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1 Preliminaries

• Akın Wingerter (akin@lpsc.in2p3.fr), substituting Ingo Schienbein

• Postdoc here at LPSC; working on particle physics (Higgs, SUSY, GUTs, neutri-
nos, in distant past also extra dimensions and string theory)

• Date/time/place for lecture:
1st lecture: 2 hours Thursday, 24.01.2013, 13:30h
2nd lecture: 3 hours Thursday, 31.01.2013, 13:30h
3rd lecture: 3 hours Thursday, 07.02.2013, 13:30h

Here at the LPSC!

• Language of instruction: English

If you have problems understanding me (because I might be talking too fast or
you may not catch my accent), please tell me!!!

You can ask questions in English (preferred) or French. If I do not understand
your question, Ingo will translate.

Do not hesitate to ask any question! There are no stupid questions, only stupid
answers, and answering is my job!

• Final exam questions will be based on (optional) homework problems that are
interspersed in the lecture

• There is a web page for this course (not up yet), please check it out:

http://lpsc.in2p3.fr/wingerter/

• After each lecture, I will ask you to fill out an (anonymous) online survey so that
I get some feedback. Please participate!

• Please give me your email addresses.

• Literature:

– Maggiore [2]: Excellent book on QFT

– Martin [3]: SUSY; covers everything from motivation to calculation to phe-
nomenology; maybe a bit too difficult for master-II

– Kalka and Soff [1]: SUSY; very explicit calculations; unfortunately in German

– Muller-Kirsten and Wiedemann [4]: SUSY; even more explicit, but horrible
type-setting (handwritten formulae); in English

• Goal for today: Reach the Standard Model! Will not rush, profound understanding
more important than meeting goals.
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2 The Standard Model

2.1 One-page Summary of the World

Gauge group

SU(3)c × SU(2)L × U(1)Y

Particle content

Matter Higgs Gauge

Q =

uL
dL

 (3,2) 1/3 L =

νL
eL

 (1,2)-1 H =

h+

h0

 (1,2)1 A (1,1)0

ucR (3,1)-4/3 ecR (1,1) 2 W (1,3)0

dcR (3,1) 2/3 νcR (1,1) 0 G (8,1)0

Lagrangian (Lorentz + gauge + renormalizable)

L = −1

4
Gα
µνG

αµν+. . . Qk /DQk+. . . (DµH)†(DµH)−µ2H†H− λ
4!

(H†H)2+. . . Yk`QkH(uR)`

Spontaneous symmetry breaking

• H → H ′ + 1√
2

(
0
v

)
• SU(2)L × U(1)Y → U(1)Q

• A,W 3 → γ, Z0 and W 1
µ ,W

2
µ → W+,W−

• Fermions acquire mass through Yukawa couplings to Higgs
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2.2 Filling in the Details

2.2.1 The Particle Content

Matter Higgs Gauge

Q =

uL
dL

 (3,2) 1/3 L =

νL
eL

 (1,2)-1 H =

h+

h0

 (1,2)1 A (1,1)0

ucR (3,1)-4/3 ecR (1,1) 2 W (1,3)0

dcR (3,1) 2/3 νcR (1,1) 0 G (8,1)0

Qc =

ucL
dcL

 (3,2)-1/3 Lc =

νcL
ecL

 (1,2) 1 H =

h−
h0

 (1,2)−1 A (1,1)0

uR (3,1) 4/3 eR (1,1)-2 W (1,3)0

dR (3,1)-2/3 νR (1,1) 0 G (8,1)0

Nota bene:

• Since the SM is chiral, we work with 2-component Weyl spinors.

• Chiral means that the left-handed and the right-handed particles do not transform
differently under the gauge group: E.g. uL ∼ (3,2) 1/3 and uR ∼ (3,1) 4/3

• For every particle, there is an anti-particle which is usually not explicitly listed.

• Note that ucR is the charge conjugate of a right-handed particle and as such trans-
forms as a left-handed particle. More precisely, one should write (uR)c. Some other
common notation: ucL (for (uc)L), u or simply u or U .

• The reason why we list e.g. ucR instead of uR is that we want to use only left-handed
particles (important later for SUSY).

