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Chapter 1

Introduction

1.1 The LPSC – the location of internship

The Laboratoire de Physique Subatomique et de Cosmologie (LPSC) is the
institute of fundamental research, where I am doing my internship at the
moment. It is situated at the Polygône Scientifique in Grenoble and plays
with its about 200 employees a major role in the physics research in France.
Additionally, it has numerous scientific collaborations worldwide, amongst
others, CERN and Fermilab.

The research is focused on cosmology, such as composition, geometry
and evolution of the universe and on particle physics, such as unification of
fundamental forces, supersymmetry and quantumchoromo dynamics.

1.2 Partons

In this section a basic introduction to the (naive) parton model followed by a
description of the modern QCD-improved parton model, derived within the
context of quantum chromodynamics (QCD), is provided. For more details
we refer to standard textbooks, for example Refs. [1, 2].

The parton model was introduced by Richard Feynman in 1969 as a way
to analyze high-energy collisions involving one or two hadrons in the initial
state [3]. In the same year, it was applied to electron–proton deep inelastic
scattering (DIS) by Bjorken and Paschos [4]. The essence of the parton
model is the following assumption: At high energies (in a so called infinite
momentum frame), hadrons look like being composed out of point-like and
almost free objects called partons. This way, high-energy interactions with
initial state hadrons can be described in terms of subprocesses involving
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pointlike partons. 1 In order to relate the parton level result to the hadron
level the flux of incoming partons has to be known, which can be expressed
in terms of parton distribution functions (PDFs). The PDF fi(ξ) is the
number density of partons of flavour i carrying a fraction ξ of the parent
hadron momentum (or, with other words, fi(ξ)dξ is the number of partons
carrying a momentum fraction in the interval [ξ, ξ + dξ]). Generically, the
hadronic cross section dσ for a given process can be computed as follows:

dσ =
∑

i

∫ 1

0

dξ fi (ξ) dσ̂i, (1.1)

where an incoherent sum over all partonic subprocesses dσ̂i is implied. A
graphical representation of the parton model for the case of (deep inelastic)
electron–pion scattering can be found in Fig. 1.1.

Figure 1.1: Graphical representation of electron–pion scattering. Left: gen-
eral one-photon exchange diagram. Right: electron–pion scattering in the
parton model with electron–parton scattering subprocesses.

In the following years, based on experimental results and the development
of QCD it was possible to identify the charged partons with quarks and the
neutral ones with gluons. Furthermore, QCD effects were included into the
theory leading to the QCD-improved parton model.

The QCD-improved parton model, relying on factorization theorems [5,
6], provides the framework in which almost all cross sections at current high
energy colliders are computed and which is also the framework of this work.
The factorization theorems state that a large class of physical cross sections
can be separated, up to an error which is power-suppressed, into short dis-
tance pieces and the PDFs containing the long distance physics. The short

1This is a real advantage, since the theoretical description of processes with pointlike

objects is much simpler and resembles elementary processes with initial state leptons.
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distance parts depend on the process and are calculable order by order in
perturbation theory. On the other hand, the PDFs are non-perturbative ob-
jects and have to be fixed by experimental information. However, they are
universal, i.e., they are the same in all kinds of processes. Therefore, once
the PDFs have been determined from a class of measurements they can be
used to make predictions for other processes. The general procedure how to
extract the PDFs from data will be outlined in the next section. The factor-
ization theorems provide field theoretical definitions of the PDFs as hadronic
matrix elements of certain twist-2 operators composed of quark and gluon
fields [7]. These definitions are usually not needed in phenomenological anal-
yses of parton distributions. They are, however, necessary to emphasize the
field theoretic foundation of the parton model and in order to make contact
to nonperturbative models and lattice QCD calculations. QCD corrections
lead to the renormalization of these operators such that the PDFs aquire
a renormalization scale dependence which is governed by renormalization
group equations, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equations [8, 9, 10]. Similar to the short distance coefficients, the
DGLAP evolution equations have a perturbative expansion in the strong
coupling constant. Recently, the computation of the 3-loop contributions
to this expansion (the 3-loop splitting functions) has been completed after
several years of effort [11, 12]. With this knowledge it is possible to compute
observables at next-to-next-to-leading order (NNLO) accuracy (provided the
short distance coefficients are known to this order) allowing for precision tests
of perturbative QCD (pQCD). These results are included in the PEGASUS
evolution package [13] which will be discussed and used in the next Chap. 2.

