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Résumé:
Le rapport présent commence avec la motivation pour sypersymétrie et donne en suite
une introduction théorique de la construction des Lagrangiens supersymétriques. En pas-
sant, la R�parité est introduite et des termes brisants la R�parité sont considérés d'être
une partie naturelle d'un Lagrangien sypersymétrique. Ce chapitre est complété par la
dérivation des règles de Feynman correspondantes.
La deuxiéme partie constiste de l'exploration phénoménologique de la production resonante
des sleptons célibataires dans les collisions hadroniques, divisée en résultats analytiques
et numériques. Finallement, les modes de désintégration du slepton produit sont étudiés.
A la �n, le travail présenté est brèvement résumé et des conclusions courtes sont données.

Abstract:
The present report begins with the motivation for supersymmetry and gives in the fol-
lowing an introduction into the theoretical construction of a supersymmetric Lagrangian.
Thereby, R-parity is introduced and R-parity violating terms are considered to be natural
parts of a supersymmetric Lagrangian. The chapter is completed with the derivation of
the corresponding Feynman rules.
The second large part consists of a phenomenological investigation of resonant single slep-
ton production at both, polarized and unpolarized hadron colliders. It is divided into
analytical and numerical results. Finally the possible decay modes of the produced slep-
ton are studied.
At the end, the present work is brie�y summarized and a short outlook is given.
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1 Introduction

At present the starting up of the LHC (Large Hadron Collider) is highly awaited by nearly
all the high energy physicists. The beam commissioning is planned to take place this
summer. It will be the last collider of its design in regard of its size (27 km circumference
of the pipe tunnel), reached energy (14 TeV ) and costs (> 3 billion Euros). It is expected
to give answers on fundamental questions such as the search for a Higgs boson and physics
beyond the SM (Standard Model), as well as new and more precise measurements of the
SM parameters, for example the CKM matrix.
One of the favorite extension of the SM is considered for about 30 years: Supersymmetry.

It predicts new particles, so called 'sparticles', which are supposed to be heavy, too heavy
to have already been seen in experiments up to now, but light enough to be seen at the
LHC , that's the hope. The report at hand follows this hope and investigates a possible
extension of the MSSM (Minimal Supersymmetric SM): R-parity violation. Such research
is important in order to take into account the possible phenomenology to be found at the
LHC in the data analysis.
After an introduction into supersymmetry containing R-parity violation and their Feyn-

man rules, single sleptons production and its implications are analyzed. This contains the
cross section of resonant single sleptons production, taking into account the polarization
of incoming particles and the parton distribution functions, and their decays. The results
are grouped in an analytical and a numerical part being completed by our conclusions.
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2 Supersymmetry

2.1 Motivation

The Standard Model (SM) of particle physics is a very powerful theory describing most
of known phenomena in elementary particle physics. It is veri�ed by precision tests up
to a very high accuracy, see e.g. [1, 2, 3]. Nevertheless, the SM is not a complete theory,
because neutrinos are not massless, as it assumes, and it doesn't explain gravity at all.
Rather, the SM is considered to be an e�ective theory at low energies of the order of
the electroweak energy scale v = 246 GeV . Further questions beyond the SM are of the
following kind: Why are left-handed fermions in SU(2) doublets and right-handed ones
in singlets? Why are there three colors? Why is electric charge quantized? How many
generations are there? etc. [4].
One possible extension of the SM is imposing supersymmetry (SUSY). It adds to each

fermion in the SM supersymmetric boson partners and vice versa. Until now, none of these
new particles have been discovered, but there are several theoretical arguments which make
SUSY an interesting theory:

� SUSY provides a transformation Q|fermion〉 = |boson〉 which connects bosons and
fermions. This allows them to be seen as sharing a common origin rather than as
fundamentally di�erent particles.

� The three gauge couplings of the SM become very close at a possible grand uni�cation
scale (GUT scale). This is why supersymmetric models are favorite candidates for
uni�ed theories [5].

� If supersymmetry is realized as a local symmetry, then it includes a spin-2 �eld,
the graviton, and a spin-32 �eld, the gravitino, and so it opens a way to explain
gravity (SUGRA). This is also a possible scenario for the necessary supersymmetry
breaking.

� The lightest supersymmetric particle (LSP) is a favorite dark matter candidate [6],
which the SM doesn�t provide at all.

� There are possible neutrino mass generating mechanisms.
� String theory assumes supersymmetry in order to reduces dimensions and to make
the theory more consistent.

� It provides a solution to the �ne-tuning problem, which is strongly related to the
hierarchy problem.
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2.2 Superalgebra

A crucial symmetry of quantum �eld theory is the space-time symmetry with its underlying
Poincaré group satisfying the algebra

[Pµ, P ν ] = 0 , (2.1)[
Jµν , P λ

]
= i

(
gνλPµ − gµλP ν

)
, (2.2)[

Jµν , Jλρ
]

= i
(
gνλJµρ − gµλJνρ + gµρJνλ − gνρJµλ

)
, (2.3)

where Pµ is the generator of space-time translations and Jµν is the generator of rotations
and Lorentz boosts, rephrased space-time rotations or Lorentz transformations. Jµν satis-
�es an SO(3, 1) ' SU(2)×SU(2) Lie algebra (Lorentz algebra). This isomorphism allows
the short notation for the representation of the Lorentz group (j1, j2) with j1, j2 ∈ N/2.
After Coleman and Mandula formulated their no-go theorem [7], which forbids any

further external symmetry of the S-matrix, Haag, Lopuszanski and Sohnius [8] were yet
able to �nd a way to extent this group by introducing fermionic generators Q, which
transform under (1

2 , 0) and ful�ll anticommutator relations. The minimal supersymmetric
standard model (MSSM) has one such generator1 Q with the following algebra, called
superalgebra:

[Qα, J
µν ] = iσµν

α
βQβ , (2.4)

[Qα, P
µ] = 0 , (2.5)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , (2.6)
{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ . (2.7)

The operator Q̄ is de�ned as Q̄α̇ = Qα
† and transforms as (0, 1

2); α, β̇ = 1, 2. The
de�nitions and conventions of the several σ-matrices are listed in appendix A. It can be
shown by using Eq. (2.7) that the energy of any non-vacuum state 〈Ψ |P 0|Ψ〉 is positive-
de�nite and that the vanishing of the vacuum energy is a necessary and su�cient condition
for the existence of a unique vacuum state |0〉 such that

〈0|P 0|0〉 = 0 ⇔ Qα|0〉 = 0 . (2.8)
If Q acts on a state, it changes the spin by an amount of 1

2 ; Q1 and Q̄2̇ increase it while Q2

and Q̄1̇ decrease it. Another consequence of Eq. (2.7) is that all states that transform under
a common irreducible representation of supersymmetry2 are called supermultiplet and
have the same mass, since [Q,P 2] = 0 and P 2 = m2. This is obviously in contradiction to
experiments, since no supersymmetric particle has yet been found, wherefore we know that
if supersymmetry exists, it is a broken symmetry. We also remark that if supersymmetry
is realized as a local symmetry, the energy-momentum operator on the right hand side
of Eq. (2.7) becomes dependent on space-time as well, which opens the door to gravity
(SUGRA).
1In extended SUSY models several generators Q1, Q2, .., QN with N = 1, 2, 4, 8 are investigated. The
higher the symmetry, the higher the restrictions. Therefore the framework of extended SUSY is often
a higher dimensional space-time (D > 4).

2and if they are in the same multiplets of all other symmetry groups
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2.3 Super�elds and Superspace

2.3.1 Supersymmetry in Superspace

A consistent way of describing supersymmetry transformations and for constructing super-
symmetric Lagrangians is provided by the formulation of super�elds. The four ordinary
space-time coordinates xµ are extended by four anticommuting coordinates realized by
the Grassmann variables θα and θ̄β̇ with the following algebra

∀ α, β = 1, 2 : {θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0 . (2.9)

Thus, generalized super�elds Φ̂(x, θ, θ̄) that transform under irreducible representations of
the supersymmetry algebra act on this superspace. The ordinary space-time translations
can also be generalized to super-translations:

G(x, θ, θ̄) = ei(xP+θQ+θ̄Q̄) , (2.10)
Φ̂(x, θ, θ̄) = G(x, θ, θ̄) Φ̂(0, 0, 0) G−1(x, θ, θ̄) . (2.11)

Using the identity
G(y, ξ, ξ̄) G(x, θ, θ̄) = G(x+ y + i(ξσθ̄ − θσξ̄), ξ + θ, ξ̄ + θ̄) (2.12)

the translation of a super�eld Φ̂(x, θ, θ̄) reads as

G(y, ξ, ξ̄) Φ̂(x, θ, θ̄) G(x, θ, θ̄)

= G(y, ξ, ξ̄) G(x, θ, θ̄) Φ̂(0, 0, 0)
[
G(y, ξ, ξ̄) G(x, θ, θ̄)

]−1

= Φ̂(x+ y + i(ξσθ̄ − θσξ̄), ξ + θ, ξ̄ + θ̄)

(2.13)

Using the Taylor series of this equation, we obtain
[Φ̂, Pµ] = i∂µ Φ̂ , (2.14)

[Φ̂, ξαQα] = iξα

(
∂

∂θα
+ i(σν θ̄)α∂ν

)
Φ̂ , (2.15)

[Φ̂, Q̄α̇ξ̄
α̇] = −i

(
∂

∂θ̄α̇
+ i(θσν)α̇∂ν

)
ξ̄α̇ Φ̂ . (2.16)