• The doublet structure of e.g. Q =

(
uL
dL

)
indicates how it transforms under SU(2)L.

It has absolutely nothing to do with Dirac spinors.

• The right-handed neutrino νR is a hypotetical particle whose existence has not
been established. I am including it only for later reference when I will talk about
GUTs and the seesaw mechanism.
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• In SU(2), the representations 2 and 2 are equivalent, but not the identical/equal/same!
If one wants to replace 2 by 2, one needs some extra work.

Homework 2.1 Let χ be a left-handed Weyl spinor. Show that η := iσ2χ
∗ transforms

as a right-handed Weyl-spinor. Here, σ2 is the second Pauli matrix.

Hint: Since χ is left-handed, it will transform under the Lorentz group as χ→ ΛLχ. You
need to show that η transforms under the Lorentz group as a right-handed Weyl spinor,
i.e. η → ΛRη. You can find the explicit form of ΛL and ΛR in Maggiore [2], but for this
homework just use the identity σ2Λ∗Lσ2 = ΛR.

2.2.2 How to build a Lorentz scalar

Scalars: Spin 0

Real field φ

∂µφ∂
µφ−m2φ2 (2.1)

Complex field φ = 1√
2
(ϕ1 + iϕ2)

∂µφ
∗∂µφ−m2φ∗φ (2.2)

Note that Eq. (2.2) has a U(1) symmetry. If φ→ eiαφ, we have:

∂µφ
∗∂µφ−m2φ∗φ → ∂µ(eiαφ)∗∂µ(eiαφ)−m2(eiαφ)∗(eiαφ) = ∂µφ

∗∂µφ−m2φ∗φ

Complex (Higgs!) doublet φ =

(
φ1

φ2

)
=

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
∂µφ

†∂µφ−m2φ†φ (2.3)

Note that Eq. (2.3) is invariant under SU(2). If φ → ei(α1σ1+α2σ2+α3σ3)φ, where αi ∈ R
are arbitrary real numbers and σ1, σ2, σ3 are the Pauli matrices, then:

∂µφ
†∂µφ−m2φ†φ → ∂µ(eiαiσiφ)†∂µ(eiαiσiφ)−m2(eiαiσiφ)†(eiαiσiφ)

= ∂µ
[
φ†(eiαiσi)†

]
∂µ(eiαiσiφ)−m2(φ†(eiαiσi)†)(eiαiσiφ)

∣∣∣(AB)† = B†A†

= ∂µφ
† [(eiαiσi)†eiαiσi] ∂µφ−m2

[
φ†(eiαiσi)†eiαiσi

]
φ

= ∂µφ
†
[
(e−iαiσ

†
i )eiαiσi

]
∂µφ−m2

[
φ†(e−iαiσ

†
i eiαiσi

]
φ

= ∂µφ
† [(e−iαiσi)eiαiσi] ∂µφ−m2

[
φ†(e−iαiσieiαiσi

]
φ

∣∣∣σ†i = σi

= ∂µφ
†∂µφ−m2φ

∣∣∣eAeB = eA+Be
1
2

[A,B]  eAe−A = 1
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Fermions: Spin 1/2

Left-handed Weyl spinor

iψ†Lσ
µ∂µψL (2.4)

Right-handed Weyl spinor

iψ†Rσ
µ∂µψR (2.5)

Mass term mixes left and right

iψ†Lσ
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†LψR + ψ†RψL) (2.6)

This will be of paramount importance later in the SM, so do not forget this point!

Dirac spinor in chiral basis

Ψ =

(
ψL
ψR

)
(2.7)

We can now rewrite Eq. (2.8) (into the familiar form) as

iΨγµ∂µΨ−mΨΨ with Ψ = Ψ†γ0 and γµ =

(
0 σµ

σµ 0

)
(2.8)

Note that it is more “natural” to write down the SM with Weyl spinors, because

• weak interactions distinguish between left- and right-handed particles,

• (the need for) the Higgs mechanism is easier to understand,

• Weyl spinors are the basic “building blocks” (smallest irreps of Lorentz group).

