Importance of pPb HL-LHC data for nPDF fits

Ingo Schienbein UGA/LPSC Grenoble

Laboratoire de Physique Subatomique et de Cosmologie

Workshop on "Physics with high-luminosity proton-nucleus collisions at the LHC" CERN, July 4-5, 2024

Plan (20'+5')

- [Proton and nuclear PDFs: Common framework]
- Which nuclei?
- Which data?
- Global analyses of nuclear PDFs
- Impactt of LHC data
- Conclusions

Proton and nuclear PDFs: Common theoretical framework

Theoretical Framework (pQCD formalism)

Collinear Factorization Theorems:

- Provide (field theoretical) **definitions** of the **universal** PDFs
- Make the formalism **predictive**!
- Make a statement about the **error** of the factorization formula

PDFs and predictions for observables+uncertainties refer to this standard pQCD framework

Need a solid understanding of the standard framework!

- For pp and ep collisions there a **rigorous factorization proofs**
- For pA and AA factorization is a **working assumption** to be tested phenomenologically

There might be breaking of collinear factorization, deviations from DGLAP evolution, other nuclear matter effects to be included (higher twist)

Theoretical Framework (pQCD formalism)

Collinear Factorization Theorems:

- Provide (field theoretical) **definitions** of the **universal** PDFs
- Make the formalism **predictive**!
- Make a statement about the **error** of the factorization formula

PDFs and predictions for observables+uncertainties refer to this standard pQCD framework

Need a solid understanding of the standard framework!

- For pp and ep collisions there a **rigorous factorization proofs**
- For pA and AA factorization is a **working assumption** to be tested phenomenologically

There might be breaking of collinear factorization, deviations from DGLAP evolution, other nuclear matter effects to be included (higher twist)

Theoretical Framework (pQCD formalism)

Collinear Factorization Theorems:

- Provide (field theoretical) **definitions** of the **universal** PDFs
- Make the formalism **predictive**!
- Make a statement about the **error** of the factorization formula

PDFs and predictions for observables+uncertainties refer to this standard pQCD framework

Need a solid understanding of the standard framework!

- For pp and ep collisions there a rigorous factorization proofs
- For pA and AA factorization is a working assumption to be tested phenomenologically

There might be breaking of collinear factorization, deviations from DGLAP evolution, other nuclear matter effects to be included (higher twist)

Example: Factorization for pp collisions

Parton Distribution Functions (PDFs) $f_{P \rightarrow a, b}(x, \mu^2)$

🖈 Universal

Describe the structure of hadrons

Obey DGLAP evolution equations

The hard part $\hat{\sigma}_{ab \rightarrow c}(\mu^2)$

★ Free of short distance scales

- Calculable in perturbation theory
- ★ Depends on the process

 Similar factorisation formulae for inclusive IA, nuA processes and one-particle inclusive processes (involving also fragmentation functions)

Predictive Power

Universality: <u>same</u> PDFs/FFs enter different processes:

- **DIS:** $F_2^A(x,Q^2) = \sum_i [f_i^A \otimes C_{2,i}](x,Q^2)$
- DY: $\sigma_{A+B\to\ell^++\ell^-+X} = \sum_{i,j} f_i^A \otimes f_j^B \otimes \hat{\sigma}^{i+j\to\ell^++\ell^-+X}$
- A+B-> H + X: $\sigma_{A+B\to H+X} = \sum_{i,j,k} f_i^A \otimes f_j^B \otimes \hat{\sigma}^{i+j\to k+X} \otimes D_k^H$
- Predictions for unexplored kinematic regions and for your favorite new physics process

Flavor separation of PDFs

NC charged lepton DIS: 2 structure functions (y-exchange)

$$F_2^{\gamma}(x) \sim \frac{1}{9} [4(u + \bar{u} + c + \bar{c}) + d + \bar{d} + s + \bar{s}](x)$$

$$F_2^{\gamma}(x) = 2x F_1^{\gamma}(x)$$

CC Neutrino DIS: 6 additional structure functions $F_{1,2,3}$ ^{W+}, $F_{1,2,3}$ ^{W-}

$$F_2^{W^+} \sim [d + s + \bar{u} + \bar{c}] \qquad F_3^{W^+} \sim 2[d + s - \bar{u} - \bar{c}]$$
$$F_2^{W^-} \sim [\bar{d} + \bar{s} + u + c] \qquad F_3^{W^-} \sim 2[u + c - \bar{d} - \bar{s}]$$

Useful/needed to disentangle different quark parton flavors in a **global analysis** of proton or nuclear PDFs

Which Nuclei?