From these commutator relations we obtain explicit expressions, in terms of di�erential
operators, for the supertranslation generators (cf. appendix A)

P̂µ = i∂µ , (2.17)
Q̂α = i∂α − (σµθ̄)α∂µ , (2.18)
ˆ̄Qα̇ = −i∂̄α̇ + (θσµ)α̇∂µ . (2.19)

The variation of space-time translations is de�ned by δaΦ(x) := Φ(x + a) − Φ(x) =
aµ∂µ Φ(x) = iaµ[Pµ, Φ(x)]. Similarly, the supersymmetric variation is

δξΦ̂ := i[ξQ+ Q̄ξ̄, Φ̂] = −i(ξQ̂+ ˆ̄Qξ̄) Φ̂ . (2.20)
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In the following, our aim is to construct, by means of super�elds, Lagrangians which
are invariant under such supersymmetric transformations. We start with the general
expression of a super�eld Φ̂, which is obtained by a Taylor series in the Grassmann variables
θ. It turns out to be �nite and thus exact because of the nilpotence of the Grassmann
variables following from Eq. (2.9):

Φ̂(x, θ, θ̄) =f(x) + θ ζ(x) + θ̄ χ̄(x) + θθ m(x) + θ̄θ̄ n(x) + θσµθ̄ Vµ(x)
+ θθθ̄ λ̄(x) + θ̄θ̄θ Ψ(x) + θθθ̄θ̄ d(x) .

(2.21)

The �elds f , m, n, Vµ and d are bosonic, the others fermionic (8 bosonic and 8 fermionic
degrees of freedom if Φ̂ is real, and two times as many if it is complex). We are now
searching for smallest possible, supersymmetry invariant terms, in other words we are
searching for supermultiplets. Once found, we would like to use a minimal set of super�elds
with which we get the full particle content and interactions of the SM. In other words, we
consider a minimal supersymmetric model containing the SM and we call it MSSM. We
will need therefore two kinds of �elds: chiral and vector super�elds.

2.3.2 Chiral Super�elds

Since ∂αΦ̂ is not a super�eld (∂αδξΦ̂ 6= δξ∂αΦ̂), we introduce the fermionic covariant
derivative by

[Dα, δξ] = 0 and [D̄α̇, δξ] = 0 , (2.22)
whose solutions are

Dα = ∂α − i(σµθ̄)α∂µ , (2.23)
D̄α̇ = −∂̄α̇ + i(θσµ)α̇∂µ . (2.24)

They ful�ll the same anticommutation relations between themselves as Q and Q̄. Then
we de�ne a chiral super�eld as

D̄α̇Φ̂ := 0 . (2.25)
In order to simplify the solution for the chiral super�eld we transform it into appropriate
coordinates ("chiral representation"):

yµ = xµ − iθσµθ̄ , θ′ = θ , and θ̄′ = θ̄ , (2.26)
∂µ =

∂

∂xµ
=

∂

∂yµ
= ∂µ

′ , (2.27)
∂α = ∂α

′ − i(σµθ̄)α∂µ , (2.28)
∂̄α̇ = ∂̄α̇

′ + i(θσµ)α̇∂µ . (2.29)
Using this transformation Eq. (2.18)-(2.18) and (2.23) give (we let away the primes)

Q̂α = i∂α , (2.30)
ˆ̄Qα̇ = −i∂̄α̇ + 2(σµθ̄)α∂µ , (2.31)
Dα = ∂α − 2i(σµθ̄)α∂µ , (2.32)
D̄α̇ = −∂̄α̇ . (2.33)
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This allows us to enormously simplify the chiral super�eld de�nition in (2.25) to

∂̄α̇Φ̂ = 0 . (2.34)

Thus Φ̂ = Φ̂(y, θ) does not depend on θ̄ and the general super�eld of Eq. (2.21) becomes

Φ̂(y, θ) = A(y) +
√

2θΨ(y)− θθF (y). (2.35)

The factor √2 and all the signs are just convention. The �elds A, Ψ and F build an
irreducible chiral supermultiplet. We can transform back from chiral coordinates to normal
coordinates. But instead of developing the resulting xµ − iθσµθ̄ as a Taylor series in θ, it
is easier to use the equivalent supertranslation3 G = exp(−iθσµθ̄) leading to

Φ̂(x, θ, θ̄) =A(x) +
√

2θΨ(x)− θθF (x)− iθσµθ̄∂µA(x)

+
i√
2
θθ

(
∂µΨ(x)σµθ̄

)
− 1

4
θθθ̄θ̄�A .

(2.36)

Using the same arguments as for the chiral super�eld Φ̂, we can de�ne an anti-chiral
super�eld ̂̄Φ as the solution of D̄α̇

̂̄Φ = 0. We can again solve this equation using coordinate
transformations, and the result is simply

̂̄Φ(x, θ, θ̄) = Φ̂†(x, θ, θ̄) . (2.37)

We are now interested in the explicit supersymmetry transformation (2.20), which, after
a short calculation, yields for the component �elds

δξA =
√

2ξαΨα , (2.38)
δξΨ = −i

√
2σµ

αβ̇ ξ̄
β̇∂µA−

√
2ξαF , (2.39)

δξF = −i
√

2∂µΨ
ασµ

αβ̇ ξ̄
β̇ . (2.40)

Most remarkable is the F -term, also written as −Φ̂∣∣
θθ

= Φ̂
∣∣
F
because it transforms as a

total divergence and hence it will serve as a tool to construct supersymmetry invariant
Lagrangians. For this purpose we need an additional theorem.
Theorem. If Φ̂ is a chiral super�eld, then so is Φ̂n ∀n ∈ N

The proof is by induction, using the formula D̄α̇Φ̂
n = nΦ̂n−1D̄α̇Φ̂. This theorem assures

that any holomorphic functionW (Φ̂) is another chiral super�eld whose F -term transforms
as a total divergence. W (Φ̂) is called superpotential and describes non-gauge interactions.
The demand of renormalizability restricts it to be of, at most, third order in super�elds.
It can be shown that [Φ̂†Φ̂]θθθ̄θ̄ also transforms as a total divergence. Its value is written

as

[Φ̂†Φ̂]θθθ̄θ̄ = (∂µA)†(∂µA) + iΨ̄σµ∂µΨ + F †F + total divergence. (2.41)

3As usual, �elds - as long as not yet quantized - transform as GbΦ and operators as GOG−1.
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We recognize the kinetic term of a scalar boson �eld A and a (Weyl-) fermion �eld Ψ . By
integrating the Grassmann variables we can now give a manifestly supersymmetric action,
the Wess-Zumino action:

S =
∫

d4xd4θ Φ̂†Φ̂+
∫

d4xd2θ W (Φ̂) +
∫

d4xd2θ̄ W (Φ̂†)

=
∫

d4x L
(2.42)

with
L = (∂µA)†(∂µA) + iΨ̄σµ∂µΨ + F †F

− F
∂W

∂A
− F †

(
∂W

∂A

)†
− 1

2

[
∂2W

∂A2
Ψ Ψ +

(
∂2W

∂A2

)†
Ψ̄ Ψ̄

]
+ total div. . (2.43)

Possible indices for the �elds are suppressed. The equation of motion for F is F =
(

∂W
∂A

)∗.
It has no dynamic and furthermore cancels in the Lagrangian on-shell. It serves as an
auxiliary �eld in order to guarantee supersymmetry for the Lagrangian, in especially for
the �elds A,Ψ o�-shell. The last term is the really interesting part describing Yukawa
couplings between chiral supermultiplets. The derivative ∂W

∂Ai
has to be understood as

partially di�erentiating W partially with respect to the super�eld Φ̂i and subsequently
substituting all super�elds by their scalar �elds Ai.

2.3.3 Vector Fields

To rebuild the SM, we need vector bosons as gauge interaction particles4. Therefore, we
de�ne a real vector super�eld as V̂ (x, θ, θ̄) = V̂ †(x, θ, θ̄) and expand it as a series

V̂ (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]

− i

2
θ̄θ̄[M(x)− iN(x)] + θσµθ̄Vµ(x) + iθθθ̄[λ̄(x)− i

2
σ̄µ∂µξ(x)]

− iθ̄θ̄θ[λ(x)− i

2
σµ∂µξ(x)] +

1
2
θθθ̄θ̄[D(x)− 1

2
�C(x)] .

(2.44)

There are 8 real bosonic C, M , N , D, Vµ and 8 fermionic degrees of freedom ξ, ξ̄, λ, λ̄.
We de�ne the (Abelian) �eld strength

Fµν := ∂µVν − ∂νVµ . (2.45)
In superspace the corresponding de�nition of the �eld strength super�eld is

Ŵα := −1
4
D̄2DαV̂ . (2.46)

Note that D̄β̇Ŵα = 0, so Ŵα is a spinor chiral super�eld. The solution, worked out in the
chiral representation, is

Ŵα = −iλα + θαD − i

2
(σµσ̄νθ)αFµν − θθ(σµ∂µλ̄)α . (2.47)

4Of course, if we introduce any boson particle, supersymmetry will automatically add fermion partners.
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Under a supersymmetry transformation (2.20) the �elds of Ŵα transform as

δξλ = iξαD +
1
2
(σµσ̄ν)α

βξβFµν , (2.48)
δξFµν = i∂µ(ξσν λ̄− λσν ξ̄)− i∂ν(ξσµλ̄− λσµξ̄) , (2.49)
δξD = ∂µ(ξσµλ̄− λσµξ̄) . (2.50)

It is once more important to note that the �eld D transforms as a total divergence which
provides a way to construct Lagrangians. The �elds λ, λ̄, Fµν and D form an irreducible
gauge supermultiplet. Hence one possible term in the Lagrangian is

L =
1
4
[ŴαŴα]θθ +

1
4
[̂̄W α̇

̂̄W α̇
]θ̄θ̄ =

1
2
[ŴαŴα]θθ + total divergence

= iλ̄σ̄µ∂µλ+
1
2
D2 − 1

4
FµνF

µν + total divergence ,

S =
1
2

∫
d4xd2θ ŴαŴα =

1
2

∫
d4xd4θ (DαV̂ )Ŵα .

