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Chapter 0

Introduction

0.1 About the LPSC

The Laboratoire de Physique Subatomique et de Cosmologie (LPSC) is an in-
stitute of fundamental research at the Polygone Scientifigue of Grenoble. It
represents a cooperation of the Institut National de Physique Nucléaire et de
Physique des Particules (IN2P3), the Université Joseph Fourier (UJF) and the
Institut National Polytechnique de Grenoble (INPG). It employs some 200 peo-
ple and represents a major player in physics research at the national French
level. In addition, it is involved in numerous scientific collaborations of world-
wide scope.

The institute’s major areas of study include the geometry, composition and
evolution of the universe; unification of the fundamental forces; quantum chro-
modynamics and nucleon structure. It pursues both experimental and theoret-
ical research.

This internship took place in the theory group of the LPSC. It is part of an
ongoing project concerning the Z'.

0.2 About the Standard Model and the Z’

The Standard Model (SM) of particle physics has been immensely successful,
in the sense that its predictions have been verified with unparalleled precision.
Nevertheless, it is believed by many to be only an effective theory, valid at
small energy scales'. While the SM is known to be incomplete (e.g. by neu-
trino oscillations [5]), this belief is motivated to a substantial part by aesthetic
perceptions: the SM gauge group

SU(3)C X SU(2)L X U(].)y, (01)

Lfor some sufficiently large value of “small”
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being composed of three independent factors, is perceived to be complicated,
and one tries to replace it by some simple? gauge group (SU(5) and SO(10) are
two examples of popular candidates). To be consistent with experiment and
reproduce the SM successes, this unifying group has to contain SM gauge group
as a subgroup, and has to be broken at some energy scale Egyt to reproduce
it.

Such a theory this is termed a Grand Unification Theory, or GUT for short,
because the three fundamental forces of the SM are unified under one symmetry.
A GUT is to the electroweak and strong interactions what electroweak theory is
to the electromagnetic and weak interactions; or what quantum electrodynam-
ics, in turn, is to electricity and magnetism. On the other hand, a theory which
would unify a GUT with gravity, is quite appropriately referred to as a TOE
(Theory Of Everything), as it would unify all four known fundamental forces.

In the process of breaking the GUT symmetry, very often additional U(1)
factors appear. These factors imply an additional neutral gauge boson which
is generically called Z' in analogy to the SM Z. Such bosons have to be either
very heavy or very weakly coupled so as not to break the success of the SM.

0.3 About this Study

In this study, we consider the case where the SM is extended by one extra
neutral gauge boson Z' with mass Mz: and couplings to the SM fermions of the
form

—iy%gz (vé, - aé,)

(cf. Section 1.1). This extension must of course reproduce the excellent agree-
ment of the SM with experimental results. Qualitatively, it seems clear that
this will imply stringent constraints on the parameter space of the 7.

This study is an attempt to give quantitative meaning to this statement,
and to do so in a manner largely independent of any particular model. We must
however make some assumptions to reduce this task to manageable proportions.

Throughout the numerical analysis (Chapter 2), we have assumed B — L cou-
pling of the Z' to all SM fermions. That is, the charge of a fermion with respect
to the new boson is % for quarks and —1 for leptons; there are no chargeless
SM fermions and the interaction is generation-independent. Furthermore, we
assume only vectorial and no axial coupling. This assumption is only a conve-
nience. It allows us to operate in a two-dimensional parameter space, making
visualization of the results that much easier. It would not be difficult to modify
the analysis to include axial couplings.

In the terms introduced in Chapter 1:

2In the group theoretical and, by extension, in the aesthetic sense
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vé, = By — Ly for all SM fermions f,

vé(, =0 for all other X; (0.2)
ay, =0 for all X.

A U(1)p_L factor is a realistic possibillity appearing in many extensions of
the SM. It implies a Z' with coupling strengths proportional to B — L as well
as making B — L a conserved quantity.

In the SM, both B and L individually are approximately conserved and
B — L conservation is even stronger: in all SM processes that violate B or L
conservation, these contributions cancel and B — L remains conserved.

Finally, there is a simple phenomenological reason to this choice: B — L
charge can be probed by any experiment, for quarks and leptons will always
intervene. By contrast, some models postulate a Z' that couples only to third
generation fermions to avoid constraints from low-energy data.

