2006-2007: “Physique des Particules”
at Université de la Méditerranée (Aix-Marseille II),
http://marwww.in2p3.fr/∼talby/Phys Particules/M2/

[3] Pierre Fayet, “U-boson production in e+e− annihilations, ψ and Υ decays,
and Light Dark Matter, arXiv:hep-ph/070217v1, 17 Feb 2007

[4] F.A. Berends, G.J.H. Burgers, C. Mana, M. Martinez and W.L. van Neer-
ven, “Radiative Corrections to the Process e+e− → νν̄γ, Nuclear Physics
B301 (1988) p. 583

[5] A. Leike, “The Penomenology of Extra Neutral Gauge Bosons”,
arXiv:hep-ph/9805494v1, 28 May 1998

[6] ALEPH at CERN, “Single- and multi-photon production in e+e− colli-
sions at

√
s up to 209 GeV”, European Physics Journal C 28 (2003) p.

1

[7] T. Hahn, “Cuba - a library for multidimensional numerical integration”,
arXiv:hep-ph/0404043 v2 26 Jan 2005

[8] M. Jamin and M.E. Lautenbacher, Tracer package and manual,
http://library.wolfram.com/infocenter/MathSource/2987/

[9] Root Data Analysis Framework, http://root.cern.ch/

18

Appendix A

Program Codes

Here I include some of my programs/codes, only selecting those with more unique
features or applications.

A.1 Tracer Code

<< tracer.m

VectorDimension[4]

AntiCommute[on]

(* e+,e- -> gamma,Z *)

OnShell[on, {k1, 0}, {k2, Mzsq}, {p1, 0}, {p2, 0},

{k1, k2, (s-Mzsq)/2},

{p1, p2, s/2},

{p1, k1, -t/2},

{p2, k2, -(t-Mzsq)/2},

{p1, k2, -1/2 (u - Mzsq)},

{k1, p2, -1/2 u}]

Spur[m1sq, m2sq, m1m2]

(* Minv = 1/M^2 *)

Gm1sq = G[m1sq, p2, V U + A G5, {nu2}, k1-p1, p1, k1-p1, {nu}, V U - A G5]

M1sq = FullSimplify[-2 ({nu2}.{nu} - Minv k2.{nu2} k2.{nu}) Gm1sq e^2 /(4t^2)]

Gm2sq = G[m2sq, p1, {mu}, V U - A G5, k2 - p1, p2, k2 - p1, V U + A G5, {mu2}]

M2sq = FullSimplify[-2 ({mu2}.{mu} - Minv k2.{mu2} k2.{mu})

19

* Gm2sq e^2 / (4 u^2)]

Gm1m2 = G[m1m2, p1, {mu}, k1-p1, {nu}, V U - A G5, p2, {mu},

k2-p1, V U + A G5, {nu2}]

M1M2 = FullSimplify[({nu2}.{nu} - Minv k2.{nu2} k2.{nu}) Gm1m2 e^2 / (4 t u)]

M1M2 = M1M2 /. s+t+u->Mzsq

Print["M1M2 = ", M1M2]

Print["with {V->1, A->0, Minv->0}: M1M2 = ",

M1M2 /. {V->1, A->0, Minv->0}]

Ma = FullSimplify[M1sq+M2sq + 2 ComplexExpand[Re[M1M2]]]

Mb = Ma /. {s->Mzsq-t-u, Minv->1/Mzsq}

Mc = Mb /. {t->1/2 (s-Mzsq)(Cos[theta]-1), u->1/2 (Mzsq-s)(Cos[theta]+1)}

Md = FullSimplify[Mc 1/16 alpha/e^2 (s-Mzsq)/s^2]

sigmaMandelstam = FullSimplify[Mb]

sigmaTheta = Md

A.2 ROOT and CUBA usage

A program that numerically integrates the formulas by F.A. Berends using
CUBA/Vegas, is also linked against ROOT librarys to plot results

// general includes

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <getopt.h>

#include <fstream>

#include <iostream>

using namespace std;

#include "cuba.h"

#include "alpha.h"

// ROOT includes

#include "TApplication.h"