Nuclei used in global analyses of PDFs

• Fundamental quest: understand structure of nuclei in terms of quarks and gluons

Necessary tool: describe a wealth of hard process reactions in lepton-nucleus (IA, VA,), proton-nucleus (pA) and nucleus-nucleus (AA) collisions at colliders, fixed target experiments, in the atmosphere

Nuclei used in global analyses of PDFs

• Fundamental quest: understand structure of nuclei in terms of quarks and gluons

Necessary tool: describe a wealth of hard process reactions in lepton-nucleus (IA, VA,), proton-nucleus (pA) and nucleus-nucleus (AA) collisions at colliders, fixed target experiments, in the atmosphere

Nuclei used in global analyses of PDFs

Fixed Target NC DIS (after 'standard DIS' cuts Q>2 GeV, W>3.5 GeV):

- He: 32, Li: 11+14, Be: 3+14, C: 40+188, N: 29, Al:3+14, Ca: 17+28, Fe: 22+14, Cu: 18, Kr:12, Ag: 2, Sn: 8+111, Xe: 2, Au: 3, Pb: 3+14
- JLAB 6 GeV DIS data: He, Be, C, AI, Fe, Cu, Pb (not passing standard DIS cuts)

Fixed Target DY:

▶ Be: 0+56, C: 9, Ca: 9, **Fe: 9+28**, W: 9+28

• Fixed Traget CC neutrino DIS:

Inclusive DIS: Fe (not included), Pb: 824

Dimuon SIDIS: Fe: 150

FT NC DIS data depending on cuts

		W_{cut}	W_{cut}	W_{cut}	W_{cut}	W_{cut}
Q_{cut}^2	Q_{cut}	No Cut	1.3	1.7	2.2	3.5
1.3	$\sqrt{1.3}$	1906	1839	1697	1430	1109
1.69	1.3	1773	1706	1564	1307	1024
2	$\sqrt{2}$	1606	1539	1402	1161	943
4	2	1088	1042	952	817	708

Standard DIS cuts -

Dependence on A

- Different nuclei are combined in a global analysis by modelling the A-dependence of the fit parameters: $c_i(A) = p_i + a_i \ln A + b_i \ln^2 A$
- This modelling is quite rough so far. Room for progress
- Lead-only analysis conceivable. Additional HL-LHC data will help

Which Data?

Used data sets

DF

ion production

:0,

- **IA DIS:** backbone of all global analyses
 - Data from SLAC, NMC, EMC, BCDMS, FNAL: all groups (but different cuts)
 - Data from JLAB (CLAS, Hall-C): nCTEQ15HiX, EPPS21, KSASG20

nuA DIS: quark flavc

CHORUS nu-Pb da

nNNPDF2.0, nNNF

TUJU19, TUJU21

Deep Inelastic Scattering $\nu \longrightarrow l$ $V \longrightarrow l$ $N \longrightarrow l + X$ $\nu(\bar{\nu}) + N \rightarrow l + X$

- NuTeV, CCFR, CDHSW nu-Fe data: Tensions (see 2204.13157), used by KSASG20, TUJU19, TUJU21
- **nuA SIDIS charm production** (dimuon data): strange PDF

Single pion production

• NuTeV, CCFR nu-Fe: nNNPDF2.0, BaseDimuCHORUS

Used data sets II

- **pA DY:** disentangle valence and sea quarks
 - E772, E866 data: EPPS16, EPPS21,, nCT KSASG20, DSSZ12, nNNPDF3.0
 - π -A DY data: EPPS16, EPPS21