Vector Bosons: Spin 1

U(1) gauge boson (“Photon”)

−1

4
FµνF

µν +
1

2
m2AµA

µ where Fµν = ∂µAν − ∂νAµ (2.9)

Mass term in SM forbidden by gauge symmetry, but in principle allowed (e.g. by Lorentz
invariant)

In principle, there is a second invariant

−1

4
FµνF̃

µν with F̃µν =
1

2
εµνρσFρσ (2.10)
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Relevant for SU(3)  strong CP problem (not clear why it is not present in SM)

Kinetic mixing, if there are two Abelian gauge groups, U(1)A and U(1)B

−1

4
FAµνF

µν
A −

1

4
FBµνF

µν
B −

1

4
FAµνF

µν
B (2.11)

SU(2) gauge bosons will be discussed after the concept of covariant derivative has been
introduced.

2.2.3 Gauge Symmetries

Idea: Generate dynamics (i.e. interactions) from free Lagrangian by imposing local
(i.e. now α = α(x)) symmetries.

Does not fall from heavens; generalization of “minimal coupling” in electrodynam-
ics/quantum mechanics.

Final judge is experiment: It works!

Local Gauge Invariance for Complex Scalar Field

Recall Lagrangian in Eq. (2.2)

∂µφ
∗∂µφ−m2φ∗φ (2.12)

On p. 5 we had shown that Eq. (2.12) is invariant under φ → eiαφ. What if now
α = α(x), i.e. it depends on spacetime?

∂µ(eiα(x)φ)∗∂µ(eiα(x)φ)−m2(eiα(x)φ)∗(eiα(x)φ)

= [∂µe
iα(x) · φ+ eiα(x) · ∂µφ]∗[∂µeiα(x) · φ+ eiα(x) · ∂µφ]−m2φ∗φ

= [ieiα(x)∂µα(x) · φ+ eiα(x) · ∂µφ]∗[ieiα(x)∂µα(x) · φ+ eiα(x) · ∂µφ]−m2φ∗φ

= [−ie−iα(x)∂µα(x) · φ∗ + e−iα(x) · ∂µφ∗][ieiα(x)∂µα(x) · φ+ eiα(x) · ∂µφ]−m2φ∗φ

= −ie−iα(x)∂µα(x) · φ∗ · ieiα(x)∂µα(x) · φ
− ie−iα(x)∂µα(x) · φ∗ · eiα(x) · ∂µφ
+ e−iα(x) · ∂µφ∗ · ieiα(x)∂µα(x) · φ
+ e−iα(x) · ∂µφ∗ · eiα(x) · ∂µφ
−m2φ∗φ

= ∂µφ · ∂µφ−m2φ∗φ+ non-zero terms

7



Not invariant under U(1)! The reason why it worked before was that ∂µ[eiα·] = eiα∂µ[·].
Can we find a derivative operator that commutes with the gauge transformation?

Dµ[eiα(x)·] = eiα(x)Dµ[·] (2.13)

Define

Dµ = ∂µ + iAµ, (2.14)

where the gauge field Aµ transforms as

Aµ → Aµ − ∂µα (2.15)

under the gauge transformation. Now we can try again. Is

Dµφ
∗Dµφ−m2φ∗φ (2.16)

invariant under φ → eiα(x)φ? I could repeat the previous calculation, but it is more
instructive to take a short-cut and prove Eq. (2.13) instead. The reason is that this will
also generalize to the non-Abelian case.

Dµφ→ (∂µ + i[Aµ − ∂µα(x)])[eiα(x)φ]

= ∂µ[eiα(x)φ] + i[Aµ − ∂µα(x)][eiα(x)φ]

= ieiα(x)∂µα(x) · φ+ eiα(x)∂µφ+ iAµe
iα(x)φ− i∂µα(x)eiα(x)φ

= eiα(x)∂µφ+ iAµe
iα(x)φ

= eiα(x)[∂µφ+ iAµ]φ

= eiα(x)Dµφ (2.17)

From this, it directly follows that Eq. (2.16) is invariant:

Dµφ
∗Dµφ−m2φ∗φ→ e−iα(x)Dµφ

∗ ·eiα(x)Dµφ−m2e−iα(x)φ∗ ·eiα(x)φ = Dµφ
∗Dµφ−m2

Now you can expand Eq. (2.16) to discover the consequences of gauge invariance:

Dµφ
∗Dµφ−m2φ∗φ = ∂µφ

∗∂µφ+ iAµ(φ∂µφ
∗ − φ∗∂µφ) + φ∗φAµA

µ −m2φ∗φ (2.18)

Nota bene:

• We call Dµ the covariant derivative, because it transforms just like φ itself:

φ→ eiα(x)φ and Dµφ→ eiα(x)Dµφ (2.19)
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• Demand symmetry → Generate interactions

• Generated mass for gauge boson (after φ acquires a vacuum expectation value)

• Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

m2AµA
µ → m2(Aµ − ∂µα)(Aµ − ∂µα) 6= m2AµA

µ (2.20)

• Simplest form of Higgs mechanism

• Vector-scalar-scalar interaction

Homework 2.2 Define the covariant derivative

Dµ = ∂µ − igAaµT aR (2.21)

where g is the gauge coupling and T aR are the representation matrices of the Lie algebra
elements T a (the subscript R reminds us that we are working in a given representation).
Under a gauge transformation

U = eigα
a(x)TaR (2.22)

the field φ transforms as

φ→ Uφ (2.23)

and we define

Aµ → UAµU
† − i

g
(∂µU)U †. (2.24)

Note that U is a matrix and depends on the representation of the Lie algebra in which
φ transforms (choice of T aR in Eq. (2.22)). Show that

Dµφ→ UDµφ, (2.25)

i.e. Dµφ transforms covariantly. You can proceed in several steps of increasing complex-
ity:

(a) Assume that a = 1, T aR = 1, g = 1. This should (up to a minus sign here and there)
reproduce our calculation in Eq. (2.17).

(b) Assume now that a = 1, 2, 3 and T aR = σa are the Pauli matrices. This case cor-
responds to a representation which acts on a doublet. In the SM, this corresponds

to e.g. Q → eigα
a(x)σaQ where Q =

(
uL
dL

)
. Note that uL and dL are Weyl spinors,

whereas Q is not! Q is a doublet under SU(2)L.

(c) Now prove the general case. This should be almost the same as the previous proof
for the SU(2) case.

9



Adding the Gauge Fields

Recall the gauge invariant Lagrangian for a complex scalar field from Eq. (2.16):

Dµφ
∗Dµφ−m2φ∗φ (2.26)

When defining the covariant derivative, we were led to introduce gauge field Aaµ. Since
these fields are now present in the theory, we need to introduce kinetic terms for them
(note that mass terms are forbidden by gauge invariance, see Eq. (2.20) on the preceding
page and Eq. (2.9) on page 6):

Dµφ
∗Dµφ−m2φ∗φ− 1

4
F µνFµν (2.27)

Consider first the case of a U(1) gauge field:

Fµν = ∂µAν − ∂νAµ (2.28)

It is easy to prove that this term is gauge invariant:

Fµν = ∂µAν − ∂νAµ → ∂µ(Aν − ∂να(x))− ∂ν(Aµ − ∂µα(x))

= ∂µAν − ∂µ∂να(x)− ∂νAµ − ∂ν∂µα(x)

= ∂µAν − ∂νAµ
(2.29)

For the non-Abelian case (e.g. SU(2)), the situation is more complicated, and we need
to amend the definition of Fµν to make the product FµνF

µν gauge invariant. Here is a
short overview of the differences between the abelian and non-abelian case:

Abelian Non-Abelian: component notation Non-Abelian: vector notation

U = eiα(x) U = eigα
a(x)TaR U = eigα

a(x)TaR

φ→ Uφ Φi → U i
kΦ

k Φ→ UΦ

Aµ AaµT
a
R Aµ

Aµ → Aµ − ∂µα AaµT
a → UAaµT

aU † − i
g
(∂µU)U † Aµ → UAµU

† − i
g
(∂µU)U †

Fµν := ∂µAν − ∂νAµ F a
µν := ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν F µν := ∂µAν − ∂νAµ − ig[Aµ,Aν ]

Fµν → Fµν F µν → UF µνU
†

Fµν invariant F a
µνF

aµν invariant Tr(F µνF
µν) invariant
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Homework 2.3 Prove that

1

2
Tr(F µνF

µν) =
1

4
F a
µνF

aµν . (2.30)

Hint: Tr(T aT b) = 1
2
δab.