As for the rest of this report, Chapter 1 of this report contains the analytical
calculation of o(e"et — ,Z,Z' — ff) and I'z,. These calculations have been
kept quite general. Specifically, they are independent of any particular charge
scheme, in contrast to the numerical analysis.

In Chapter 2, we exploit the formulae found in Chapter 1 for a numerical
analysis using data on the process e”e™ — u~ut from the colliders PETRA
at DESY, TRISTAN at KEK and LEP at CERN.? Our assumption about the
fermion charges relative to the extra boson leaves us with just two parameters
for the latter: the mass Mz and the coupling strength gz:. Using x? statistics,
we trace an exclusion plot in the (Mz:, gz:) plane.

Finally, in Chapter 3, we discuss some limitations of this study and give a
short outlook towards possible extensions.

3For reference, the data is compiled in App. A.



Chapter 1

Analytic Calculations

1.1 Feynman Rules

We consider the reaction e"et — ff, mediated by a vector boson B.! Spin and
momentum names are defined in Fig. 1.1. First, recall the Feynman rules from
electroweak theory compiled in Table 1.1 (taken from [6]).

The weak charges in the SM are

el = T? — 2Q; sin® by, (1.1)
ch =T} (1.2)

where Oy is the Weinberg angle, sin® 6w = 0.23. The values are collected in
Table 1.2.

Next, let us introduce “generic” rules, that shall depend on B and apply to
all bosons we consider. They are

—i VEJ; = —1 v%gB (’U£ - af375) (1.3)

for the ffB vertex and

!n fact, we work under the assumption f # e; otherwise, a second diagram contributes.

e”(p;s1) f(@';s1)
B(k)

et(gq; 52) f(d';s5)

Figure 1.1: Four-momenta and spins as used in the calculations below.
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Table 1.1: Feynman rules for —i 9 for electroweak processes

External lines (in, out)

Spin 1 (anti)fermion / / u, @ (v,0)
Spin 1 boson r/ / EurEn

~ propagator v, Z —igap/k>
e . 9ap—kakp/Mj
ez M, T,

~ vertex —iQT~~
v, Z
Z vertex —ise—Ft——® {,— c£75)

2 sin fw cos Ow v (C

Z propagator

f
Table 1.2: Weak charges in the SM (s? := sin? fyy)
| u7 C7 t d7 S7 b Ije’ Iju7 VT e_7 M_7 T
ey | 53— 35° -3+ 25 % -3 +2¢°
c 1 _1 1 _1
A 2 2 2 2

1 ~
—i T = —i ws — M2k, 1.4
X8 () To (W) = =i gy (000 = MBkaks) (1)

for the B propagator, letting M2 = 0 for the photon and M} = 1/M3 for a
massive boson B.

Comparing (1.3) with Table 1.1, we can make the following identifications
for the photon and the Z boson:

9y =€, o) = Q7 /e, a = 0; (1.5)

€ f f f f
_ =Cy. 1.6
9z = 2 sin Bvo cos feo’ Vz = Cy, az = Cp (1.6)

In the next section, we will calculate the matrix element of the Feynman
diagram Fig. 1.1, in terms of these Feynman rules. This will allow us to find
the result for any specific case (i.e a fermion/boson combination) by filling in
the variables depending on f and B.

1.2 The Matrix Element of e"e™ — ff

The matrix element corresponding to Fig. 1.1 is
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Mg = To(gs52) [~ V5" wo(ps 1) xm (k) [~i T 5 (B)]
gt |-ivE | ostaisn.

Any physical quantity will depend only on the squared modulus of the matrix
element, to wit
2
‘ = jg:: fl]tlgflltf;/.

BB’

RUBEIDIR®
B

We therefore compute a general expression of 9z M7, . The complex conjugate
of the matrix element is

My = 07(qs55)Vi up (0 50)XB TR, e (P 51)V5 ve(g552).  (1.8)

Additionally, we must take into account particle spins and colors. As a
general rule (in absence of polarization), one has to average over all spin and
color states of the incident particles and sum over those of the outgoing particles.
We therefore need

g 1 .
M = 5o T35 1 >
spin/color
states
sl i ea _ oy PP 1ol
=Neg D Te(@552)Vg ue(;s1)x8Ts 41 (03 5)Vs vs(d555)

31,...,8’2
— Lt Vf‘f '\t T i (p: s )V P .
0p(a'582) Vi us(p's s1)Xpr B/Mue(p,&) B Ve(q; 82)-

Rearranging by spins:

___ 1
MMy, = N xa x5 2 Z Ve (q; 82) Vg "o (15 81) e (1; 51) Vi ve (¢ 82)
81,82
1

_ B _ 4
T, To 0y O (0550 Vs vp(0'80)00 (05 85) Vi g (03 1)

1ol
81589

= NJXBX*B’LBB'QPTB(J,@TBIPU IBB'BU

(1.9
where we have introduced the fermion tensors
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1
Lo =5 D 0e(q; ) Vg e (p; 51)1 (; 51) Vi "ve (g 52),
81,82
1 _ B _ a
s’ =5 2 W5 s)Vy (a5 )@ )V uw@s)  (1.1)
st ,sh
p—p’

q—q'
e f

= LB/BJB

and ch is the number of color states of the outgoing fermion f i.e. N = 3; Nf =
1.

As Lpp ®* is a scalar?, we can view it as its own trace; this allows us to
use the cyclic property of the trace to separate the intervening wave functions.
That is, we can write

1 a _
Lpp®’ = iTr{ZUe(q;sﬂve(qm)VE D e (p; 51)tte (5 Sl)VEIP}- (1.11)

Finally, using the completeness relations

> ulks s)a(k; s) = f +m, D vlk;8)i(k;s) =k —m
we find
Lo = 3 T {(g = moVi"(p - maVi ), 112
5 = 3 T { +mpV (& - mpVE 7).

To complete the calculation, some kinematics is in order. We use the rela-
tivistically invariant Mandelstam variables s, t and u as defined in Fig. 1.2 and
neglect the fermion masses (a valid approximation for all the data used in this
analysis).

The Mandelstam variables are not independent but are linked by

s+t+u=Y m;=2m+2m;~0. (1.13)
i
We use this to eliminate u, and furthermore replace ¢ with the scattering angle
9 (taken in the center-of-mass frame). Again in the ultra-relativistic limit, we
have

2With respect to Dirac indices but not in the sense of a Lorentz scalar.
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o
0 s=(p+q?® =0 +q¢)
3 t=(p-p)?=(-¢)
u=p-q)7=(@g-p)

Figure 1.2: Kinetics of e et — ff.

t=—s(1—cos?d)/2. (1.14)
Taken together, this leads to the relations

gp =p-q¢ = 5/2,
p- p q-q = —t/2 = s(1 — cos ) /4, (1.15)
pq¢ =p-q = (s+1t)/2 = s(1 + cos?)/4.
We need now but apply (1.15) and the trace theorems for the v matrices to
find the desired result. Straightforward but tedious calculation?® yields

I M, = N 2xp Xl 95 9% [ZCBB, cosd + DS, (1 + cos? 19)] (1.16)

with
Cg;,, = vaf;aB,aB, +vBagaB,vB, + anévB,aB, + aBa};vB,v]];, (1.17)
D%fB, = UBU};UE,U};, + vBaév%,ag, + an]’;a%,v};, + aBaj;a%,af;, (1.18)

summarizing the dependence of 9z}, on the fermion charges.
Note that both C' and D are symmetric under both of the exchanges e « f
and B « B'.

1.3 The Cross Section of e~e™ — ff

1.3.1 The Differential Cross Section

The angular differential cross section of the process e"et — ff in the center-
of-mass frame is

do 1
dQ  64n2s

. dogp
Z 647r2 MM, =: 10 (1.19)
BB’

2 M

3Most easily carried out with Mathematica and and the package Tracer [8] — see App. B.
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where we have identified a contribution dopp' /dQ? with each combination (B,
B') of vector bosons that can mediate the reaction. In the case of B = B’,
this result is real (in the mathematical sense) and physical; for the interference
terms B # B', only the sum d(op,5 + 0p',5)/dQ is.