The factorized leading twist pQCD formalism described here applies equal-
ly to nucleons as well as to pions with the same evolution equations and short
distance cross sections irrespective of the target hadron. In the next section,
a brief outline will be given, how PDFs are determined from experimental
information in so-called ’global analyses of PDFs’. This discussion will be
general and applies to any hadron before we turn to pions in Sec. 1.4.

1.3 Global analyses of PDFs

Parton distribution functions are determined by performing a global ana-
lysis of all available experimental information. It is important to include
simultaneously as much of the relevant data as possible for the following
reasons. First, different observables are sensitive to different combinations
of parton distributions or to distinct kinematic regions such that many data
from different processes will better constrain the PDFs. Second, in cases
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where different processes are sensitive to the same partons the goal is to
arrive at a satisfactory description of all the data necessitating comprises in
the best fit partons. Clearly, leaving out certain data may bias the PDFs
towards a specific experiment and furthermore lead to an underestimate of
the PDF-uncertainties. It should be noted that such a bias can influence
other partons since the partons distributions are coupled to each other by
the evolution equations, as will be seen in Chap. 2.

Figure 1.2: Flowchart of a global analysis for parton distribution functions.

The following steps enter a global analysis (see Fig. 1.2):

• First, one chooses suitable input functions fi(x,Q0; pi,1, pi,2, . . .) for the
x-dependence of the various partons (i = u, d, s, . . . , g) at some initial
scale Q0, where Q0 has to lie in the perturbative regime such that the
perturbatively known evolution equations are applicable. Typically,
one employs Q0 = 1 or 2 GeV. The fit parameters pi,1, pi,2, . . . will be
optimized during the global analysis. It is important that the functional
form of the input distributions has enough flexibility to accommodate
the data.

• Then, for each data point k, the PDFs are evolved up to the appropri-
ate scale Qk using the DGLAP evolution equations. Furthermore, the
corresponding theory value is computed in the parton model (using the
PDFs at the scale Qk combined with the hard scattering cross sections
for the process to which the data point belongs).

• For each data point k the χ2
k between the theoretical and the exper-

imental value is calculated. By summing up all χ2
k one obtains the
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χ2[pi,1, pi,2, . . .] =
∑

k χ
2
k. for a given set of fit parameters pi,1, pi,2, . . ..

• The fit parameters are varied and the procedure is repeated until a
global minimum of the χ2 function is found. The optimal fit parameters
finally determine the best-fit PDFs.

1.4 A review of pion PDFs

Having outlined the general procedure in the previous section, we now turn
to a brief review of global analyses of pion PDFs existing in the literature.

Owens (1984) [14] The idea of pionic global analysis came up in 1984
[14] to summarize data from several Drell-Yan (D-Y) experiments of different
experimental groups [15, 16, 17, 18]. Unfortunately the D-Y data makes no
prediction for momentum fraction x < 0.2 which leads to a big ambiguity
for small x. Another deficit of this pure D-Y data was, that it is neither
sensitive to the gluon, nor to the sea distribution. This is due to the fact
that the D-Y process is not dominated by gluon and sea diagrams.

Aurenche et al. (1989) [19] To get data which is sensitive to gluon dis-
tributions, in 1989, the prompt-photon production was included [19], which
is partly dominated by qg scattering. The data here used was taken from π+p
or π−p scattering experiments [20, 21]. Like that it was possible to constrain
better gluonic pion PDFs. However, the problem of the ambiguity of the sea
distribution was not resolved.

In 1991 there were two different approaches [22, 23] using now next-to-leading
order (NLO), while the previous pion PDFs [14, 19] were only determined in
leading-order (LO) calculations.

Glück et al. (1991) [22] One of those approaches [22] made the reason-
able assumption of a valence like parton structure at a low resolution scale
Q2, that determines the gluon and sea distribution. Here the experimentally
evaluated valence distribution from D-Y data [22] were used. Out of this
data, and in combination with the constraints of prompt-photon production
[22] to the gluon, one generated sea and valence distribution radiatively.