 SIH data: gluon distribution (weaker impact compared to HQ and dijet data)

Single pion production

- LHC W, Z production: gluon, strange distribution
 - CMS, ATLAS (ALICE, LHCb) Run I (5 TeV), CMS Run II (8 TeV): EPPS16, EPPS21, nCTEQ15WZ, nCTEQ15WZSIH, nCTEQ15WZSIHdeut, nNNPDF2.0, nNNPDF3.0, TUJU21

Used data sets III

- LHC Heavy Quark data: strong constraints on gluon at small-x
 - EPPS21 (D-mesons), nCTEQ15HQ (Heavy quarks and quarkonia, Crystal Ball fit), nNNPDF3.0 (D-mesons), Bayesian reweighting)
- LHC dijet data: strong constraint on gluon distribution in shadowing and antishadowing region (medium x, medium-small x)
 - CMS 5 TeV dijet p-Pb data: EPPS16, EPPS21, nNNPDF3.0
- LHC prompt photon data: gluon distribution (medium x, medium-small x) nNNPDF3.0

Kinematic coverage of data used in global analyses

[Klasen, Paukkunen, 2311.00450]

LHC data important for proton and nuclear PDFs

Prompt photons

- Prompt photons
- W+c, Z+c

LHC data important

pPb, γPb:

ALICE, ATLAS, CMS, LHCb

- W/Z production
- DY lepton pairs
- Dijets
- Heavy quarks (c, b): Charm hadrons
- Light hadrons inclusive pions, kaons
- Prompt photons

- Enormously enhance kinematic coverage in (x,Q²)
- Important for flavour separation over wide kinematic range
- Higher scales require more precision to constrain boundary conditions for PDFs at low scales: HL-LHC!
- Eventually lead-only global analysis
- Add collider data for other nuclei: Oxygen, ...
- FOCAL

Global Analyses of nuclear PDFs

Comparison of recent nPDF fits

M. Klasen, DIS24

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KSASG20
THEORETICAL INPUT:					
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	$SACOT{-\chi}$	$SACOT{-\chi}$	FONLL	FONLL	FONLL
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta\chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta\chi^2 = 50$	$\Delta\chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18
Deuteron corrections	$(\checkmark)^{a,b}$	√ ^c	\checkmark	\checkmark	\checkmark
FIXED-TARGET DATA:					
SLAC/EMC/NMC NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
– Cut on Q^2	4 GeV ²	1.69 GeV ²	3.5 GeV ²	3.5 GeV ²	$1.2 \mathrm{GeV}^2$
– Cut on W^2	12.25 GeV ²	3.24 GeV ²	12.5 GeV ²	12.0 GeV ²	
JLab NC DIS	$(\checkmark)^a$	\checkmark			\checkmark
CHORUS/CDHSW CC DIS	$(\sqrt{/-})^b$	√ /-	√ /-	\checkmark / \checkmark	\checkmark / \checkmark
NuTeV/CCFR 2μ CC DIS	$(\sqrt{\sqrt{3}})^b$		√/-	·	
pA DY	\checkmark	\checkmark	\checkmark		\checkmark
Collider data:					
Z bosons	\checkmark	\checkmark	\checkmark	\checkmark	
W^\pm bosons	\checkmark	\checkmark	\checkmark	\checkmark	
Light hadrons	\checkmark	\checkmark^d			
Jets		\checkmark	\checkmark		
Prompt photons			\checkmark		
Prompt D ⁰	\checkmark	\checkmark	√ ^e		
Quarkonia $(J/\psi, \psi', \Upsilon)$	\checkmark				

Nuclear PDFs after 10 years of LHC data

[Klasen, Paukkunen, 2311.00450]

Impact of LHC data

Experimental data on W/Z bosons

ANALYSIS	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KP16
Run-I:					
ATLAS Z	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CMS Z	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ALICE Z			✓ ^b		
LHCb Z	\checkmark		✓ ^b		
ATLAS W^{\pm}	\checkmark				\checkmark
CMS W^{\pm}	\checkmark	\checkmark	\checkmark		
ALICE W^{\pm}	\checkmark		✓ ^b		
RUN-II:					
CMS Z			✓ ^b		
ALICE Z			✓ ^b		
LHCb Z					
CMS W^{\pm}	\checkmark	√ ^a	\checkmark	\checkmark	
ALICE W^{\pm}					
	0	. h			

 $^{\rm a}$ added in EPPS21; $^{\rm b}$ added in nNNPDF3.0.