This contribution factorizes into two parts, one depending only on s and one
only on 9:

d(TBBI 1
a0 =: WFBBI (S)G?B’ (COS'19) (120)

with

s
Fgp = N = 1.21
B (8) = SXBXB = (A E 0Ty (5= M, 1M Ty) 2D

and
Gy (cost) = N g g% [2 Cy cos9 + D, (1 + cos® 19)] i (1.22)

1.3.2 The Integrated Cross Section

Thanks to the simple structure of the decomposition (1.20), the angular inte-
gration becomes very simple:

d /
Utot Z/dﬂ 9BB

BB’
1
= Z WFBBI (s) 27 d(cos 3) G5y (cos ) (1.23)
BB’ -t
= Z —FBBI erB'
BB’

1.3.3 Adaptations for Numerical Study

To avoid dealing with complex numbers in the numerical study, we substitute

Fpp (S) — Re Fpp (8) =
(8 — M%)(S —M123,) +MBFBMB’FB'

(= M7 + (MaT5)] [ = M52 + (Mg Te ] 2V

which of course cancels leaves the sum Fgp + Fgrg = 2ReFgp = 2ReFgp B
unchanged.
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f(p;s1)

B(k; )

f(g;82)

Figure 1.3: Decay of a boson B (four-momentum k, helicity A) into a fermion

pair ff

Furthermore, to properly reproduce experimental results, it may be nec-
essary to introduce “cuts” in the integrated cross section to account for the
geometry of the detector and for the experimental analysis. The integral in
(1.23) then becomes

+1
d(cos ) Oexp(cos ¥)Gpp (cosV) (1.25)

—1

with a suitable indicator function Oexp.

1.4 The Decay Width of a Massive Neutral Gauge
Boson
We consider decays of a neutral massive gauge boson into fermion pairs. Each

such decay mode B — ff contributes a partial width to the total width I'g.
The partial width is (in the Born approximation)

|2

B ff)=—H /d9|9n(3—> 7

- 3272 M3
o i (1.26)
= M(B - fFf)
8r M3, | |
where pe = ||5¢|| = ||77|| is the norm of the three-momentum in the final state,

taken in the center-of-mass frame; and (B — ff) is the matrix element of
the decay (i.e. of the Feynman graph Fig. 1.3).
pr is easily calculated via the Mandelstam variable

2 2
S ZM% = (Ef +E?, ﬁf +ﬁ?) = (2,/m?c +p%)

such that
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Mg
pf:,/MfB/él—mfc:T,/l—élrfc (1.27)
with Ty = mf/MB.

Note that it is no longer justified to neglect the fermion masses because we
wish to be able to calculate the width for any given boson mass.
The matrix element is

My = eq(k; \)u(p; sV 0(g; 5), (1.28)
, .
MG = (ks N0 (g; 52)V) u(ps s).

Again, we need the modulus squared, averaged over incoming (boson) and
summed over outgoing (fermion) spin and color configurations.

- Nf
9ty = 520 D a (ks Mea (s )
A

T Y sV Y viass)ole sV}

- % (% —ga5> Tr{(g —m)vaa(p+m)vgB} (1.29)

using the same method that led to (1.11). Note that this result is of the form
—2T,sL°P.
Applying the v trace theorems, we find

W:% Ipmp[(1+23) o + (1-0)af’]  (130)

for the matrix element and

I'(B — ff) = % gg%MB\/m [(1 +2r§> U};Z + (1 —47"?) a]f;]
(1.31)

for the partial width.

To give an idea of the accuracy of this formula, take the SM Z; our method
gives Iy = 2.2760 GeV, compared to the published value of I; = 2.4952 £+
0.0023 GeV [10]. This is satisfactory for our analysis, whose sensitivity to I"
is limited. Note, however, that somewhat larger errors are to be expected near
the quark masses, due to non-perturbative QCD effects.



Chapter 2

Numerical Analysis

In this chapter, we will apply the results from Chapter 1 to produce an exclusion
plot in the (Mz/,gz) plane. The data we have used is compiled in Table A.1.
Fig. A.1 shows a comparison of the data to the theoretical cross section as
calculated in (1.23).

As discussed in Section 0.3, we assume for this analysis that exactly one
extra neutral gauge boson contributes to the cross section. That is, we consider
the reaction

e et =5 7v,2,72 = uput. (2.1)

Furthermore, we assume coupling to all SM fermions according to (1.3) and
(0.2).

The decay width Iz of the boson enters the analysis through (1.4) and ends
up in the cross section (1.23) via Fpp' as defined in (1.21) (or rather (1.24)). We
use (1.31) to compute Iz, considering decay into all SM quarks and leptons!.
The fermion masses used for this calculation are reported in Table 2.1. The
lepton and 7 meson masses are from [10]. For c, t, b we have chosen masses as
they are typically used in the literature. We have assumed massless neutrinos.
Given the energy range of the input data, this study is not very sensitive to the
quark masses.

IThe constraint My > 2m ¢ is enforced, even though it does not explicitly figure in (1.31).