Sutton et al. (1991) [23] The other approach [23] constrained the valence
distribution by D-Y production experiments [23], as well. Thus, the momen-
tum fraction carried by the valence quarks is fixed. But the behavior of the
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gluon distribution was directly determined by experimental prompt-photon
data [24], and the behavior of the sea quark distribution was fixed by quark-
counting arguments. Now, to appoint the momentum fraction proportioning
between the gluon and sea-quarks, three different plausible assumptions were
published. For further comparison I took the middle one where the momen-
tum fraction of the sea input distribution is fixed to 15%.

Glück et al. (1998,1999) [25, 26] In 1997 [25] a new idea came up,
namely to constrain the pion PDFs based on nucleonic PDFs using a con-
stituent quark model. This procedure was updated in 1999 [26] with more
recent nucleonic input. Here one determined the valence distribution by D-Y
data [27, 28, 29]. The obtained valence distribution combined with nucleonic
PDFs breed new quark and gluon distributions.

In Fig. 1.3 the PDF parametrisation of the three most recent global analysis
[22, 26, 23] at two different input scales are shown. In appendix A the first
ten Mellin moments (see Eq. 2.5) at two different scales are listed.

1.5 Non-perturbative models and pion PDFs

from the lattice

Since about 1980 there exists a numerical approach to QCD, called “lattice
QCD simulations”. In fact they simulate the QCD field equations in a four-
dimensional hyper-cubic space-time lattice. The weakness of this analyzes
are the really resource-consuming computational requirements which confine
the accuracy. Hence, the most results are not yet very significant. But with
increasing speed of current processors and improved simulation techniques
this problem will vanish in the near future.

Lattice groups have already constrained regions where global analyzes
are vague due to a lack of experimental data, e.g. the small x regions of
[30] and gluon [31] distributions. By contrast the behavior of PDFs for big
momentum fraction x (x > 0.7) could not yet be accurately determined.

In the near future we can expect that the accuracy of those lattice mo-
ments is precise enough to constrain the global analysis, as well. Here the pion
plays a special role because it has the simplest hadronic structure. Therefore
it is chosen to be the first particle whose moments are adequate determined
by lattice calculations.

However, there exists some other non perturbative approaches to the
pionic structure, as well. E.g. the constituent quark model [32] Nambu-
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Jona-Lasinio model [33, 34, 35, 36] and others [37, 38, 39, 40].

1.6 Motivation for a new global analysis of

pion PDFs

Our goal is to perform a new global analysis of pion PDFs and the present
work represents a first step into this direction. In this section we present and
discuss several arguments why such a new analysis is interesting despite the
fact that there is no new data from pion scattering experiments available.

• As has been discussed in the previous section, pion PDFs are deter-
mined from Drell-Yan and prompt photon data obtained in πA fixed
target experiments. Therefore, the extraction of pion PDFs requires
a good knowledge of nuclear PDFs (NPDFs) or nucleon PDFs after
nuclear corrections have been applied. Fortunately, much progress has
been made on this side of the equation in the past decade. Due to the
wealth of new data from the HERA ep collider at DESY and the Teva-
tron pp̄ collider at Fermilab, the proton PDFs are much more precisely
known than 10 years ago. Furthermore, methods have been developped
in the past few years which allow to determine PDF uncertainties.The
nuclear PDFs are still much weaker constrained than the proton PDFs.
Nevertheless, there are now sets of NPDFs available which have been
determined in NLO QCD [41, 42] where Ref. [42] also includes PDF
uncertainties. All this should help, to better determine central pion
PDFs along with an analysis of their uncertainties.

• Although there are no new data from pion scattering events available
(or expected in the foreseable future), leading neutron data from HERA
[43, 44] offer the possibility to constrain the sea quark distribution in
the small-x range (x ' 0.01) [45]. They are therefore complementary to
the fixed target Drell-Yan and prompt photon data which lie at larger
x > 0.2 and it is very interesting to include these data in a global
analysis.

• A new technique has been proposed in Ref. [46] how to include the
exact NLO cross sections in a fast and efficient way in global anal-
yses of PDFs. This opposed to the standard procedure where a K-
factor is computed at the beginning of a fit (and possibly updated
once in a while) and later the leading order expressions multiplied by
the K-factor are used in order to compute the theory values in the
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χ2-analysis. As discussed in [46], the K-factor method is appropriate
when the PDFs are already well-known and just fine-tuned in the fol-
lowing fit. However, pion PDFs are not very well known such that an
exact computation at NLO seems to be advantageous.