(2.51)

This Lagrangian is the kinetic energy for a vector �eld Vµ with �eld strength Fµν and for
its fermion partner λ. This provides a way to handle gauge interactions. Once realized we
will call this fermion gaugino.

2.3.4 Gauge Interaction

First we restrict ourselves to a U(1) gauge group. Then we use the fact that a �eld
strength super�eld Ŵα is invariant under the following transformation by a chiral super�eld
Λ̂(x, θ, θ̄)

V̂ → V̂ + i(Λ̂− Λ̂†) (2.52)

If we express Λ̂ as in (2.36), then the component �elds of V̂ transform as

C → C + i(A+A†) , (2.53)
ξ → ξ +

1
2
Ψ , (2.54)

M + iN →M + iN − 2F , (2.55)
Vµ → Vµ + ∂µ(A−A†) , (2.56)
λ→ λ , (2.57)
D → D . (2.58)

The good news is that Vµ transforms as a U(1)-gauge transformation and hence Fµν is
gauge invariant.
Let us now choose a �xed gauge to make things easier. We choose A + A†, Ψ and

F such that C = ξ = M = N = 0. Note that A − A† remains undetermined and the
U(1)-gauge freedom of Vµ is thus still valid. This is the Wess-Zumino gauge, but it is not
a supersymmetric gauge choice, i.e. supersymmetry transformations do not preserve these
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conditions. Supersymmetric invariant expressions, however, build up in this gauge choice
remain invariant in whatever gauge. Having justi�ed our choice, we get

V̂WZ = θσµθ̄Vµ(x) + iθθθ̄λ̄(x)− θ̄θ̄θλ(x) +
1
2
θθθ̄θ̄D(x) . (2.59)

A (complex) chiral super�eld Φ̂ can then be rotated by a gauge transformation
Φ̂→ exp(−2igΛ̂)Φ̂ . (2.60)

As a consequence, the kinetic term Lkin =
∫

d4θ Φ̂†Φ̂ is not gauge invariant because Λ̂ is
a complex �eld, or in other words not hermitian as a �eld operator5. But the modi�ed
term

Lkin =
∫

d4θ Φ̂† e2g bV Φ̂ (2.61)

is invariant under (2.60). The remaining part is a possible superpotential. The worked
out supersymmetric and U(1)-gauge invariant Lagrangian in the Wess-Zumino gauge is
given by

L =
1
2

∫
d4xd4θ (DαV̂ )Ŵα +

∫
d4θ Φ̂† e2g bV Φ̂

= −1
4
FµνF

µν + iλ̄σ̄µ∂µλ+
1
2
D2 + F †F + gDA†A

+ (DµA)†(DµA) + iΨ̄ σ̄µDµΨ + i
√

2g(A†λΨ −Aλ̄Ψ̄) ,

(2.62)

where Dµ = ∂µ + igVµ is the known gauge covariant derivative. The �rst two terms in the
second line are just the normal gauge couplings between a vector boson Vµ and a scalar
�eld A or fermion Ψ respectively. The last term describes the supersymmetry counterparts
of the gauge interactions. It is the coupling of the fermionic partner of the gauge boson:
The gaugino λ couples to a scalar �eld A and a fermion Ψ of the same chiral supermultiplet
with √2 times the coupling constant g. The equation of motion for D is D = −gA†A and
thus it gives a mass term −1

2gA
†A on-shell. Is serves like F as an auxiliary �eld to keep

the whole expression even o�-shell supersymmetry invariant.
We will brie�y generalize to the non-Abelian case. The chiral super�eld is thus a

multiplet of the gauge group and transforms as
Φ̂i → exp(−2igΛ̂)ijΦ̂j , (2.63)

where Λ̂ = (Λ̂aT a)ij and T a are the generators of the gauge group. Likewise V̂ := V̂ aT a.
By this means, the kinetic term (2.61) is gauge invariant if the V̂ transforms as

exp(2gV̂ ) → exp(−2igΛ̂†) exp(2gV̂ ) exp(2igΛ̂) (2.64)
The �eld strength super�eld must be de�ned as

Ŵα := − 1
8g
D̄2 exp(−2gV̂ )DαV̂ exp(2gV̂ ) , (2.65)

5The point is that exp(+2ig bΛ†) exp(−2ig bΛ) 6= 1.
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such that it transforms as

Ŵα → exp(−2gV̂ )Ŵα exp(2gV̂ ) (2.66)

and Tr(ŴαŴα) is gauge invariant. Its explicit form in the Wess-Zumino gauge becomes

Ŵ a
α = −iλa

α + θαD
a − i

2
(σµσ̄νθ)αF

a
µν − θθσµ(Dab

µ λ̄
b)α . (2.67)

Here a is the adjoint group index and fabc as the structure constant of the gauge group.
We recover the U(1) �eld strength super�eld of Eq. (2.47). The �eld strength and the
covariant derivation are familiar

F a
µν = ∂µV

a
ν − ∂νV

a
µ − gfabcV

b
µV

c
ν , (2.68)

Dac
µ = δac∂µ − gfabcV

b
µ . (2.69)

Finally, a superpotential must be a gauge singlet. This is the case when W (e−2ig bΛΦ̂) =
W (Φ̂).

2.4 Particle Content of the MSSM

We are now ready to list the particle contents of the MSSM in terms of supermultiplets
using chiral and gauge/vector super�elds. The chiral supermultiplets are listed in table
2.1. All the SM leptons and quarks can be found together with their superpartners, the
scalar sleptons and squarks. One may ask why we have introduced two Higgs doublets

Name Super�eld spin 0 spin 1/2 SU(3)C SU(2)L U(1)Y

squarks, quarks Q̂ (ũL d̃L) (uL dL) 3 2 +1
6

(×3 families) Û ũ∗R u†R = uc
L 3̄ 1 −2

3

D̂ d̃∗R d†R = dc
L 3̄ 1 +1

3

sleptons, leptons L̂ (ν̃ ẽL) (ν eL) 1 2 −1
2

(×3 families) Ê ẽ∗R e†R = ecL 1 1 +1

Higgs, higgsinos Ĥu (H+
u H0

u) (H̃+
u H̃0

u) 1 2 +1
2

Ĥd (H0
d H−

d ) (H̃0
d H̃−

d ) 1 2 −1
2

Table 2.1: Chiral supermultiplets in the MSSM

in contrast to the SM which has only one? A short look at the MSSM superpotential will
clarify. This is a general superpotential that is invariant under the Lorentz group, the
local gauge group SU(3)c × SU(2)L × U(1)Y and invariant under R-parity (see section
2.5):

WMSSM = he
ijL̂iĤdÊj + hd

ijQ̂iĤdD̂j + hu
ijQ̂iĤuÛj + µĤuĤd . (2.70)
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The indices i, j are family indices, color and weak isospin indices are suppressed, µ is the
Higgs mass parameter and all h are Yukawa coupling constants bestowing masses to the
particles once the electroweak gauge symmetry is broken. The answer is that a second
Higgs doublet is needed to create all the masses. The superpotential is a holomorphic
function of the �elds and hence the term hu

ijQ̂iĤuÛj cannot be substituted by hu
ijQ̂iĤ

∗
d Ûj .

The solution is a second Higgs doublet Ĥu with an opposite UY charge relative to Hd. A
second reason is the avoidance of a gauge anomaly by this second Higgs doublet.
The vector supermultiplets, which are also called gauge supermultiplets because they

mediate the gauge interactions, are listed in table 2.2.
Name Super�eld spin 1/2 spin 1 SU(3)C SU(2)L U(1)Y

gluino, gluon ĝ g̃ g 8 1 0

winos, W bosons Ŵ W̃± W̃ 0 W± W0 1 3 0

bino, B boson B̂ B̃ B 1 1 0

Table 2.2: Gauge supermultiplets in the MSSM

As far as the particle contents has been discussed, supersymmetry breaking was not
considered. There are several possible mechanisms to break supersymmetry spontaneously,
among them (see, e.g., Chap. 12.5 of [9]):

1. Gravity mediated breaking
2. Gauge mediated F-type breaking [10]
3. Gauge mediated D-type breaking [11]
4. Anomaly-mediated breaking

Though these breaking mechanisms break supersymmetry spontaneously, it is di�cult to
obtain the right SM particle mass spectrum. Because of this di�culty, and the ambiguity
in the model, it is a more phenomenological approach to write down the most general soft
supersymmetry breaking superpotential Wsoft. It breaks supersymmetry explicitly and
introduces a lot of new parameters, but renders, for all cases in which supersymmetry
is broken, the right phenomenology. To be "soft" means that it ful�lls conditions of
renormalization, more precisely it maintains still a solution of the hierarchy problem. Once
supersymmetry breaking is introduced, mass mixings become possible between particles
with same quantum numbers (cf. appendix D of this report and appendix C of [4]):

� Sleptons of each �avor:
l̃1 = cos θ l̃L + sin θ l̃R , l̃2 = − sin θ l̃L + cos θ l̃R . (2.71)

The mass eigenstates are on the right-hand, �avor eigenstates on the left-hand side.
Usually, the mass eigenstate 1 is chosen to be the lightest. The angle θ is the mixing
angle, di�erent for each �avor.