Table 2.1: Fermion masses as used in the calculation of the Z' decay width

| me | my | my
e | 511keV u | 135 MeV (= mo) d | 135 MeV (= mo)
u | 106 MeV c | 15GeV s | 498 MeV (= myo)
T | 1.78 GeV t | 175 GeV b | 4.5 GeV

13
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2.1 x? Statistics

We use x? statistics to decide whether a given point (Mz, gz/) can be excluded.
Let y be a physical quantity, and f(z | P) a model which predicts the value
of y as a function of some other quantity z with parameters P. The quantity y
is measured at N different points x;; let the results of the measurement be y;
with uncertainties of Ay;.
The 2 statistic is then defined as

N 2
2 _ yz—f(:czlp))
X5 : ; ( Ay . (2.2)

Provided the the model is correct and the measured data are individually
normally distributed with means y; and variances (Ay;)?, this statistic will in
fact follow a x? distribution with N degrees of freedom.

In this case, one expects a value of x?/N = 1, since each datum should be,
on average, at one standard deviation from its expectation value. For the data
in Table A.1, we find

Xém/N =1.028  with N = 44 (2.3)
with the “model”

osm from Table A.1 if given

a(s|SM)={

See Chapter 3 for some discussion on osy versus ogo;. Note that ogy is
only missing for the data from the TASSO experiment [4]; at those energies,
higher-order corrections are negligible and the data are in good agreement with
(1.23) (we refer to Fig. A.1 for qualitative justification of this statement).

We will regard a Z' with parameters (My, gz') as compatible with the data

Otot from (1.23) otherwise

if

2 e A2 2
AX(MZ';QZI) "= XSM+2/(Mgr,95) ~ XSM (2.4)
< AXiim

where Ax%  is a parameter which determines how safe our limit will be. In this
study, we take a conservative point of view and require that

Axta,, g, /N < 6. (2.5)

Note that within the limits imposed by the accuracy of this study, the par-
ticular value of AxZ  is not crucial as x? rises very steeply with gz (cf. Fig.
2.1 (b)).

Starting from these definitions, the exclusion plot Fig. 2.1 (a) is constructed
by interval bisection until the relative error [Ax* — Ax}. | /Axi,, is within a
certain tolerance. (Specifically, the tolerance is 0.1% in Fig. 2.1 (a).)
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2.2 Results and Figures

The results of the x? analysis are represented in Fig. 2.1. At higher masses, the
behavior remains qualitatively the same, until about 1800 GeV, where the sig-
nificance of the data rapidly diminishes and we can no longer exclude anything.
In Table 2.2, we give numerical limits for gz for some values of Myz/. Like the
graph of Fig. 2.1 (a), these were computed using Ax% = 6. Concerning the
first value, there is a data point at exactly M = 200 GeV, therefore the graph
spikes down to very small g there. The given value corresponds to a smoothed
curve, disregarding the spike.

Fig. 2.2 shows a simulation of a Z’' with Mz = 200 GeV and gz = g7/10 =~
0.036 (an excluded case, of course).

Finally, Fig. 2.3 shows an integration of our exclusion plot into an ongoing
LPSC/ILL project [11]. We show this only to gain some perspective. It is
beyond the scope of this report to enter into the details of the other lines.

Table 2.2: Limits for gz for some values of My .

My [GeV] | 200 600 1000 1400 1800
g 0026 045 077 11 17
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0.25

02 excluded area

0.15

0.1

0.05

50 100 150 200 250 300 350 400
M, [GeV]

o

(a)

20

R
il

300 350

s 200 250
M, [GeV]

(b)

Figure 2.1: Graphs resulting from the numerical analysis. (a) shows the limit

Ax? = 6, (b) shows the relief of x? over the (M,g) plane with a cutoff of
2

x° = 20.