1.7 Outline

The rest of this report is organized as follows. In Chap. 2, the necessary steps
towards a new global analysis of pion PDFs are described on a more technical
level. In the limited time period from April to June it was clearly not possible
to deal with all aspects of such an analysis in detail. A large fraction of my
time was devoted to studying and testing the Pegasus evolution package such
that this part naturally is emphasized. In Chap. 3, the conclusions are drawn
and an outlook is given. Tables of Mellin moments of pion PDFs which are
useful for comparison with corresponding lattice results are provided in the
appendix.
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Figure 1.3: Comparison of valence (vπ), sea (q̄π) and gluon (gπ) distribution
in next-to-leading-order of three global analysis: GRV[22], GRSc[26] and
SMRS[23]. Left: at input scales Q2 = 4 GeV2, right: at input scale Q2 =
20 GeV2.
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Chapter 2

Towards a global analysis of
pion PDFs

2.1 Theoretical Basics

In this section we want to provide some equations and definitions which are
used in the following section.

2.1.1 Summation rules

Beside the development of the parton model the development of the con-
stituent quark model took place. While the parton model was designed
to describe deep inelastic interactions, the constituent quark model was in-
vented to classify the plethora of observed hadrons by introducing a quark
substructure.

As we already discussed in Chap.1, charged partons are associated with
the quarks of the constituent quark model. But the fact, that PDFs are com-
plicated distributions, shows that this simple static model is not sufficient, it
is rather an integration limit of a more complicated dynamic parton theory.

If we integrate over the number density of a quark minus the number
density of its antiquark, we find the following relation:

∫ 1

0

dξ (fi(ξ) − fī(ξ)) = ni , (2.1)

where ni εN0 is the number of quarks with flavour i of the hadron in the
constituent quark model. For the π+ we have e.g.:

∫ 1

0

dξ (fi(ξ) − fī(ξ)) =







1 : for i = u
1 : for i = d̄
0 : else

.
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Furthermore, the conservation of the momentum of the parent hadron
leads us to another important summation rule. By summing over all parton
momentum fractions, we should get the momentum of the parent hadron:

∑

i=u,ū,d,d̄,s,s̄,...

∫ 1

0

dξ ξfi(ξ) = 1. (2.2)

2.1.2 Valence and sea distribution

To generalize the following definitions of valence and sea distributions for all
hadrons, we introduce the q-distribution. This is a sum of the PDFs of the
quarks which appear in the constituent quark model. The q distribution for
the proton is for example qp = fu + fd, or for the π+ : qπ+

= fu + fd̄.
With this definition we can define the general valence distribution as

v = q − q̄, where q̄ is called sea (or light sea) distribution.
For the π+ we have e.g.: vπ+

= (fu + fd̄) − (fū + fd), and q̄π+

= fū + fd.

2.1.3 The QCD-improved parton model

To describe a hadron-hadron scattering process we need to generalize Eq. 1.1
to:

dσ =
∑

i1,i2

∫

dξ1 dξ2 fi1,1(ξ1, Q
2) fi2,2(ξ2, Q

2) dσ̂i1,12
, (2.3)

where fi,1(ξ1, Q
2) and fi,2(ξ2, Q

2) are the PDFs with momentum fraction ξ1
or ξ2 of the two hadrons and i1 and i2 denote the partons.

The data we want to use in our global analysis, Drell-Yan lepton pair and
prompt-photon production data, have both been obtained in hadron-hadron
scattering processes.

2.1.4 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolu-

tion equations

TheQ2 dependency of the parton distributions is described by the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations:

dqi (x,Q
2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y

[

qi
(

y,Q2
)

Pqq

(

x

y

)

+ g
(

y,Q2
)

Pqg

(

x

y

)]

,

dg (x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y

[

qi
(

y,Q2
)

Pgq

(

x

y

)

+ g
(

y,Q2
)

Pgg

(

x

y

)]

.

(2.4)
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Where Pqq and Pqg are the splitting functions which can be calculated per-
turbatively [11, 12].

2.1.5 Mellin space

Now, I want to introduce a useful tool: the Mellin space. PDFs can be either
described directly in the x-space or in the Mellin moment space. The Mellin
N space is defined by the transformation:

f(N) =

∫ 1

0

dx xN−1f(x), Nε C. (2.5)

The advantage of changing to this space is that convolution integrals, like
in Eq. 2.4, are transformed into simple products. Therefore, in the Mellin-
space the evolution equations can be solved analytically. Furthermore, this
transformation is quite useful if we want to calculate such integrals on a
computer in a very fast and efficient way.