� Squarks of each �avor, same as sleptons.
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� Charged winos and higgsinos → charginos:

χ+
i = VijΨ

+
j , χ−i = UijΨ

−
j i, j = 1, 2 . (2.72)

� Bino, neutral wino and neutral higgsinos → neutralinos:

χ0
i = NijΨ

0
j i, j = 1, .., 4 . (2.73)

Neutralinos are Majorana fermions.

2.5 R-Parity

From one point of view, there is a problem within the MSSM. There is a priori no law
that forbids lepton number (L) and baryon number (B) violating terms in the Lagrangian,
or more precisely, in the MSSM superpotential6. The most general one invariant under
transformations of the Lorentz group and the local gauge group SU(3)c×SU(2)L×U(1)Y is
the sum ofWMSSM given in Eq. (2.70) and the following R-parity violating superpotential
[12]

W/Rp
= µiĤuL̂i +

1
2
λijkL̂iL̂jÊk + λ′ijkL̂iQ̂jD̂k +

1
2
λ′′ijkÛiD̂jD̂k , (2.74)

where i, j, k are family indices and the Yukawa couplings λijk ( λ′′ijk) are antisymmetric
in the �rst (last) two indices because of gauge invariance. However, the operators in Eq.
(2.74) induce a too rapid proton decay in contradiction with the experimental observation.
Therefore, a discrete symmetry, R-parity [13, 12], is imposed by hand in order to forbid
the problematic terms in (2.74). R-parity is de�ned as

R = (−1)3B+L+2S , (2.75)

where S is the spin of the particle. With this de�nition one has R = +1 for all SM particles
andR = −1 for their supersymmetric partners. Furthermore, it is a multiplicative quantity
allowing supersymmetric particle production only in pairs.
Yet this symmetry is more restrictive than necessary. In order to forbid a too rapid

proton decay, it is su�cient to impose either baryon number conservation, allowing the
R-parity violating terms L̂iL̂jÊk and L̂iQ̂jD̂k, or lepton number conservation if the proton
is lighter than the LSP, allowing the term ÛiD̂jD̂k [13]. In particular, the combination of
couplings λ′imkλ

′′
11k (i = 1, 2, 3; m = 1, 2) would lead to proton decay via tree-level down

squark exchange at an unacceptable rate, unless |λ′imkλ
′′
11k| is smaller than about 10−26

for a typical squark mass in the 300 GeV range. Further limits are given in tables 2.3 and
2.4. They depend typically on sfermion masses.

6Note that in the SM lepton and baryon number violating terms are automatically avoided by demanding
local gauge invariance and renormalizability.
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coupling λijk λ′1jk λ′2jk λ′3jk

limit 0.07 0.28 0.56 0.52

Table 2.3: Limits for R-parity violating Yukawa couplings (i, j, k = 1, 2, 3) using a
mSUGRA model [14].

coupling λ′11k λ′12k λ′2j1 λ′21k

limit 0.02
( md̃kR

100 GeV

)
0.44

( md̃kR
100 GeV

)
0.18

( md̃jL

100 GeV

)
0.06

( md̃kR
100 GeV

)
coupling λ′22k λ′31k λ′32k

limit 0.21
( md̃kR

100 GeV

)
0.12

( md̃kR
100 GeV

)
0.52

( md̃kR
100 GeV

)
Table 2.4: Limits for R-parity violating Yukawa couplings (j, k = 1, 2, 3) given in [12], p.

156.
One may ask for the origin of R-parity breaking terms in the Lagrangian. There are two

possibilities: explicit R-parity breaking terms in the superpotential or R-parity breaking
terms generated by supersymmetry breaking. Considering the general superpotential in
(2.74) is valid for both cases.
The phenomenology of an R-parity violating supersymmetric theory is very di�erent

from the conventional R-parity conserving MSSM and has some interesting features [12]:
� The LSP is no more stable and can decay into SM particles, but if the couplings are
weak enough, it remains a good dark matter candidate.

� The L-violating couplings generate automatically neutrino masses and mixings and
can explain neutrino-�avor transition in matter.

� B-violation is one of the three necessary Sakharov conditions [15] for baryogenesis
and the B-violating couplings can be used to explain the observed baryon asymmetry
of the universe within models of baryogenesis. 7

2.6 Lagrangian and Feynman Rules

In this section, we brie�y summarize explicit terms in the Lagrangian and Feynman rules
that are used in this report.

Lagrangian

We consider only the R-parity violating term

W = λ′ijkL̂iQ̂jD̂k , (2.76)
7Though all criteria are already ful�lled in the SM, the generated baryon asymmetry is much too small
[16].
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which is part of the superpotential in Eq. (2.74). By use of (2.43) the Yukawa-interactions
originated by a superpotential is

LY ukawa = −1
2

[
∂2W

∂A2
Ψ Ψ +

(
∂2W

∂A2

)†
Ψ̄ Ψ̄

]
. (2.77)

Expressed in 4-component Dirac spinors, this leads to
LY uk,LQD = −λ′ijk

[
ν̃id̄kPLdj − ẽL,id̄kPLuj

d̃L,j d̄kPLνi − ũL,j d̄kPLei

d̃∗R,kν̄
c
iPLdj − d̃∗R,kē

c
iPLuj

]
+ h.c. ,

(2.78)

with the projectors PL = 1−γ5

2 and PR = 1+γ5

2 .

Feynman Rules

The resulting Feynman rules corresponding to the �rst two terms of this Lagrangian can
now be easily derived and are given in Fig. 2.1. The other vertices contained in (2.78)

dj

d̄k

ν̃∗i

vertex: iλ′ijkPL

(a)

uj

d̄k

ẽ∗L,i

vertex: −iλ′ijkPL

(b)

Figure 2.1: Feynman rules for quark-quark-slepton vertices.
are analogous. Another Feynman rule used later for decays is a slepton-neutralino-lepton
coupling conserving R-parity. The rule written in Fig. 2.2 is taken from [17].

χ̃0
j

ei

ẽL,i

vertex: −i√2(aL
i,jPL + bLi,jPR)

(a)

χ̃0
j

ei

ẽR,i

vertex: −i√2(aR
i,jPL + bRi,jPR)

(b)

Figure 2.2: Feynman rules for neutralino-electron-selectron vertices.
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The parameters a and b depend on mixings (see appendix D) and are given by

aL
i,j =

gmei

2mW cosβ
N∗

j3 , bLi,j = −eN ′
j1 −

g

cW

(
1
2
− s2W

)
N ′

j2 , (2.79)

bRi,j =
gmei

2mW cosβ
Nj3 , aR

i,j = eN
′∗
j1 −

gs2W
cW

N
′∗
j2 , (2.80)

where cW and sW are cosine and sine of the Weinberg angle θW and tanβ = 〈Hu〉
〈Hd〉 is theratio of the vacuum expectation value of the two Higgs �elds. N is the 4 × 4 neutralino

mixing matrix of Eq. (2.4) and N ′ are given by

N ′
j1 = cW Nj1 + sW Nj2 , N ′

j3 = Nj3 ,

N ′
j2 = −sW Nj1 + cW Nj2 , N ′

j4 = Nj4 .
(2.81)

Computations of the Feynman rules of the MSSM can be found in [4, 18] and for R-parity
violating rules we refer to [12].
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3 Single Slepton Production

In this chapter we are going to analyze resonant single charged slepton production at
polarized and unpolarized hadron colliders [19, 20, 21]:

hadron1 + hadron2 → ẽi → decay products .

If not otherwise stated, the family index i is suppressed. There are two points to be
outlined. First it is an R-parity violating process, wherefore we investigate physics beyond
the MSSM. Secondly the produced slepton is in principle a virtual particle, but if the
energy of the incoming particles equals the slepton mass, it is produced on-shell, as a
quasi real particle, that lives and decays afterwards. Technically it is the narrow width
approximation which can be employed when the width of the slepton resonance Γ is much
smaller than the mass (cf. appendix B).

3.1 Analytical Results

p

p

ẽ

Figure 3.1: Drell-Yan process.

The cross section for resonant single slepton produc-
tion in hadron�hadron collisions (see Fig. 3.1) can be
computed in the QCD-improved parton model accord-
ing to the following formula:

σ =
∑
j,k

1∫
0

dxAdxB fj(xA, Q) fk(xB, Q)σ̂jk→ẽ+X .