#include "TROOT.h"

#include "TCanvas.h"

#include "TGraph.h"

20

#include "TMultiGraph.h"

#include "TLegend.h"

#include "TStyle.h"

#include "TMarker.h"

#include "TPaveText.h"

#include "TPaveLabel.h"

#include "TGraphErrors.h"

#include "TLatex.h"

#include "TString.h"

#include "TFrame.h"

// #define COMPARE_BERENDS

#define COMPARE_LEP2

// CUBA Vegas integration parameters

#define EPSREL 1e-3

#define EPSABS 1e-12

#define VERBOSE 0

#define MINEVAL 0

#define MAXEVAL 50000

#define NSTART 1000

#define NINCREASE 500

#define PR(x) cout << #x "= " << x << endl;

static inline double Sq(double x) {

return x*x;

}

const double alpha_0 = 1./137.03604;

#ifdef COMPARE_BERENDS

// values taken from paper "radiative corrections" by F.A. Berends et al.

const double M_W = 82;

const double M_Z = 93;

const double Gamma_Z = 2.7;

#endif

#ifdef COMPARE_LEP2

const double M_W = 80.398;

const double M_Z = 91.1876;

const double Gamma_Z = 2.4952;

21

#endif

const double sinThetaW = sqrt(1 - Sq(M_W/M_Z));

const double e = sqrt(4*M_PI*alpha_0);

const double g = e / sinThetaW;

const double G = sqrt(2.)*Sq(g/M_W)/8;

const double gv = -1./2 + 2*Sq(sinThetaW);

const double ga = -1./2;

const int N_nu = 3;

const double gev2pbarn = 0.389379324e9; // conversion from GeV^-2 to pbarn

double s;

static double FOfEta(double eta, double s_apostr) {

double Z_Real = s_apostr - Sq(M_Z);

double Z_Im = M_Z*Gamma_Z;

double Z_AbsSq = Sq(Z_Real) + Sq(Z_Im);

return N_nu/2. * (Sq(gv+ga) + Sq(gv-ga)) * pow(M_Z, 4)/Z_AbsSq

+ 3.*(gv+ga)* Sq(M_Z)*Z_Real/Z_AbsSq /eta

* (3 + 2./eta - 2*Sq(1+1/eta)*log(1+eta))

+ 6./Sq(eta)* ((1+eta)*(1-2./eta*log(1+eta)) + 1);

}

// Integrand. Will be integrated in area [0,1]x[0,1].

static void sigmaDCosDK(const int *ndim, const double xx[],

const int *ncomp, double ff[]) {

// integration result will also have to be multiplied

// by scale applied on arguments

double scaleResult = 1;

// rescale: we want cos(theta) in [-1,1]

double costheta = xx[0]*2 - 1;

scaleResult *= 2;

// rescale: we want k in [kmin,kmax] GeV

double kmin = 1, kmax = 100;

double dk = kmax-kmin;

double k = kmin + dk*xx[1];

scaleResult *= dk;

// put cuts here:

22

#ifdef COMPARE_BERENDS

// general cut at both ends

double cutdegree = 20;

// p_transversal > cut_ptrans*sqrt(s)

double cut_ptrans = 0;

#endif

#ifdef COMPARE_LEP2

double cutdegree = 180/M_PI*acos(0.95);

double cut_ptrans = 0.0375;

#endif

double cutcos_ptrans = cos(asin(2*s*cut_ptrans/fabs(s-M_Z*M_Z)));

// additional condition is now |cos(theta)|<cutcos_ptrans

double cutcos = cos(cutdegree*M_PI/180);

if (cutcos > cutcos_ptrans) {

cutcos = cutcos_ptrans;

}

if (costheta < -cutcos || costheta > cutcos) {

ff[0] = 0;

return;

}

// s is given as global variable

double E = sqrt(s)/2;

// p+,p- and K are 4-vectors

// p+ = (E, 0, 0, E), p- = (E, 0, 0, -E),

// K = (k, k sin(theta), 0, k cos(theta))

// k+/- = 2p+/- K

double k_plus = 2*(E*k+E*k*costheta);

double k_minus = 2*(E*k-E*k*costheta);