To get back to the x-space, the inverse Mellin transform is given by:

f(x) =
1

2πi

∫

C

dN x−Nf(N), (2.6)

where C is an arbitrary contour in the complex plane which has to lie right
of all singularities and to extend from −i∞ to i∞.

2.1.6 Partonic cross sections

In this section, I will describe two QCD mechanisms, which are important
for our analyses: The Drell-Yan process and the prompt-photon production.
We are going to use mainly experimental data of those two processes in our
following analysis.

Drell-Yan lepton pair production

The Drell-Yan process is a lepton pair producing quark-antiquark annihila-
tion process (see Fig. 2.1), whose hadronic cross section is composed as in
Eq. 2.3.

The partonic cross sections are given by [47]:

d

dM2
σ̂q(ξ1p1)q̄(ξ2p2)→l+l− =

σ0

3
e2q δ(ŝ−M2),

where eq is the quark charge, σ0 = 4πα2

3M3 and ŝ = (ξ1p1 + ξ2p2)
2 the partonic

center of mass energy with the momenta of the incoming quarks ξ1p1 and
ξ2p2. Furthermore, M is the invariant mass of the produced lepton pair.
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Figure 2.1: Drell-Yan scattering process in the parton model. One sees the
splitting up of the two hadrons with momentum p1 and p2 in their partons.
The scattering process takes place between the partons with momentum ξ1p1

and ξ2p2.

Prompt photon production

In Fig. 2.2 the different leading order Feynman diagrams of the prompt-
photon production process are shown: (a) the annihilation process qq̄ → γg,
and (b) the Compton process qg → γq.

Figure 2.2: Prompt-photon production processes in LO: (a) the two annihi-
lation processes qq̄ → γg and (b) the two Compton processes qg → γq.

The hard cross section for the annihilation process [47] is:

dσ̂qq̄→γg =
4

9
g2e2q

t̂2 + û2

ŝt̂û
dPS ,
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and the hard cross section for the Compton process [47] reads:

dσ̂qg→γq = −

1

6
g2e2q

ŝ2 + û2

ŝ2û
dPS ,

where ŝ = (p1 + p2)
2 = (p3 + p4)

2, û = (p1 − p4)
2 = (p2 − p3)

2 and t̂ =
(p1 − p3)

2 = (p2 − p4)
2 are the Mandelstam variables of the partons, eq is

the quark charge, g is the strong coupling constant and dPS is the Lorentz
invariant phase space.

I want to emphasize here, that we have already gluons appearing in the
leading order diagrams. This shows that this process is sensitive to the gluon
PDFs and explains the importance of prompt-photon processses in a global
analyses to determine the gluonic PDFs.

2.2 The PEGASUS package

The QCD-PEGASUS package [13] is a fast and precise program for solving
the evolution equations for parton distributions in perturbative QCD. This
program contains some thousands of lines written in FORTRAN 77. It has
been developed and tested since about 1990 and its predecessors had been
used for important publications on PDFs [48, 26]. It is rather modularly
programmed and quite well documented, thus relatively easy to use.

The differential equations are solved in the Mellin-space, which drastically
improves the speed of the computational simulations. Additionally it is able
to evaluate unpolarized PDFs in the MS renormalization scheme up to next-
to-next-to-leading order, where one can choose also between different heavy
flavours scheme. A lot of other different configurations are possible: e.g.
different fast Mellin inversions and various evolution modes beyond leading
order.

The reason why we have chosen this package for our purposes is not
only the fact that it is well written, nor only the beauty of the solution in the
Mellin space, the primary reason is its fast simulation speed. This high speed
is quite important for our algorithm to determine the pion PDFs: We have
to repeat the loop, shown in the flow chart in Fig. 1.2, quite often. Thus we
can avoid immense simulation times. On the other hand one disadvantage is
that one has to know the hard cross sections of section 2.1.6 in the Mellin
space to connect theory and experimental data.

2.2.1 Description

The PEGASUS package works as follows:
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• First, the input PDFs are transformed from the momentum x-space to
the Mellin N space (see Eq. 2.5) at certain support points N .