Run-II W boson production in pPb from CMS

[Klasen, Paukkunen, 2311.00450]

Figure 6: Nuclear modification ratios for W^+ (left) and W^- bosons (right) at CMS Run-II (172, 173) compared with EPPS21 (51), nCTEQ15HQ (50), nNNPDF3.0 (52) and a calculation with 82 free protons and 126 free neutrons.

EPPS21 fitted shown R_{pPb} while nCTEQ15HQ and nNNPDF3.0 fitted pPb cross sections

Impact on the strange nPDF

• nCTEQI5WZ includes LHC W/Z data

✓ First realistic uncertainties

• nCTEQI5NU also adds CC neutrino data (including dimuon data)

 \checkmark Neutrino data provides further constraints down to low-x

Run-II Z boson production in pPb from CMS

[Helenius, Vogelsang, Walt, PRD105(2022)094031]

Low mass data in tension with NLO (also nNNPDF) \rightarrow NNLO?

LHC W/Z and the gluon nPDF

• nCTEQI5WZ includes LHC W/Z data

✓ Also constrains gluon

LHC HQ data and the gluon nPDF

• nCTEQI5WZ includes LHC W/Z data

✓ Also constrains gluon

• nCTEQI5HQ also adds quarkonium and open HQ data

✓ Unprecedented low-x reach

Heavy quark and quarkonium data

Observable ${\cal O}$	D^0	J/ψ	$\Upsilon(1S)$	$\psi(2S)$	B^0, B^{\pm}	c jet	b jet
Run-I:							
ATLAS		$(240,\ 241)^{\mathrm{a}}$	$(241)^{a}$	$(241)^{a}$			
CMS		$(242)^{a}$	(243)	$(244)^{a}$		(245)	(246)
ALICE	$(247, 248, 249)^{a}$	$(250, 251)^{\mathrm{a}}, (252)$	(253)	$(254)^{a}$			(255)
LHCb	$(256)^{a,b,c}$	$(257)^{a}$	(258)				
Run-II:							
ALICE		$(259)^{\mathrm{a}},(260)$	$(261)^{a}$	$(262)^{a}$			
LHCb	(263)	$(264)^{a}$	$(265)^{a}$		(266)		
FIXED TARGET:							
LHCb	(267, 268)	(267, 269)		(269)			

^a included in nCTEQ15HQ (50); ^b included in EPPS21 (51); ^c included in nNNPDF3.0 (52).

nCTEQHQ nPDFs

arXiv:2204.09982

Heavy quark(-onium) data cover a wide kinematic range down to $x \lesssim 10^{-5}$

puts strong constraints on gluon distribution

FIG. 1: Coverage of the kinematic (p_T, y_{cms}) -plane of the quarkonium and open heavy quark production data sets from proton-lead collisions. ALICE data is shown in red, ATLAS in blue, CMS in orange and LHCb in green. The dashed and solid contours show the estimated x-dependence for $\sqrt{s} = 5$ and 8 TeV, respectively.

> See also 2012.11462 and 1712.07024

nCTEQ15HQ nPDFs

arXiv:2204.09982

• Data:

- IA DIS + pA DY
- LHC W,Z
- RHIC/LHC SIH
- LHC Heavy quark(-onium)
- 19 fit parameters (3 strange parameters open)
- Heavy quark(-onium) data: Data-driven approach relying on the following assumptions
 - gg-channel dominates
 - 2->2 kinematics

Implementation of the data-driven approach in 1712.07024, 2012.11462 for heavy quarkonium data into the nCTEQ global analysis

$$\sigma(AB \to \mathcal{Q} + X) = \int \mathrm{d}x_1 \, \mathrm{d}x_2 f_{1,g}(x_1,\mu) \, f_{2,g}(x_2,\mu) \, \frac{1}{2\hat{s}} \overline{|\mathcal{A}_{gg \to \mathcal{Q} + X}|^2} \mathrm{dPS}.$$