Homework 2.4 Prove that if we define the gauge fields to transform as

Aµ → UAµU
† − i

g
(∂µU)U †, (2.31)

then the field strenght tensor will transform as

F µν → UF µνU
†. (2.32)

Homework 2.5 Prove that

Tr(F µνF
µν) (2.33)

is invariant.
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3 Supersymmetry

3.1 Weyl Spinors (in SUSY Notation)

Remember the Lagrangian for a massive fermion:

L = iψ†Lσ
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†LψR + ψ†RψL) (3.1)

Let us single out the term ψ†RψL. First, we note that it is Lorentz invariant. Second,
we can rewrite it as the product of two left-handed Weyl spinors, since ψcR := −iσ2ψ

∗
R

transforms as a left-handed spinor:

ψcR = −iσ2ψ
∗
R ↔ +iσ2ψ

c
R = ψ∗R ↔ (ψcR)T (−iσ2) = ψ†R  ψ†RψL = (ψcR)T (−iσ2)ψL

(3.2)

Now introduce new names ξ := ψcR, χ := ψL for the 2 left-handed Weyl spinors, use
component notation and rename εαβ := −(iσ2)αβ which now plays the role of a “spinor
metric”:

ψ†RψL = (ψcR)T (−iσ2)ψL = ξT (−iσ2)χ = ξαεαβχ
β (3.3)

Note that εαβ is indeed our old friend the totally anti-symmetric 2-index tensor:

ε12 = −ε21 = −1, ε11 = −ε22 = 0 (3.4)

Consequently, we have to define

ε12 = −ε21 = +1, ε11 = −ε22 = 0 (3.5)

such that εαγε
γβ = δβα.

Note that we agree with the conventions of Martin [3], but this need not have been the
case. From the derivation you can see that the sign of ε12 is a convention.

An immediate consequence of Eq. (3.4) and Eq. (3.5) is that

ξχ
?
= ξαχα = εαβξβεαγχ

γ = εαβεαγξβχ
γ = −εβαεαγξβχγ = −δβγ ξβχγ = −ξβχβ

?
= ξχ. (3.6)
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We see that we need another convention in order to unambigously define what we mean
by ξχ with indices suppressed. We agree to sum undotted indices always “downwards”,
and dotted indices always “upwards”.

Note added: We chose to define

ξα = εαβξ
β, ξα = εαβξβ (3.7)

as Martin [3] did, and this is the “technical” reason why we are getting a minus sign in
Eq. (3.6). However, this is again a convention, and e.g. Kalka and Soff [1] defines

ξα = ξβεβα, ξα = εαβξβ, (3.8)

which is in some sense more natural, since it mimics the transformation property of the
Weyl spinors ψL and ψR. This leads to the same result as in Eq. (3.6), as one may easily
check. Just note that in the notation of Kalka and Soff [1], εαγε

γβ = −δβα in contrast
to Martin [3] (see line following Eq. (3.5)). I inserted this short note to answer Tim’s
question. �

An important point is that the components of ξ and χ are so-called a-numbers (anti-
commuting numbers), i.e. e.g. ξαχβ = −χβξα. This is of course so because later in second-
quantization we need anti-commutation relations (beyond the scope of this lecture).

Following the literature, we introduce the (somewhat redundant) notation and denote
the indices of conjugate spinors with dots, i.e.

ψ ∼ ξα  ψ† ∼ ξ†α̇. (3.9)

Sometimes ξ† is called a right-handed Weyl spinor, but this is misleading, since without
referring to the spinor metric εαβ, this does not make sense (cmp. Eq. (3.1) and Eq. (3.10)
below).