• Then, the evolution in the Mellin space takes place where it should be
noted that different moments evolve independently

• To obtain the evolved PDFs in x-space, a Mellin inversion is necessary
(see Eq. 2.6). This inverse transform is unfortunately not possible to
be solved analytically. So an approximative integration on a contour in
the complex Mellin space is used. For this integration it is necessary to
have the Mellin moments at various support points on the integration
contour. Exactly these Mellin moments had to be determined and
evolved before.

Input function

We use with the PEGASUS package the following parametrization for our
input functions:

xfi(x,Q
2
0) = Ni pi,1 x

pi,2(1 − x)pi,3 [1 + pi,5x
pi,4 + pi,6x] , (2.7)

where fi(x,Q
2
0) are gluon and quark PDFs in the momentum x-space. In this

functional form we have 7 parameters (Ni, pi,1 − pi,6) for each distribution.
However, not all of them are free: the summation rules in Eqs. 2.1 and 2.2
discussed previously give three additional constraints.

As we already mentioned, only a finite number of support points in the
complex plain is necessary for an accurate Mellin inversion. The fact that the
complicated convolution integrals in x-space turn into ordinary products in
Mellin N -space helps a lot. Thus, only the Mellin moments at those support
points N need to be known to finally obtain the evolved parton distribution
in the x-space.

The analytic form of the Mellin transform of our input parametrization
(Eq. 2.7) can be written as follows:

fi(N,Q
2
0) =Ni pi,1(B(N + pi,2 − 1, pi,3 + 1)

+ pi,5B(N + pi,2 + pi,4 − 1, pi,3 + 1)

+ pi,6B(N + pi,2, pi,3 + 1)) ,

where B(x, y) is the Euler-beta-function.
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Figure 2.3: The contour in the complex plain for the Mellin inversion integral
used in the PEGASUS package.

Mellin inversion

In Fig. 2.3 one can see the form of the contour of the Mellin inversion integral.
This contour, C = c+ zeiφ (zε[0, 80]), has been optimized in the PEGASUS
package for nucleonic PDFs with parameters c = 3

4
π and φ = 1.9. The

integral on this contour is performed as several eight-point Gauss-Legendre
integrations [49]. All in all, there are 144 Points used to solve the inversion
(in the more accurate mode with IFAST = 0).

2.2.2 Modifications and tests

As already mentioned, the PEGASUS package is originally designed for pro-
ton PDFs. To use it for the pion, I had to program and test pionic boundary
conditions for the DGLAP differential equations.

New input function

For the input, the PEGASUS package uses not the direct parametrization of
the particular partons (u, ū, d, d̄, ... , g), but it uses some linear combina-
tions of them. However, those linear combinations are designed for hadrons
containing u and d quarks in the valence structure, e.g. protons or neutrons.
Pions, which consists, amongst others, of ū (π−) and d̄ (π+) quarks in the
valence structure are not really respected.

I generalized those parametrizations in a new input function by inter-
preting the u distribution as q1, the d distribution as q2 and the strange
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distribution as q3. This works because the evolution equations are similar for
all quarks and so the different quark distributions can be handled equally,
i.e. in the case of the π+: q1 equates to u and q2 equates to d̄.

The only aspect we have to take into account is, that the q3 distribution
must not appear as valence quark of the hadron. That’s why one can only
handle hadrons with two different types of valence quarks with this package.

By parameterizing the input functions, we have to respect one point:
The fact, that not all parameters of our parametrization are free (this is
explained by the summation rules of Eqs. 2.1 and 2.2) would lead to an
over-determination of the distribution, if we give all parameters. Thus the
parameters p1,q1

and p1,q2
are the number of valence quarks in the constituent

quark model, and the parameter p1,g is always equal one.

Tests with recent pionic PDFs

To test my rewritten input function and parametrization, I used two recent
parameterizations of global PDFs [23, 26].

Mellin transformation First, I tested the parametrization of the pionic
input PDFs. I transformed this input in Mellin moments on the integration
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input.VAL:input.X

Figure 2.4: Comparison of the Mellin-transformed and inverse-Mellin-
transformed NLO parton distributions (M-trafo) at the input scale Q2 =
4 GeV2 with the original parametrization (input) of Sutton et al. [23].

18



contour. Then I made the approximate inverse Mellin transform with these
support points without any evolution. In Fig. 2.4 the transformed and re-
transformed pionic parton distributions of Sutton et al. [23] are compared
with the original parametrization. Here, we see that the two functions agree
perfectly well. In fact the corresponding curves are on top of each other.