The effective scattering ME is parameterised with the Crystal Ball function:

$$\overline{\left|\mathcal{A}_{gg\to\mathcal{Q}+X}\right|^{2}} = \frac{\lambda^{2}\kappa\hat{s}}{M_{\mathcal{Q}}^{2}}e^{a|y|}$$

$$\times \begin{cases} e^{-\kappa\frac{p_{T}^{2}}{M_{\mathcal{Q}}^{2}}} & \text{if } p_{T} \leq \langle p_{T} \rangle \\ e^{-\kappa\frac{\langle p_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}} \left(1 + \frac{\kappa}{n}\frac{p_{T}^{2} - \langle p_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } p_{T} > \langle p_{T} \rangle \end{cases}$$

nCTEQ15HQ nPDFs

TABLE XI: χ^2/N_{dof} values for the individual heavy-quark final states, the individual processes DIS, DY, WZ, SIH, HQ, and the total. The shown χ^2 is the sum of regular χ^2 and normalization penalty. Excluded processes are shown in parentheses. Note that both nCTEQ15 AND nCTEQ15WZ included the neutral pions from STAR and PHENIX.

	D^0	J/ψ	$\Upsilon(1S)$	$\psi(2S)$	DIS	DY	WZ	SIH	HQ	Total
nCTEQ15	(0.56)	(2.50)	(0.82)	(1.06)	0.86	0.78	(2.19)	(0.78)	(1.96)	1.23
nCTEQ15WZ	(0.32)	(1.04)	(0.76)	(1.02)	0.91	0.77	0.63	(0.47)	(0.92)	0.90
nCTEQ15WZ+SIH	(0.46)	(0.84)	(0.90)	(1.07)	0.91	0.77	0.72	0.40	(0.93)	0.92
nCTEQ15HQ	0.35	0.79	0.79	1.06	0.93	0.77	0.78	0.40	0.77	0.86

FIG. 4: Lead PDFs from different nCTEQ15 versions. The baseline nCTEQ15 fit is shown in black, nCTEQ15WZ in blue, nCTEQ15WZSIH in green, and the new fit in red.

nCTEQ15HQ nPDFs

arXiv:2204.09982

FIG. 3: Comparison between prompt D^0 production as predicted in the GMVFNS (red) and with the data-driven approach (blue). The uncertainties of the GMVFNS predictions come from varying the scales individually by a factor of 2, such that there is never a factor 4 between two scales. Different rapidity bins are separated by multiplying the cross sections by powers of ten for visual clarity.

arXiv:2204.09982

nCTEQ15HQ nPDFs

FIG. 2: Comparison between prompt J/ψ production in pp collisions for LHCb[87], ALICE[88] and ATLAS[89] kinematics as predicted by NRQCD and with the data-driven approach. The uncertainties of the NRQCD predictions come from scale variation $1/2 < \mu_r/\mu_{r,0} = \mu_f/\mu_{f,0} = \mu_{\rm NRQCD}/\mu_{\rm NRQCD,0} < 2$ around the base scale $\mu_{r,0} = \mu_{f,0} = \sqrt{p_T^2 + 4m_c^2}$ and $m_{\rm NRQCD,0} = m_c$. Different rapidity bins are separated by multiplying the cross sections by powers of ten for visual clarity.

nNNPDF3.0 [2201.123623]

Impact of LHCb D-meson data: large uncertainty reduction at small-x, more shadowing

Figure 4.5. Comparison of the nPDFs of lead nuclei at Q = 10 GeV between nNNPDF3.0 (no LHCb D) and nNNPDF3.0, normalised to the central value of the former.

EPPS21 vs EPPS 6

 Largest difference for strange quarks and gluons: much better constrained in EPPS21. Gluon due to D-meson and dijet data. Strange quark due to W, Z data and the more precise gluon.