50 100



CHAPTER 2. NUMERICAL ANALYSIS 17

o [nb]

10°

102

10

[EnY

o T
1
o
F
o_
=)
H
1
)
of
Ol=
=)

o [nb]
5 2 8
L_'g'l_rl'mﬂ'l IIIII|T|] IIII|'|T|'| IIIII|T|] IIIII|T|] IIIII|'|T|_|_|T|'|T

Ay

=
o
[N

102

196 198 200 202 204 206
\ls [GeV]

[En

(b)

Figure 2.2: Simulation of a Z' with Mz = 200 GeV and gz = ¢gz/10 = 0.036.
In (a), the black line shows the SM prediction (1.23) and the blue line shows
the prediction for SM + Z'. In the zoom (b), the black line is SM + Z', the Z'
Z' term is shown in green and the interferences in red (Z' v) and blue (Z' Z).
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Figure 2.3: Integration of the exclusion plot from this study into a larger one.
Ours is the blue line labeled “LEP limits”. The diagonal black lines also orig-
inated in this study. They show different Z’' lifetimes. This figure shows the
complementarity of the present study to recent constraints on ultralight new
bosons with ultra-cold neutrons.[11]
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Conclusion

It is clear that this study is far from complete. First of all, there is much
additional data one could add. It would be straightforward to add more data
on dimuon production, as well as to add tau or quark pair data. This can
however not be expected to yield much new insight since the physics of those
processes are ultimately not very different from dimuon production.

A more interesting perspective is therefore to add data on other observables,
such as the forward-backward asymmetry Apg. Unfortunately, this is beyond
the scope of the present study.

Another interesting new direction would be the modification of the model
underlying the numerical analysis. For example, one could consider a Z' coupled
only to third generation fermions, as has been mentioned in the introduction
(this would of course require one to analyze different data).

There are also several points in the study of dimuon production that could
be amended to improve accuracy:

Experimental cuts! have already been mentioned. We take them into ac-
count insofar as we use the theoretical predictions given by most publications
along with their experimental results, but to be consistent, one would have to
apply the same cuts to the prediction including the Z'. Appearances to the con-
trary notwithstanding, this is a non-trivial task. While the experimental cuts
are generally published, the data is sometimes already corrected to account for
them, but this is not usually reported. Together with other corrections, this
means that it is not obvious whether such a correction has already been done.

Radiative corrections are a somewhat similar case. These are higher-order
corrections from QED, meaning that a photon may be emitted by an electron
or muon, distorting the center-of-mass energy.

I1Meaning that not all events are registered due to experimental limitations and analysis.
The simplest example is a cut on the scattering angle imposed by the geometry of the detector;
this is also the case we have treated in Section 1.3.3.

19
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As with the experimental cuts, these corrections are incorporated in osy
(or so we assume) and thereby enter our analysis, but we neglect them for the
7' contributions. It should be noted however that such corrections are most
important near the Z’ resonance and negligible at far smaller energies.

Running coupling has been disregarded in this study. We treat agm as
constant with the classical value of agy ~ 1/137.

The decay widths of the Z and Z' also depend on the energy scale. We have
treated them as constant.

QCD corrections to the width have also already been mentioned. See
Section 1.4

For further information on the last four points, see [7] and references therein.

The ultimate analysis of the Z' would take into account all available pre-
cision observables and perform a fit similar to those which have been done to
obtain the values of the SM parameters. It is slightly inconsistent to use these
parameters, that were fitted to a model without a Z', in a model containing a Z'.

In spite of all these shortcomings, it is the opinion of this author that the
results produced in the present study are meaningful and interesting in their
own right.
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Appendix A

Experimental Data

Table A.1: Collected cross section data from various experiments,
as used in the numerical analysis. Where the sources give separate
statistical and systematic errors, we give the sum in quadrature.
osm is the theoretical prediction given by the source, if present.

Vs [GeV] Oupu [PD] osu [pb]
TASSO@PETRA@DESY [4]

13.9 4727 +36

22.3 184.7 +15.7

34.5 732 + 3

35 66.1 + 3.4

38.3 564 + 5.7

43.6 2 + 3
VENUS@TRISTAN@KEK [1]

50 62 +13.9 35.5

52 358 + 4.8 33.0

55 312 + 4.9 29.8

56 294 + 3.3 28.9

56.5 206 + 7.9 28.5

57 274 + 38 28.0

58.3 209 + 5.8 27.0

59.06 174 + 44 26.5

60 24+ 36 25.8

60.8 231 + 3.1 25.3
ALEPH@LEP@CERN [2]

63.12 253 + 85 27.8

72.18 26.3 + 3.7 26.3

78.29 325 + 4.8 33

82.5 52 + 53 52.5

Continued on next page
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APPENDIX A. EXPERIMENTAL DATA