(3.1)

Here xA and xB are the fraction of the hadron mo-
menta carried by the corresponding partons, i.e.

pA,B = xA,BPA,B , (3.2)

where PA,B (pA,B) denote the hadron (parton) momenta. Furthermore, fi(x,Q) is the
parton distribution function (PDF) of the parton i, which depends on the factorization
scale Q, which is typically chosen to be close to the hard scale of the process. In this case,
the hard scale is set by the slepton mass such that Q2 ' m̃2 = ŝ. Finally, σ̂jk→ẽ+X is the
cross section for the partonic subprocess j + k → ẽ + X, where X denotes an arbitrary
�nal state and an incoherent sum over all possible subprocesses has to be performed. In
leading order (LO) of quantum chromo dynamics (QCD) only the subprocess uj+d̄k → ẽ∗L,i

contributes, which will be computed in the next section.
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Similarly, the cross section for polarized hadronic collisions reads

∆σ =
∑
j,k

1∫
0

dxAdxB ∆fj(xA, Q) ∆fk(xB, Q)∆σ̂jk→ẽ+X , (3.3)

where ∆fi(x,Q) are polarized PDFs and ∆σ̂jk→ẽ+X is the polarized cross section for the
process j + k → ẽ+X.
Finally, the cross sections in Eqs. (3.1) and (3.3) are needed to compute the double-

polarized asymmetry

ALL =
∆σ

σ
. (3.4)

The polarized and unpolarized hadronic and partonic cross sections are de�ned as usual.
Nevertheless, we list all relevant de�nitions including all possible asymmetries in App. C
starting from experimental event rates/cross sections and derive in addition the relations
between hadron level and parton level cross sections and asymmetries.

3.1.1 Parton Level Results

The next step is to compute the partonic cross section of the reaction (see Fig. 3.2)

uj + d̄k → ẽ∗L,i . (3.5)

With the Feynman rules of Fig. 2.1 the transition matrix element M at leading order
(LO), its square, the phase space element dPS2→1, and the �ux F are

iM = v̄(pB, hB)
(
−iλ′ijkPL

)
u(pA, hA) , dPS2→1 =

2π
ŝ
δ(1− τ) ,

|M|2 =
|λ′ijk|2ŝ

12
(1− 2hA)(1− 2hB) , F = 2ŝ ,

where hA,B = ±1
2 are the helicities, ŝ is the partonic center of mass energy squared, τ = em2

ŝ
and m̃ the mass of the slepton. We have used the approximation of massless quarks, so

uj u(pA, hA)

d̄k v̄(pB, hB)

ẽ∗
�
��

−iλ′ijkPL

Figure 3.2: Feynman diagram for single slepton production at leading oder of QCD.
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that the helicity projection becomes u(p, λ)ū(p, λ) = 1
2 (1 + 2λγ5) /p and v(p, λ)v̄(p, λ) =

1
2 (1− 2λγ5) /p [22]. Putting all this together yields the partonic cross section

dσ̂(ŝ, hA, hB) =
π|λ′ijk|2

12ŝ
δ(1− τ)(1− 2hA)(1− 2hB). (3.6)

Before turning to the cross section at the hadronic level let us brie�y discuss the quite
particular structure of the partonic cross section in Eq. (3.6). As can be seen, dσ̂ vanishes
when hA = 1

2 or hB = 1
2 such that the only contributing cross section is (cf. Eq. (C.5)�

(C.8))

σ̂(ŝ, hA = −1
2
, hB = −1

2
) =: σ̂−− . (3.7)

The explanation for this result is that the produced scalar particle carries no polarization
(implying σ̂+− = σ̂−+ = 0 for massless quarks) and the vertex is only proportional to PL

(σ̂++ = 0). This implies that the unpolarized partonic cross section σ̂0 and the polarized
cross section ∆σ̂ (cf. appendix C) are given by

σ̂0 = ∆σ̂ =
1
4
σ̂−− =

π|λ′ijk|2

12ŝ
δ(1− τ) . (3.8)

3.1.2 Hadron Level

Inserting the result in (3.8) into (3.1) and (3.3) we arrive at the following �nal expressions
for the unpolarized respectively polarized hadronic cross sections:

σ0 =
∑
j,k

1∫
em2

s

dx fj(x) fk

(
m̃2

sx

)
π|λ′ijk|2

12xs
, (3.9)

∆σ =
∑
j,k

1∫
em2

s

dx ∆fj(x) ∆fk

(
m̃2

sx

)
π|λ′ijk|2

12xs
. (3.10)

A nice feature of the cross section is its relation to the parton luminosity function
dLjk

dŝ
=

∫
dxAdxB fj(xA) fk(xB) δ(xAxBs− ŝ) , (3.11)

where a similar expression holds for the polarized luminosity.

σ ≈
∑
jk

σ̂jk(x =
ŝ

s
)
dLjk

dŝ
. (3.12)

In our application, it is easy to see that Eq. (3.9) holds exactly if we use σ̂′jk

σ0 =
∑
jk

σ̂′jk
dLjk

dŝ

∣∣∣
ŝ= em2

=
π|λ′ijk|2

12
dLjk

dm̃2
, (3.13)
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such that the hadronic cross section is nothing other than the partonic luminosity function
times a constant. Analogous expressions hold for the polarized case.
Instead of positively charged slepton ẽ∗L production we could consider producing a nega-
tively charged slepton ẽL. On the other hand, there is no ẽR production possible through
the superpotential (2.74). The negative charged slepton production corresponds to the
conjugate process ūj + dk → ẽL. The only di�erence to the former case is that "left is
changed to right," and thus σ̂++ is the only non-vanishing partonic cross section. An
essential di�erence occurs, however, at the hadronic level because the parton distribution
functions change. Yet, according to equation (3.13), these di�erences are restricted to the
parton luminosity function1.

3.1.3 Slepton Decays

There are the following decay channels for charged sleptons:

uj d̄k → ẽ∗L,i →


umd̄n, (a)

ēiχ̃
0
m, (b)

ν̄iχ̃
+
n , (c)

. (3.14)

The channel (a) is highly suppressed because it is proportional to |λ′|2. In particular the
corresponding 2 → 2 process is even proportional to |λ′|4. If the lightest neutralino is the
LSP, then channel (b) becomes the preferred one, which could be detected by its signal of
an outgoing charged lepton and missing energy. Using the corresponding Feynman rule of
Fig. 2.1(c) its decay width can be calculated as

Γee∗i→ēiχ̃0
j

=
g2

64πm̃3

√
m̃4 +m4

l +m4
χ̃0 − 2m̃2(m2

l +m2
χ̃0)− 2m2

lm
2
χ̃0[

(m̃2 −m2
l −m2

χ̃0)(|aj |2 + |bj |2)− 2mlmχ̃0(ajb
∗
j + bja

∗
j )

]
.

(3.15)

This formula is valid if interaction states are equal to mass states.

3.1.4 Cross Section 2 → 2

Finally we give the partonic cross section formula for the process uj + d̄k → ẽ∗i → ēi + χ̃0

without selectron mixing:

dσ̂
dΩCMS

=
|λ′ijk|2

1536π2ŝ

(1− 2hA)(1− 2hB)
(ŝ− m̃2)2 + (m̃Γ )2[

1
2
(ŝ−m2

l −m2
χ̃0)(|a|2 + |b|2)− 2mlmχ̃0(ab∗ + ba∗)

]
.

(3.16)

It is interesting to mention that σ̂CMS,tot = 4π dσ̂
dΩCMS

and thus there is no direction
dependence in the center of mass frame.
1For pp̄�colliders (Tevatron) the parton luminosity functions are identical in both cases. However, for

pp-colliders (LHC) they are di�erent.
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3.2 Numerical Results

In this section we present numerical results for polarized and unpolarized single slepton
production discussed in the previous section. Following Refs. [23, 24], we consider three
(polarized) collider options:

RHIC: At present, the Relativistic Heavy Ion Collider (RHIC) is the only polarized hadron
collider. It has a center of mass energy range of √s = 200 . . . 500 GeV and a
polarization of P = 70% for both beams. In our numerical studies, we take the
upper limit 500GeV .

Tevatron: The Fermilab Tevatron is an unpolarized proton�antiproton collider operating at√
s = 1.96 TeV . We assume a hypothetical polarization of P = 70% for both

beams.
LHC: The Large Hadron Collider (LHC) will enter service this year (2008) providing unpo-

larized proton�proton collisions at √s = 14 TeV . Again, we assume a polarization
option of P = 70% for both beams.

3.2.1 Unpolarized Production

We begin to calculate the unpolarized cross section σ0 of equation (3.9) also needed to
build later the asymmetry ALL as in (3.4). For the following numerical results the coupling
strength was always assumed to be λ′i12 = λ′i21 = 0.01 neglecting all other λ′ijk couplings.
We adopted the CTEQ6L1 [25] PDFs at LO evaluated at the scale factor Q = m̃ and the
Vegas algorithm of the CUBA library [26] for numerical integration. A possible squark
mixing would only appear as a global factor that was set to cos2 θ = 1. The result, seen
in Fig. 3.3 is in complete agreement with the LO curves in Fig. 2 of Ref. [19].
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Figure 3.3: Hadronic cross sections for single slepton production via u+d̄→ ẽ∗. Shown are
results for LHC, Tevatron, and RHIC energies utilizing a scale factor Q = m̃,
Yukawa couplings λ′i12 = λ′i21 = 0.01, and CTEQ6L1 [25] LO PDFs.
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3.2.2 Polarized Production

The next step is to calculate ∆σ according to (3.10). We use the very recent polar-
ized DSSV next-to-leading order (NLO) PDFs [27] resulting in Fig. 3.4 together with its
corresponding unpolarized MRST2002 NLO PDFs [28]2. Strictly speaking, it would be
necessary to combine our LO partonic cross sections with LO PDFs, whereas the use of
scheme dependent NLO PDFs together with LO partonic cross sections produces a scheme
dependent and in principle unphysical result. Unfortunately, all recent polarized PDFs are
available in NLO only and we have to chose between consistent but oldish LO PDFs and
recent NLO PDFs comprising all the relevant experimental information. Since we plan
to include the NLO hard scattering cross section in the future, we prefer to use here the
PDFs at NLO in the modi�ed minimal subtraction scheme (MS), i.e., we assume for the
time being (schematically)

PDFMS
NLO ⊗ σ̂MS

NLO = PDFMS
NLO ⊗

(
σ̂

(0)
LO +

αS

2π
σ̂(1),MS

)
!' PDFMS

NLO ⊗ σ̂
(0)
LO .