Run-II isolated photons in pPb from ATLAS

Note: Absolute cross sections underestimated at NLO up to 30% at low pT \rightarrow NNLO?

Run-II isolated photons in pPb from ALICE

[Talk M. Klasen, DIS24]

- High- p_T ALICE data \sim ATLAS data w/in uncertainties
- New low- p_T ALICE data has sensitivity \rightarrow publish!
- Gluons: nCTEQ15HQ > nCTEQ15, EPPS21 \sim EPPS16
- New ALICE FoCal will cover $3.2 < \eta < 5.8$ in Run-IV

Top pair production in pPb with ATLAS

[ATLAS-CONF-2023-063]

Run-I dijet production from CMS

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413 [Talk M. Klasen, DIS'24] Specific to nuclear collisions:

- Large background from Underlying Event
- $7 \pm 5 \, \text{pN}$ interactions (Glauber) [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R

NB: CMS Run-I pp rapidity ratios in tension with NLO \rightarrow NNLO?

Conclusions

Conclusions

- A lot of progress in recent years, more to come!
 - HQ-data, di-jet data: much improved gluon Important to test small-x gluon from HQ data against small-x gluons from prompt photon data (FOCAL)
 - LHC W,Z data: gluon, strange PDF

More data to come, in particular for low invariant masses of lepton pairs

- SIH data: small impact on gluon
- Inclusive jets: gluon
- Top quarks
- Z+c,W+c?
- Different groups: EPPS, nCTEQ, nNNPDF, TUJU, KA, ...
 Important to test systematics, new ideas, driving improvements!

Thank you!

From nCTEQ15 onwards

• nCTEQ15

✓ Mostly NC DIS, some FT DY, a handful of SIH (740 pts)

• nCTEQI5 upgrades

- ✓ nCTEQ15WZ ('20): + LHC W/Z data (+120 pts)
- ✓ nCTEQ15HIX ('20): + JLAB NC DIS data (+336 pts) + relaxed cuts
- ✓ nCTEQ15WZSIH ('21): + LHC W/Z + SIH data (+120 +112 pts)
- ✓ nCTEQ15HQ ('22): + LHC W/Z + HQ data (+120 +548 pts)
- ✓ nCTEQ15NU ('22): +LHC W/Z + SIH + CC DIS (+120 +112 +974 pts) (BaseDimuChorus fit)

• Upcoming nCTEQ global analysis

- ✓ Combines upgrades above
- ✓ LHC W/Z, JLAB NC DIS, SIH, HQ, CC neutrino DIS (over 3000 pts)
- ✓ TMC's ('23)
- ✓ New proton baseline CJ22, relaxed kinematic cuts, deuteron corrections, ...

[2007.09100]

[2012.11566]

[2105.09873]

[2204.09982]

[2204.13157]

[2301.07715]

Global analyses of nPDFs: 2023

• EPPS

- EKS98: hep-ph/9807297
- EKPS07: hep-ph/0703104
- EPS08: 0802.0139
- EPS09: 0902.4154
- EPPS16: 1612.05741
- EPPS21: 2112.12462
- nCTEQ
 - nCTEQ09: 0907.2357
 - nCTEQ15: 1509.00792
 - nCTEQ15WZ: 2007.09100
 - nCTEQ15HiX: 2012.11566
 - nCTEQ15WZSIH: 2105.09873
 - nCTEQ15HQ: 2204.09982
 - nCTEQ15WZSIHdeut: 2204.13157
 - BaseDimuChorus: 2204.13157

• nNNPDF

- nNNPDF1.0: 1904.00018
- nNNPDF2.0: 2006.14629
- nNNPDF3.0: 2201.12363
- TUJU (open source XFitter, fit of proton baseline)
 - TUJU19: 1908.03355
 - TUJU21: 2112.11904
- KA
 - KAI5: 1601.00939
 - KSASG20: 2010.00555
- nDS
 - nDS03: hep-ph/0311227
 - DSSZ12: 1112.6324
- HKM/HKN
 - HKM01: hep-ph/0103208
 - HKN04: hep-ph/0404093
 - HKN07: 0709.3038