In Fig. 2.5 we see the same procedure for the parton distributions of Glück
et al. [26]. In this case the distributions at large x show a visible difference.

x
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 inputπq
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input.VAL:input.X

Figure 2.5: Comparison of the Mellin-transformed and inverse-Mellin-
transformed NLO parton distributions (M-trafo) at the input scale Q2 =
0.4 GeV2 with the original parametrization (input) of Glück et al. [26].

This can only be caused by the inverse Mellin transformation. I checked,
with some Mellin moments (at N = 1, 2, .., 10, 99, 100), the equivalence of the
moments determined by the PEGASUS package with the moments directly
integrated with Mathematica. The variation was negligible (∆vπ

vπ < 0.005),
thus one can assume that the difference between the two curves in Fig. 2.5
is caused by the inverse Mellin transform.

In the parton distributions by Glück et al. [26] the parameter p3 of the
valence distribution is remarkably small in comparison with the parametriza-
tion of Sutton et al. [23] or proton PDFs [48]. By varying this parameter,
we determined that for the values of p3 < 1 the inversion is inaccurate at
large x > 0.95, wheras for p3 > 1 the Mellin inversion always converged to
the used input function.
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To solve this problem, I tried to vary the parameters of the Mellin in-
version c and φ and I programmed a new mode (IFAST = −1), which uses
more points on a longer contour for the Mellin inversion to improve this de-
fect. None of these simple solutions worked very well. However, it is not
a principal convergence problem of the Mellin-inversion. The chosen PDF
parametrization should converge generally.

The next step would be to optimize the approximative Mellin inversion
e.g. like in Refs. [50, 51]. However, we can assume that this special case
does not appear. On the one hand, other pion [23] and proton distributions
[48] have a parameter p3 > 1. Moreother, nonperturbative QCD calculations
such as Dyson-Schwinger equation models [52, 53] predict that p3 ' 2. If, we
finally obtain p3 which is really smaller than 1 we should solve this problem.
But if p3 stays greater than 1, we do not have to care about it.

Evolution The next step was to test the evolution of the PEGASUS pack-
age. For this test I took the PDFs of Glück et al. [26]. I compared the
PEGASUS evolved input PDFs with those of the FORTRAN parametriza-
tion package provided by Glück et al. [26]. For the evolution I took the same
parameters like in the publication: fixed flavour number scheme (IVFNS =
0) with three flavours (NFF = 3), the standard evolution mode (IMODE =
1), the NLO pertubative mode (NPORD = 1) and a constant ratio of the
factorization and renormalization scale (FR2 = 1). For the input scale I took
Q2

0 = 0.4 GeV2), for the strong coupling constant as = αs

4π
= 0.5779 and for

the charm quark mass m2
c = 2.0 GeV2.

In Fig. 2.6 those distributions are compared at two different scales: Q2 =
4 GeV2 and Q2 = 1000 GeV2. One can see that these two agree quite well
and that the evolution works!
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Figure 2.6: Comparison of the NLO parton distributions generated by the
parametrization package provided by Glück et al. [26] with the evolved
parton distributions by the PEGASUS package. Left: at input scales
Q2 = 4 GeV2, right: at input scale Q2 = 1000 GeV2.
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Chapter 3

Conclusions and Outlook

In this work I have first described the naive parton model, followed by the
QCD-improved parton model. This is relying on the QCD factorization-
theorems. It defines well the PDFs from a field-theoretical point of view,
which is necessary to compare parton model results with Lattice QCD and
other non-perturbative theories. Then I sketched the functionality of a global
analysis. The preparation of such a global analysis was the aim of this
study. The report continues with a review of literature concerning pionic
structure, where I emphasized the literature related to global analyses. This
is followed by some theoretical background which we needed for the QCD-
PEGASUS package and which is described afterwards. This package is a
program to evolve parton distributions with the DGLAP evolution equations
up to NNLO. For the procedure of determining a global analysis this is one
of the basic ingredients. Finally I implemented boundary conditions for pion
PDFs into the PEGASUS package and tested them extensively.

Now, the following steps remain to be done:

• To evaluate the theory of the cross sections in higher order in the Mellin-
space.

• To include experimental data of Drell-Yan, prompt-photon processes
and also leading neutron data from HERA.

• To interface a minimizing package, such as Minuit to our code, and to
include a method (Hessian method or Lagrange multipliers method) to
determine PDF uncertainties.