However, for comparison, we compute the asymmetry also with the LO GRV98/GRSV2000
PDFs.
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Figure 3.4: (a) Same as in Fig. 3.3 using MRST2002 NLO PDFs [28]. (b) Corresponding
polarized cross sections obtained with the DSSV PDFs [27]. The vertical line
indicates the maximal value of Q given by the DSSV PDFs. For m̃ > Qmax

the scale Q has been frozen at Qmax.

2Note that global �ts of polarized PDFs require unpolarized PDFs in order to compute the experimental
asymmetries. The DSSV PDFs have been determined using the unpolarized MRST2002 PDFs, such
that these two sets go together for consistency.
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3.2.3 Asymmetry

Building the asymmetry ALL of Eq. (3.4) results in Fig. 3.5. For comparison, we also
show the results of the same calculation using the LO PDFs GRV98lo [29] and GRSV2000
[30]. The maximal value of the factorization scale is here Qmax = 1000 GeV . As one
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Figure 3.5: (a) Double spin asymmetry ALL for resonant single slepton production at LHC,
Tevatron and RHIC energies. The factorization scale Q has been identi�ed
with the slepton mass m̃ and has been frozen for m̃ > Qmax Q = Qmax at
Qmax = 316 GeV . We applied the NLO PDFs DSSV [27] and MRST2002 [28].
(b) Zoom into the region of m̃ = Q < Qmax.

can see, for LHC the asymmetry is negligible for the slepton mass range shown in Fig.
3.5. For Tevatron energies, ALL is negative ranging between 0 and ∼ −50 % at m̃ ∼
1500 GeV . We also note that in this mass range from 0 to 1500 GeV the Tevatron results
obtained with DSSV/MRST and with GRSV/GRV are very similar. On the other hand,
for even larger slepton masses, reaching the kinematical limit, the numerical results for the
asymmetries are unstable (see also discussion of Fig. 3.7). Finally, the asymmetry at RHIC
is also negative reaching up to −10 %. Fig. 3.6(b) zooms into this region 0 to 316 GeV
relevant for RHIC. Di�erent from the Tevatron case, the RHIC asymmetry obtained by
GRSV/GRV PDFs, which is slightly negative until 120 GeV and then increases up to
+40 % at m̃ ∼ 316 GeV , di�ers strongly from the results obtained with DSSV/MRST.
The RHIC results start to be unstable for m̃ & 350 GeV approaching kinematical limit
ŝ = 500 GeV . In order to explain this behavior a little better, we plot in Fig. 3.7 the
unpolarized and polarized PDFs versus the scale Q at x = Q√

s
. This way, we sample the

typical PDF values entering the cross sections/parton luminosity functions3. The curves
are shown for RHIC energies and are similar for the Tevatron case. As expected, for
3In a Drell-Yan process, one has the relation x1,2 = Q√

s
e±y with pseudo-rapidity y. Setting y = 0, one

obtains typical x-values, at which the PDFs are probed.

24



slepton mass [GeV]
0 500 1000 1500 2000

LL
A

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

GRSV LO 
GRV98 and

maxQ

pLHC p
pTevatron p 

pRHIC p

(a)

slepton mass [GeV]
0 100 200 300

LL
A

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

GRSV LO
GRV98 and

pLHC p
pTevatron p 

pRHIC p

(b)

Figure 3.6: Same as in Fig. 3.5 employing the GRV98lo [29] and GRSV2000 [30] LO PDFs.

Q > 350 GeV the PDFs are tiny explaining possible numerical instabilities.
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Figure 3.7: PDFs evaluated at x = Q√
s
vs. Q at CMS energy of s = 500 GeV . (a) Unpo-

larized and (b) polarized case.
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3.2.4 Decay

Now we are going to examine the decay channels of charged sleptons discussed in section
3.1.3. In order to evaluate the total decay width and branching rations BR = Γij

Γtot of
the di�erent channels of Eq. (3.14), masses, mixing parameters, and coupling constants
are needed, see Eq. (3.15). For this purpose, we apply the SUSY spectrum generator
SUSPECT2 [31] using a minimal supergravity (mSUGRA) SUSY breaking scenario with
5 parameters: m0, m1/2, A0, tanβ and µ. In order to obtain results depending on the
slepton mass as before, we use the benchmark points SPS 1a and SPS3 [32] and their
slopes:

� SPS 1a: tanβ = 10, µ = +1, m0 = −A0 = 0.4 m1/2 and m1/2 varies.
� SPS 3: tanβ = 10, µ = +1, A0 = 0, m0 = 0.25 m1/2 − 10 GeV and m1/2 varies.

SUPSECT2 assumes no mixing between selectrons and smuons, whereas staus can mix and
τ̃1 denotes the lighter mass eigenstate (cf. Eq. (2.71)). Furthermore, we used SDECAY
[33] to calculate branching ratios and total decay widths resulting in Fig. 3.8 for τ̃1�decays
and in Fig. 3.9 for ẽL�decays. First, we note that in every case, the decay into the lightest
neutralino becomes the only one for high slepton masses. In Fig. 3.8(a), showing the SPS1 a
slope, τ̃1 decays only in the �rst two neutralinos and the lightest chargino, where the decay
in the lightest neutralino is very dominant. The anomaly at m1/2 ≈ 80 GeV are thought
to be unphysical and caused by numerical uncertainties. The total decay width in Fig.
3.8(b) increases approximately linearly between 0.1 GeV at m̃τ1 ≈ 70 GeV and 0.5 GeV
at m̃τ1 ≈ 1000 GeV . The SPS3 slope of τ̃1 gives quite a di�erent picture, where decays in
all the gauginos are possible, see Fig. 3.8(c). Particularly χ̃0

2 and χ̃−1 give non-negligible
contributions. Contrary to the SPS1 a slope, the decay width in 3.8(d) decreases very fast
from a value of ∼ 0.8 GeV down to ∼ 0.01 GeV and then continues decreasing slowlier
until it becomes zero at m̃τ1 ≈ 500 GeV . The possible decay channels for ẽL, shown in
Fig. 3.9(a) and Fig. 3.9(c), are exactly the same as for τ̃1 with the di�erence that the decay
into the lightest neutralino becomes dominant not sooner than for m̃eL & 180 GeV in the
case of SPS1 a, and for m̃eL & 300 GeV in the case of SPS3. Similar to the case of τ̃1,
the total decay width of ẽL for SPS1 a increases, seen in Fig. 3.9(b), from Γtot ∼ 0.2 GeV
up to ∼ 0.9 GeV , whereas the decay width for SPS3 decreases from ∼ 6 GeV down to
∼1 GeV and continues almost constantly with a value of ∼ 0.6 GeV .
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Figure 3.8: Branching ratios and total decay width for τ̃1 in dependence of m1/2 on the
lower x-axis and its mass m̃τ1 on the upper x-axis. The SUSY spectrum is
generated by SUSPECT2 [31], decays are evaluated by SDECAY [33]. (a) BR
and (b) total decay width for τ̃1 a with SPS1 a slope, (c) and (d) same for
SPS3 slope.
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Figure 3.9: Branching ratios and total decay width for ẽL in dependence of m1/2 on the
lower x-axis and its mass m̃eL on the upper x-axis. The SUSY spectrum is
generated by SUSPECT2 [31], decays are evaluated by SDECAY [33]. (a) BR
and (b) total decay width for ẽL a with SPS1 a slope, (c) and (d) same for
SPS3 slope.
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4 Conclusions

At the end we want to summarize results pointing out some characteristics and future
prospects. Initially, we started with the introduction of supersymmetry and arrived at
the MSSM. Subsequently, we discussed R-parity violation and derived the corresponding
Feynman rules. Then we studied single slepton production at polarized and unpolarized
hadron colliders (LHC, Tevatron and RHIC). We worked out the analytical results at
LO and used them for our numerical computations, where we con�rmed results in the
literature for the unpolarized cross sections. We went on to polarized cross sections and
double spin asymmetries, where we discussed in some details the use of chosen PDFs and
the breakdown of the results in the build asymmetries. In order to complete our discussion,
the decay modes of the produced charged slepton was analyzed, wherefore it was necessary
to chose a SUSY breaking scenario (mSUGRA) and benchmark points as well.
In particular, the additional information in polarized collisions might be interesting. The

combination of a propagating scalar particle together with a vertex only containing PL, but
not PR (reverse for the conjugate process) results in the fact that ∆σ̂ = σ̂0 = 1

4 σ̂
−− and

thus the asymmetry ALL becomes just the ratio between the polarized and the unpolarized
parton luminosity, which is in principle well known (λ′ cancels). Therefore ALL could be
useful to discriminate models of new physics with the same signature (charged lepton plus
missing energy). For futher studies both, the SM backgrounds as well as more precision,
reached by a NLO calculation and resummation, are needed.
At the very end, we can say that the proceeding discussion brings some di�erent topics

together: R-parity violation as physics beyond the MSSM, QCD, polarization in hadron
collisions and programming�all together making it a rich subject to be continued.
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A Conventions, De�nitions and Notation

A.1 Metric and Matrices

The omnipresent metric throughout this report is
g = diag[1,−1,−1,−1] . (A.1)

We also use the antisymmetric tensors

εαβ = εα̇β̇ = iσ2 =

 0 1

−1 0

 and ε0123 = +1 , (A.2)

which ful�l the useful identity
εαβε

βγ = −δγ
α . (A.3)

The Pauli matrices are

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ2 =

1 0

0 −1

 , (A.4)

σµ := (1, ~σ) , σ̄ := (1,−~σ) , (A.5)
σµν :=

1
4

(σµσ̄ν − σν σ̄µ) , σ̄µν :=
1
4

(σ̄µσν − σ̄νσµ) . (A.6)

A.2 Weyl Spinors and Grassmann variables

In quantum �eld theory spinors, as well as Grassmann variables, ful�l anti-commutator
relations. In the super�eld formulation they belong together so that we use the same
notation for both of them.
Weyl spinors under a Lorentz transformation M ∈ SO(3, 1):

ξα → ξ′α = Mα
β ξβ , ξα = εαβ ξβ , ξα = ξ̄α̇

∗ ,

η̄α̇ → η̄α̇ ′ =
(
M−1

)†α
β ξ

β , η̄α̇ = εα̇β̇ η̄β̇ , η̄α̇ = ηα∗ .
(A.7)

Products of anticommuting Weyl spinors are the same as products of Grassmann variables.