Vs [GeV] Oup [Pb] osu [pb]
85.2 956 + 6.1 93.4
87.49 219 +10 211.8
88.37 336 +22 334.1
89.42 675.9 + 7.5 671
90.21 1276 +44 1248.7
91.23 2001.8 + 6 1991.1
92.05 1322 +40 1340.3
92.99 657 + 6.8 649.8
94.03 381 +18 346.6
110.46 19 +10 17.5
130.2 102 + 2.8 8.3
136.21 104 + 26 7.2
ALEPH@LEP@CERN 3]
130 79 + 1.22 7
136 6.9 + 1.12 6.1
161 449+ 0.7 3.9
172 2.64+ 0.54 3.3
183 2.98+ 0.25 2.9
ALEPH@LEP@CERN [9]

189 2.88+ 0.14 2.83
192 2.86+ 0.33 2.73
196 2.7 + 0.19 2.61
200 2.99+ 0.2 2.5
202 2.64+ 0.26 2.44
205 192+ 0.16 2.36
207 2.46+ 0.15 2.32
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Figure A.1: The total integrated cross section of e"et — p~uT. The solid black
line is the SM prediction according to (1.23); the colored filled markers are the
data points from Table A.1, the black open markers are the theory predictions
given therein.
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Appendix B

Computation of I Bﬂ)T*B,

In this appendix, we show how the BB’ contribution to the squared martix
element can easily be accomplished with the Mathematica program and the

Tracer extension [8].
The following definitions represent those of Section 1.1:

(+ We need TRACER x)
<<’ tracer .m’

(* Some preliminary declarations x)
Clear[ka, la, mu, nu, s];
VectorDimension [4];

AntiCommute[on];

Spur[ls];

(¥ Kinematic constraints. We neglect lepton masses. %)
OnShell[on, {pl, 0}, {ql, 0}, {p2, 0}, {q2, O},

{pl, al, s/2}, {p2, a2, s/2},

{p1, p2, —t/2}, {al, q2, —t/2},

{al, p2, (s + t)/2}, {pl, a2, (s + t)/2}];

chi[v_, k_] := (k.k — mass[v]"2 + I mass[v] width[v])" —1;
chiStar [v_, k_] := chi[v, k] /. I->(-1);
vertex[v_, f_, idx_] :=

coupl[v] G[Il, {idx}, vect[v, f] U — axial[v, f] G5];

propagator[v_, k_, idx1l_, idx2_.] :=
{idx1}.{idx2} — k.{idx1}xk.{idx2}*propQFact[v]"2;

Ltens[vl_, v2_, f_, pa_, pb_, idxl_, idx2_] :=

G[1, pa] =*x vertex[vl, f, idx1l] ==
G[1, pb] =*x vertex[v2, f, idx2]/2 /. l-—=>ls;
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MMstar[vl_, v2_, k_] :=
chi[vl, k] chiStar[v2, k] =
Ltens[vl, v2, electron, pl, ql, ka, la] =*
Ltens[v2, vl, fermion, p2, g2, nu, mu] *
propagator[vl, k, ka, mu] =x
propagator[v2, k, la, nu] // ContractEpsGamma // Simplify ;

Mathematica will now compute the desired result:

In[2]:= MMstar[B, B’, pl + ql] /. t => —s/2 (1 — Cos[theta])
Out[2]= (* ... %)
In[3]:= Ctens[vl_, v2_, f1_, f2_] :=
vect[vl, f1] vect[vl, f2] axial[v2, fl1] axial[v2, f2] +
vect[vl, fl1] axial[vl, f2] axial[v2, fl] vect[v2, f2] +
axial [vl, f1] vect[vl, f2] vect[v2, f1] axial[v2, f2] +
axial [vl, f1] axial[vl, f2] vect[v2, fl1] vect[v2, f2];
In[4]:= Dtens[vl_, v2_, fl_, f2_] :=
vect[vl, fl] vect[vl, f2] vect[v2, fl1] vect[v2, f2] +
vect[vl, f1] axial[vl, f2] vect[v2, fl1] axial[v2, f2] +
axial [vl, f1] vect[vl, f2] axial[v2, fl1] vect[v2, f2] +
axial[vl, fl1] axial[vl, f2] axial[v2, fl1] axial[v2, f2]
In[5]:= Out[2] =
s"2 chi[B, pl4+ql] chiStar[B’, pl+ql]
coupl[B]"2 coupl[B’]"2
(2 Ctens[B, B’, electron, fermion] Cos[theta] +
Dtens[B, B’, electron, fermion] (1 + Cos[theta]"2))
// FullSimplify
Out[5]= True

)