// s’ = (q+ + q-)^2 = (p+ + p- - K)^2

double s_apostr = Sq(2*E - k) - Sq(k);

double eta_plus = (s-k_plus)/Sq(M_W);

double eta_minus = (s-k_minus)/Sq(M_W);

double integral = alpha(s)/(12. *Sq(M_PI)) * Sq(G) * pow(M_W, 4)

* s_apostr *k/(s*k_plus*k_minus)

* (Sq(eta_plus)*FOfEta(eta_plus, s_apostr)

+ Sq(eta_minus)*FOfEta(eta_minus, s_apostr));

23

ff[0] = scaleResult * integral * gev2pbarn;

}

// in mbarn

double sigmaTotal(double s_) {

s = s_;

const int ncomp = 1;

const int ndim = 2;

int comp, nregions, neval, fail;

double integral[ncomp], error[ncomp], prob[ncomp];

double result = integral[0];

if (VERBOSE >= 0) {

printf("sigma(%.8f) = (%.8f +- %.8f) pbarn, probchi=%f, fail=%d\n",

s, result, error[0], fail, prob[0]);

}

return result;

}

int main(int argc, char* argv[]) {

// integrate sigma values

double xmin = 60, xmax = 160; // may be overwritten by command line

int nbpoints = 100;

// Root initialization; this cuts away Root command line arguments

TApplication app("plot", &argc, argv);

const char shopt[] = "cp";

const struct option lopt[] = {

// only compute and save data

{ "compute-only", no_argument, NULL, ’c’ },

// only take computed data and plot

{ "plot-only", no_argument, NULL, ’p’ },

{ "ssqrmin", required_argument, NULL, ’0’ },

{ "ssqrmax", required_argument, NULL, ’1’ },

{ "steps", required_argument, NULL, ’n’ },

{ 0, 0, 0, 0 }

};

bool compute = true;

bool doPlot = true;

24

for(int c = getopt_long(argc, argv, shopt, lopt, NULL);

c != -1;

c = getopt_long(argc, argv, shopt, lopt, NULL)) {

switch(c) {

case ’c’:

doPlot = false;

break;

case ’p’:

compute = false;

break;

case ’0’: xmin = atof(optarg); break;

case ’1’: xmax = atof(optarg); break;

case ’n’: nbpoints = atoi(optarg); break;

}

}

double xvals[nbpoints], sigvals[nbpoints];

// opening read+write doesn’t work (don’t know why)

ios_base::openmode mode = compute ? fstream::out : fstream::in;

fstream datfile("singlephoton-graph.dat", mode);

if (!datfile.is_open())

cerr << "problem opening data file" << endl;

for (int i=0; i<nbpoints; i++) {

if (compute) {

xvals[i] = xmin + (xmax-xmin)*double(i)/(nbpoints-1);

sigvals[i] = sigmaTotal(Sq(xvals[i]));

datfile << xvals[i] << "\t" << sigvals[i] << endl;

if (!datfile)

cerr << "problem writing to data file" << endl;

}

else {

datfile >> xvals[i] >> sigvals[i];

if (!datfile)

cerr << "problem reading data file" << endl;

}

}

datfile.close();

if (!doPlot)

return 0;

25

TCanvas *plot = new TCanvas("plot", "plot", 200, 10, 500, 800);

plot->SetGridy();

plot->SetGridy();

plot->SetLogy();

plot->SetFillColor(10);

plot->SetBorderMode(0);

plot->SetTickx(1);

TGraph *graph = new TGraph(nbpoints, xvals, sigvals);

graph->SetTitle("numerical integrated e+ e- -> #gamma#nu#bar{#nu}");

graph->Draw("AC");

// set line options

graph->SetLineColor(1);

graph->SetLineWidth(2);

graph->SetLineStyle(1);

// set axis titles

TAxis* xAxis = graph->GetXaxis();

xAxis->SetLimits(50, 160);

xAxis->SetTitle("#sqrt{s} (GeV)");

xAxis->CenterTitle(1);

xAxis->SetTitleOffset(0.85);

xAxis->SetTitleSize(0.05);