θθ := θαθα = εαβθ
αθβ = −2θ1θ2 , θαθβ = −1

2
εαβθθ , (A.8)

θ̄θ̄ := θ̄α̇θ̄
α̇ = εα̇β̇ θ̄

β̇θα̇ = +2θ̄1̇θ̄2̇ , θ̄α̇θ̄β̇ =
1
2
εα̇β̇ θ̄θ̄ , (A.9)
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∂α :=
∂

∂θα
, ∂α :=

∂

∂θα
, ∂αθ

β = δα
β (A.10)

∂̄α̇ :=
∂

∂θ̄α̇
, ∂̄α̇ :=

∂

∂θ̄α̇
, ∂̄α̇θ̄β̇ = δα̇

β̇ . (A.11)

Remark that

∂αθβ = εβα = −εαβ ⇒ ∂α = −εαβ∂β . (A.12)

Integration of Grassmann variables works as follows.∫
dθα =

∫
dθ̄α̇ = 0 , (A.13)

∫
dθα θα =

∫
dθ̄α̇ θ̄α̇ = 0 no summation here. (A.14)

Volume elements in superspce are de�ned by

d2θ := −1
4
dθdθ = −1

4
dθαdθα , (A.15)

d2θ̄ := −1
4
dθ̄dθ̄ = −1

4
dθ̄α̇dθ̄α̇ (A.16)

dθ4 := d2θd2θ̄ . (A.17)

It follows∫
d2θ2 =

∫
d2θ̄2 =

∫
d4θ4 = 1 . (A.18)
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B Narrow Width Approximation

B.1 Factorization of Phase Space

We consider a process pA + pB → p1 + p2. The Lorentz-invariant phase space can be
written as

dPS2→2 = (2π)4δ4 (pA + pB − p1 − p2)
d3~p1

(2π)32E1

d3~p2

(2π)32E2
. (B.1)

This formula can be rewritten in the phase spaces of the processes pA + pB → q and
q → p1 + p2:

dPS2→1 = (2π)4δ4 (pA + pB − q) · d3~q

(2π)32Eq
, (B.2)

dPS1→2 = (2π)4δ4 (q − p1 − p2) ·
d3~p1

(2π)32E1

d3~p2

(2π)32E2
. (B.3)

Using the three identities

1 =
∫
ds δ(q2 − s) , (B.4)

1 =
∫
d4q δ4 (q − pA − pB) , (B.5)

δ4(q2 − s) =
1

2Eq
·
[
δ(q0 − Eq) · θ(Eq) + δ(q0 − Eq) · θ(−Eq)

]
Eq=~q2+s

(B.6)
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yields

dPS2→2 =
∫
d4q δ4 (q − pA − pB)

∫
ds δ(s− q2)

(2π)4 δ4 (pA + pB − p1 − p2) ·
d3~p1

(2π)32E1
· d3~p2

(2π)32E2

=
∫
ds

∫
d4q δ(s− q2) · δ4 (q − pA − pB)

(2π)4 δ4 (pA + pB − p1 − p2) ·
d3~p1

(2π)32E1
· d3~p2

(2π)32E2

=
∫
ds

∫
d3~q dq0

1
2Eq

·
[
δ(q0 − Eq) · θ(Eq)

]
Eq=~q2+s

· δ4 (q − pA − pB)

(2π)4 δ4 (pA + pB − p1 − p2) ·
d3~p1

(2π)32E1
· d3~p2

(2π)32E2

=
∫
ds

∫
d3~q

2Eq
δ4 (q − pA − pB)

(2π)4 δ4 (q − p1 − p2) ·
d3p1

(2π)32E1
· d3p2

(2π)32E2

=
∫

ds

2π
dPS2→1(pA, pB; s) · dPS1→2(s; p1, p2) . (B.7)

For a 2 → 2 s-channel process with an exchanged virtual scalar particle with propagator

P =
−i

s−M2 + iMΓ
, (B.8)

where s = q2 = (pA + pB)2 is the 4-momentum squared, M the mass and Γ the decay rate
of the exchanged particle. The cross section can be written as

dσ =
1
F
dPS2→2 |M |22→2

=
∫
dq2

2π
dPS2→1(pA, pB; q) · dPS1→2(q; p1, p2) ·

1
F
· |M |22→1 · |P |

2 · |M |21→2 ,

(B.9)

where F = 2s is the �ux of the incoming particles, |M |22→1 is the squared matrix element
of the production of a virtual particle and |M |21→2 is the matrix element of its decay.
Together with the de�nition of the decay rate

dΓ1→2 =
1

2M
dPS1→2 |M |21→2 , (B.10)

this equation looks simpler in the following form

dσ2→2 =
∫

ds

2π
dσ2→1(pA, pB; s) · dΓ1→2(s; p1, p2) · 2M · |P |2 . (B.11)
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B.2 Narrow Width Approximation

The factored form of the cross section in Eq. B.9 is useful in the so called narrow width
approximation as we will see. Using the well-known result (see [34], Eq. (14.45))

1
π

ε

x2 + ε2
−−−→
ε→0

δ(x) . (B.12)

One can see that the square of the exchange particle propagator can be written as

|P |2 =
1

(s−M2)2 + (MΓ )2
≈ π

MΓ
δ(s−M2) , (B.13)

in the physical limit Γ � M , which corresponds to a resonance (s = M) with a narrow
width. With the help of Eq. B.13 we obtain a simpli�ed, factored cross section in the
narrow width approximation:

dσ2→2(s = M2) = dσ2→1(pA, pB;M2) · dΓ1→2(M2; p1, p2)
Γ

. (B.14)

Thus, this process is completely divided into the production of the virtual on-shell particle
and its decay. Γ1→2

Γ is called branching ratio.
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C Polarized Hadronic Cross Section

C.1 De�nitions

In polarized scattering experiments in which the initial particles are longitudinally polar-
ized, one measures the polarized cross sections

σ(λ1, λ2) , σ(1− λ1, 1− λ2) , σ(λ1, 1− λ2) , σ(1− λ1, λ2) . (C.1)

Here the values 0 ≤ λ ≤ 1 are the probabilities for a particle to have a right-handed
helicity, thus 1−λ is the probability of left-handedness. In experiments the given quantity
is the beam polarization P for each beam, which is connected to the helicity probabilities
by

λ =
1 + P

2
. (C.2)

In experiments, the outgoing particles are also polarized, but, in general, detectors are not
able to measure it. Calculations, however, are done with helicities h = ± of the initial
particles and the cross section σh1,h2 . So there are four quantities

σ++, σ−−, σ+−, σ−+ (C.3)

The relation between polarization and helicity becomes

σ(λ1, λ2) = λ1λ2σ
++ +λ1(1−λ2)σ+− +(1−λ1)λ2σ

−+ +(1−λ1)(1−λ2)σ−− . (C.4)

Now it is useful to change the basis, introducing

σ0 :=
1
4

(
σ++ + σ−− + σ+− + σ−+

) (C.5)

∆σ :=
1
4

(
σ++ + σ−− − σ+− − σ−+

) (C.6)

σPV :=
1
4

[(
σ++ − σ−−

)
+

(
σ+− − σ−+

)] (C.7)

∆σPV :=
1
4

[(
σ++ − σ−−

)
−

(
σ+− − σ−+

)] (C.8)

The advantage of this basis will become obvious when dealing with PDFs and the partonic
cross section. PV stands for parity violating, since, if parity is not violated, σ++ = σ−−

and σ+− = σ−+, and so each term cancels and they become zero. The formula (C.4)
expressed in this basis becomes

σ(λ1, λ2) = σ0 + (2λ1 − 1) (2λ2 − 1)∆σ + (2λ1 − 1)σPV + (2λ2 − 1)∆σPV . (C.9)
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In order to switch between experimental (C.1) and theoretical (C.5)(-C.8) quantities, we
write their relations

σ0 =
1
4

[σ(λ1, λ2) + σ(1− λ1, 1− λ2) + σ(λ1, 1− λ2) + σ(1− λ1, λ2)] (C.10)

∆σ =
1

4P1P2
[σ(λ1, λ2) + σ(1− λ1, 1− λ2)− σ(λ1, 1− λ2)− σ(1− λ1, λ2)] (C.11)