Beside the physics I learned simultaneously a lot utilities for a physicist:
On the one hand, I read a lot of scientific papers, which was at the beginning
quite hard; but after having read various papers, I got used to the style of
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scientific literature and I learned how to extract important information for
me. On the other hand, I learned to use a lot of computational tools, such as
programming in FORTRAN, writing Makefiles, using debugging and version
control utilities and finally using the royal plot program Root.

At this point, I want to thank my advisor, Ingo Schienbein, that he sup-
ported me in all my interests of study, regardless of the type and that he was
always patient to answer all my questions.
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Appendix A

Mellin moments
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N PDF SMRSπ [23] GRVπ [22] GRScπ [26]
vπ 0.998 0.992 0.998

1 q̄π 1.46 4.27 3.56
gπ 15.0 84.0 58.3
vπ 0.231 0.194 0.198

2 q̄π 0.0253 0.0178 0.0369
gπ 0.384 0.511 0.433
vπ 0.101 0.0832 0.0862

3 q̄π 0.00357 0.00242 0.00598
gπ 0.0895 0.0978 0.0920
vπ 0.0560 0.0465 0.0486

4 q̄π 0.000888 0.000706 0.00174
gπ 0.0344 0.0374 0.0367
vπ 0.0354 0.0298 0.0313

5 q̄π 0.000296 0.000280 0.000655
gπ 0.0167 0.0188 0.0186
vπ 0.0244 0.0208 0.0219

6 q̄π 0.000118 0.000132 0.000289
gπ 0.00930 0.0110 0.0108
vπ 0.0177 0.0153 0.0162

7 q̄π 5.38E-05 7.00E-05 0.000142
gπ 0.00569 0.00703 0.00685
vπ 0.0135 0.0118 0.0125

8 q̄π 2.70E-05 4.03E-05 7.51E-05
gπ 0.00373 0.00481 0.00460
vπ 0.0106 0.00879 0.00932

9 q̄π 1.45E-05 2.39E-05 4.05E-05
gπ 0.00257 0.00307 0.00288
vπ 0.00849 0.00713 0.00756

10 q̄π 8.27E-06 1.53E-05 2.40E-05
gπ 0.00185 0.00228 0.00209

Table A.1: Q2 = 4 GeV2 Mellin moments NLO bla

Table A.2: Comparison of valence (vπ), sea (q̄π) and gluon (gπ) NLO Mellin
moments of three global analysis: GRV[22], GRSc[26] and SMRS[23] at input
scales Q2 = 4 GeV2.
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N PDF SMRSπ [23] GRVπ [22] GRScπ [26]
vπ 0.998 0.990 0.997

1 q̄π 2.18 7.16 6.02
gπ 44.2 157 125
vπ 0.210 0.171 0.174

2 q̄π 0.0266 0.0214 0.0376
gπ 0.408 0.518 0.468
vπ 0.0868 0.0685 0.0703

3 q̄π 0.00351 0.00252 0.00541
gπ 0.0748 0.0760 0.0738
vπ 0.0465 0.0365 0.0377

4 q̄π 0.000848 0.000681 0.00148
gπ 0.0255 0.0252 0.0253
vπ 0.0286 0.0225 0.0234

5 q̄π 0.000278 0.000255 0.000537
gπ 0.011443 0.011513 0.011578
vπ 0.0192 0.0152 0.0159

6 q̄π 0.000110 0.000115 0.000230
gπ 0.00601 0.00623 0.00622
vπ 0.0137 0.0110 0.0114

7 q̄π 4.97E-05 5.89E-05 0.000110
gπ 0.00350 0.00376 0.00369
vπ 0.0102 0.00824 0.00861

8 q̄π 2.48E-05 3.28E-05 5.71E-05
gπ 0.00220 0.00244 0.00235
vπ 0.00790 0.00642 0.00671

9 q̄π 1.34E-05 1.95E-05 3.17E-05
gπ 0.00146 0.00168 0.00158
vπ 0.00626 0.00513 0.00536

10 q̄π 7.64E-06 1.22E-05 1.85E-05
gπ 0.00102 0.00120 0.00110

Table A.3: Comparison of valence (vπ), sea (q̄π) and gluon (gπ) NLO Mellin
moments of three global analysis: GRV[22], GRSc[26] and SMRS[23] at input
scales Q2 = 20 GeV2.
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