TAxis* yAxis = graph->GetYaxis();

// yAxis->SetLimits(1, 500); // doesn’t work in log mode

yAxis->SetTitle("#sigma (pb)");

yAxis->CenterTitle(1);

yAxis->SetTitleOffset(1.2);

yAxis->SetTitleSize(0.04);

graph->SetMinimum(1);

graph->SetMaximum(800);

plot->SaveAs("singlephoton-graph.eps");

app.Run();

return 0;

}

26

Evaluation of narrow-width σ forumla

#include <getopt.h>

#include <cmath>

#include <iostream>

using namespace std;

#include "alpha.h"

const double gev2pbarn = 0.389379324e9; // conversion from GeV^-2 to pbarn

const double br = 0.2; // fractional branching ratio for Z->invisible

// this is the unspecified integral of dsigma/dcos(theta), where x = cos(theta)

double sigint_unsp(double s, double x, double gv, double ga, double mz) {

return alpha(s) * (ga*ga+ gv*gv) / (2* s*s *fabs(s - mz*mz)) *

(-pow(s - mz*mz, 2)/2. * x + ((pow(mz,4) + s*s))

* log(fabs((1 + x)/(-1 + x)))/2.);

}

// total cross section of e+e- -> gamma,Z process (onshell) with

// coupling constants ga,gv

// mass of Z mz and cuts costhmin, costhmax

// cut_ptrans: for cut p_transversal>cut_ptrans*sqrt(s)

// cross section in GeV^-2

double sigtot (double s, double costhmin, double costhmax, double cut_ptrans,

double gv, double ga, double mz) {

double cutcos_ptrans = cos(asin(2*s*cut_ptrans/fabs(s-mz*mz)));

// additional condition is now |cos(theta)|<cutcos_ptrans

if (costhmax > cutcos_ptrans)

costhmax = cutcos_ptrans;

if (costhmin < -cutcos_ptrans)

costhmin = -cutcos_ptrans;

// if there is not enough energy to create a Z boson

// our on-shell gamma,Z cross section must be zero,

// even if the formula doesn’t (yet?) reflect this

if (s<mz*mz)

return 0;

return sigint_unsp(s, costhmax, gv, ga, mz)

- sigint_unsp(s, costhmin, gv, ga, mz);

}

int main(int argc, char *argv[]) {

double costhmin = -0.95; // may be overwritten by command line

double costhmax = 0.95; //

27

double cut_ptrans = 0.0375; // ## p_transversal > cut_ptrans*sqrt(s)

double ssqr_min = 180;

double ssqr_max = 210;

double h = 100;

const char shopt[] = "l:u:";

const struct option lopt[] = {

{ "lower-costheta", required_argument, NULL, ’l’ },

{ "upper-costheta", required_argument, NULL, ’u’ },

{ "cut_ptrans", required_argument, NULL, ’t’ },

{ "ssqrmin", required_argument, NULL, ’0’ },

{ "ssqrmax", required_argument, NULL, ’1’ },

{ "steps", required_argument, NULL, ’n’ },

{ 0, 0, 0, 0 }

};

for(int c = getopt_long(argc, argv, shopt, lopt, NULL);

c != -1;

c = getopt_long(argc, argv, shopt, lopt, NULL)) {

switch(c) {

case ’l’: costhmin = atof(optarg); break;

case ’u’: costhmax = atof(optarg); break;

case ’t’: cut_ptrans = atof(optarg); break;

case ’0’: ssqr_min = atof(optarg); break;

case ’1’: ssqr_max = atof(optarg); break;

case ’n’: h = atoi(optarg); break;

}

}

// Z parameters

double ga = -0.50123;

double gv = -0.03783;

double mz = 91.1876;

double step = (ssqr_max - ssqr_min)/h;

for (int i=0; i<=h; i++) {

double ssqr = ssqr_min + i*step;

double s = ssqr*ssqr;

double sig = gev2pbarn*br*

sigtot(s, costhmin, costhmax, cut_ptrans, gv, ga, mz);

cout << ssqr << "\t" << sig << endl;

}

return 0;

}

28