σPV =
1

4P1P2
[σ(λ1, λ2)− σ(1− λ1, 1− λ2) + σ(λ1, 1− λ2)− σ(1− λ1, λ2)] (C.12)

∆σ =
1

4P1P2
[σ(λ1, λ2)− σ(1− λ1, 1− λ2)− σ(λ1, 1− λ2) + σ(1− λ1, λ2)] (C.13)

Furthermore, we build so called asymmetries:

ALL =
σ++ + σ−− − σ+− − σ−+

σ++ + σ−− + σ+− + σ−+
=
∆σ

σ0
(C.14)

APV
L0 =

σ+0 − σ−0

σ+0 + σ−0
=
σPV

σ0
(C.15)

APV
0L =

σ0+ − σ0−

σ0+ + σ0− =
∆σPV

σ0
(C.16)

APV
LL,even =

σ+− − σ−+

σ+− + σ−+
=
σPV −∆σPV

σ0 −∆σ
(C.17)

APV
LL,odd =

σ++ − σ−−

σ++ + σ−−
=
σPV +∆σPV

σ0 +∆σ
(C.18)

Here a zero in the upper index means no polarization, that is σ+0 = 1
2 (σ++ + σ+−) and

so on. As in the unpolarized case, the probability of �nding a parton i carrying the
momentum fraction xi and with helicity h in a hadron with helicity H is given by the
polarized parton density function (PDF)

fh
i,H(xi, Q

2), (C.19)
where Q is the scale factor. Since the PDF includes only information about QCD processes,
parity is conserved and thus we conclude

f+
i,+ = f−i,− f−i,+ = f+

i,− (C.20)
Therefore we can always express the PDF with a positive hadron helicity and this is done
by convention whenever the lower index is dropped.

C.2 Relations between hadronic and partonic polarized cross

sections

The relation between hadronic and partonic polarized cross section σh1,h2 and σ̂h′1,h′2 is a
straightforward generalization from the unpolarized case (3.1):

σh1,h2

hadr1+hadr2→k+X =
∑
i,j

∑
h′1,h′2

1∫
0

1∫
0

dx1dx2 f
h′1
i,h1

(x1, Q
2)fh′2

j,h2
(x2, Q

2) σ̂h′1,h′2
i+j→k+X′ (C.21)
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In order to calculate σ and ∆σ, it useful to de�ne
fi := f+

i + f−i
∆fi := f+

i − f−i
(C.22)

This yields

∆σ =
1
4

(
σ++ + σ−− − σ+− − σ−+

)
=

1
4

∑
i,j

∑
h′1,h′2

1∫
0

1∫
0

dx1dx2

[
f

h′1
i,+f

h′2
j,+ + f

h′1
i,−f

h′2
j,− − f

h′1
i,+f

h′2
j,− − f

h′1
i,−f

h′2
j,+

]
σ̂

h′1,h′2
i,j

(C.23)

Using (C.20) and (C.22), the expression in brackets simpli�es to
1
4

∑
h′1,h′2

[
f

h′1
i f

h′2
j + f

−h′1
i f

−h′2
j − f

h′1
i f

−h′2
j − f

−h′1
i f

h′2
j

]
σ̂

h′1,h′2
i,j

=
1
4

∑
h′1,h′2

[
f

h′1
i

(
f

h′2
j − f

−h′2
j

)
− f

−h′1
i

(
f

h′2
j − f

−h′2
j

)]
σ̂

h′1,h′2
i,j

=
1
4

∑
h′1

{[
f

h′1
i ∆fj − f

−h′1
i ∆fj

]
σ̂

h′1,+
i,j −

[
f

h′1
i ∆fj − f

−h′1
i ∆fj

]
σ̂

h′1,−
i,j

}
=

1
4

∑
h′1

{[(
f

h′1
i − f

−h′1
i

)
∆fj

]
σ̂

h′1,+
i,j −

[(
f

h′1
i − f

−h′1
i

)
∆fj

]
σ̂

h′1,−
i,j

}
=

1
4
∆fi∆fj

(
σ̂++

ij + σ̂−−ij − σ̂+−
ij − σ̂−+

ij

)
So, we also de�ne for the partonic cross section

∆σ̂ij :=
1
4

(
σ̂++

ij + σ̂−−ij − σ̂+−
ij − σ̂−+

ij

)
. (C.24)

The same calculation is valid for σ0 by replacing all 'real' minus signs by positive signs.
This also justi�es our de�nitions in (C.22). In fact, we de�ne the partonic cross sections
in the same way as the hadronic one in Eq. (C.5)-(C.8). We list the resulting relations
using a convolution notation ⊗ for the integrals and the sum convention:

σ0 = fi ⊗ fj ⊗ σ̂0,ij , (C.25)
∆σ = ∆fi ⊗∆fj ⊗∆σ̂ij , (C.26)
σPV = ∆fi ⊗ fj ⊗ σ̂PV

ij , (C.27)
∆σPV = fi ⊗∆fj ⊗∆σ̂PV

ij . (C.28)

The �rst line is just a reproduction of the unpolarized hadronic cross section formula.
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D Gaugino and higgsino mixing

This appendix is taken from [24] The soft SUSY-breaking terms in the minimally super-
symmetric Lagrangian include a term [4]

L ⊃ −1
2
(ψ0)T Y ψ0 + h.c., (D.1)

which is bilinear in the (2-component) fermionic partners
ψ0

j = (−iB̃,−iW̃ 3, H̃0
1 , H̃

0
2 )T with j = 1, . . . , 4 (D.2)

of the neutral electroweak gauge and Higgs bosons and proportional to the, generally
complex and necessarily symmetric, neutralino mass matrix

Y =


M1 0 −mZ sW cβ mZ sW sβ

0 M2 mZ cW cβ −mZ cW sβ

−mZ sW cβ mZ cW cβ 0 −µ

mZ sW sβ −mZ cW sβ −µ 0

 . (D.3)

Here, M1, M2, and µ are the SUSY-breaking bino, wino, and o�-diagonal higgsino mass
parameters with tanβ = sβ/cβ = vu/vd being the ratio of the vacuum expectation values
vu,d of the two Higgs doublets, while mZ is the SM Z-boson mass and sW (cW ) is the sine
(cosine) of the electroweak mixing angle θW . After electroweak gauge-symmetry breaking
and diagonalization of the mass matrix Y , one obtains the neutralino mass eigenstates

χ0
i = Nij ψ

0
j , i = 1, . . . , 4, (D.4)

where N is a unitary matrix satisfying the relation
N∗ Y N−1 = diag (mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
). (D.5)

In 4-component notation, the Majorana-fermionic neutralino mass eigenstates can be writ-
ten as

χ̃0
i =

 χ0
i

χ̄0
i

 . (D.6)

The application of projection operators leads to relatively compact analytic expressions
for the mass eigenvalues mχ̃0

1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
[35]. As we choose them to be real

and non-negative, our unitary matrix N is generally complex [36].
The chargino mass term in the SUSY Lagrangian [4]

L ⊃ −1
2
(ψ+ψ−)

 0 XT

X 0

  ψ+

ψ−

 + h.c. (D.7)

38



is bilinear in the (2-component) fermionic partners
ψ±j = (−iW̃±, H̃±

2,1)
T with j = 1, . . . , 2 (D.8)

of the charged electroweak gauge and Higgs bosons and proportional to the, generally
complex, chargino mass matrix

X =

 M2 mW

√
2 sβ

mW

√
2 cβ µ

 , (D.9)

where mW is the mass of the SM W -boson. Since X is not symmetric, it must be diago-
nalized by two unitary matrices U and V , which satisfy the relation

U∗X V −1 = diag (mχ̃±1
,mχ̃±2

) (D.10)
and de�ne the chargino mass eigenstates

χ+
i = Vij ψ

+
j

χ−j = Uij ψ
−
j

, i, j = 1, 2. (D.11)

In 4-component notation, the Dirac-fermionic chargino mass eigenstates can be written as

χ̃±i =

 χ±i

χ̄∓i

 . (D.12)

As Eq. (D.10) implies
V X†XV −1 = diag (m2

χ̃±1
,m2

χ̃±2
), (D.13)

the hermitian matrix X†X can be diagonalized using only V , and its eigenvalues

m2
χ̃±1,2

=
1
2

{
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W s2β|2
} (D.14)

are always real. If we take also the mass eigenvalues mχ̃±1
≤ mχ̃±2

to be real and non-
negative, the rotation matrix

V =

 cos θ+ sin θ+ e−iφ+

− sin θ+ eiφ+ cos θ+

 (D.15)

can still be chosen to have real diagonal elements, but the o�-diagonal phase e∓iφ+ is
needed to rotate away the imaginary part of the o�-diagonal matrix element in X†X,

=
[
(M∗

2 sβ + µ cβ) eiφ+

]
= 0. (D.16)
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The rotation angle θ+ ∈ [0;π] is uniquely �xed by the two conditions

tan 2θ+ =
2
√

2mW (M∗
2 sβ + µ cβ) eiφ+

|M2|2 − |µ|2 + 2m2
W c2β

and (D.17)

sin 2θ+ =
−2
√

2mW (M∗
2 sβ + µ cβ) eiφ+√

(|M2|2 − |µ|2 + 2m2
W c2β)2 + 8m2

W [(M∗
2 sβ + µ cβ) eiφ+ ]2

. (D.18)

Once V is known, the unitary matrix U can be obtained from
U = diag (m−1

χ̃±1
,m−1

χ̃±2
) V ∗XT . (D.19)
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