Now we can rewrite Eq. (3.1) as:

L = iξ†σµ∂µξ + iχ†σµ∂µχ−m(ξχ+ ξ†χ†) (3.10)

3.2 The Chiral Supermultiplet

Before we start, I should mention that our notation here slightly differs from Martin
[3], since among other things our metric is “mostly minus”, i.e. ηµν = diag(+,−,−,−),
whereas his ηµν = diag(−,+,+,+) is “mostly plus”. You should keep this in mind, if
you want to compare with Martin [3].

This brings me to an important point that I had also mentioned before, namely that
in SUSY the choice of notation and conventions is particularly important. There are
no two authors that use the same notation and conventions (slight exaggeration), so
when you develop your arsenal of formulae, you need to fix your notation and stick to
it. Otherwise, you will unevitably end up with errors and mistakes in your calculations
and look for minus signs for hours and hours.
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3.2.1 On-shell Formulation

SUSY associates a fermionic partner with every boson and vice versa, so let us start
with the simplest case. We are looking for a transformation such that

S =

∫
d4x (∂µφ

∗∂µφ− iψ†σµ∂µψ) =:

∫
d4x (Lφ + Lψ) (3.11)

is invariant.

The desired transformation must turn a boson into a fermion. We make the ansatz

φ→ φ+ δφ, where δφ = εψ and δφ∗ = ε†ψ†. (3.12)

Do not worry that this might not be the most general SUSY transformation. We are
looking for one realization of the SUSY algebra, just like the Pauli matrices are a (not
the!) realization of the SU(2) algebra. Later in this chapter we will show that Eq. (3.12)
and the corresponding transformation of the fermions indeed satisfy the SUSY algebra.
Also note that Eq. (3.12) is linear in φ, so we are looking for a linear realization of the
SUSY algebra. One last remark, namely note that ε does not depend on x, i.e. ε 6= ε(x).
In analogy to before, we call this a global SUSY transformation. If ε = ε(x), we have a
local SUSY transformation, and the resulting theory is called supergravity.

So, how does Lφ transform under Eq. (3.12)?

δLφ = δ (∂µφ
∗∂µφ) = δ (∂µφ

∗) ∂µφ+ ∂µφ
∗δ (∂µφ) = ∂µ (δφ∗) ∂µφ+ ∂µφ

∗∂µ (δφ)

= ∂µ (δφ∗) ∂µφ+ ∂µφ
∗∂µ (δφ)

= ∂µ
(
ε†ψ†

)
∂µφ+ ∂µφ

∗∂µ (εψ) see Eq. (3.12)

= ε†∂µψ
†∂µφ+ ∂µφ

∗ε∂µψ ε 6= ε(x)

(3.13)

Now consider the transformation properties of Lψ. How must ψ transform such that the
resulting transformation of Lψ cancels the terms in Eq. (3.13)? One subtlety: We need
the action S in Eq. (3.11) to be invariant; the Lagrangian Lφ +Lψ need not necessarily
be invariant; we can allow for a total derivative.

This time, we do not have any choice. We look for a transformation δψ that should
contain ε, φ, and one derivative ∂µ. Otherwise, there is no chance that it will cancel the
terms in Eq. (3.13). But we also need to contract the Lorentz index µ of the derivative
∂µ with something, otherwise the term will not be Lorentz invariant. The only option
is to introduce a σµ. We make the following ansatz:

ψ → ψ + δψ, where δψα = +iσµαα̇ε
†α̇∂µφ and δψ†α̇ = −iεασµαα̇∂µφ∗. (3.14)

Note that whether we should take an ε or ε† is dictated by the fact that for δψ we need
an α-index, and for δψ† we need an α̇-index:

σµαα̇(ε†)α̇ = (something)α, εασµαα̇ = (something)α̇ (3.15)
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Also, we cannot take a (σµ)α̇α, since its indices are up, and we need something to match
the down-index of δψα. The bottom line is that Eq. (3.14) is the only sensible choice.

Homework 3.1 Prove the following identities:

ξχ = χξ and ξ†χ† = χ†ξ† (3.16)

(σµσν + σνσµ) β
α = 2ηµνδβα (3.17)

(σµσν + σνσµ)β̇α̇ = 2ηµνδβ̇α̇ (3.18)

How does Lψ transform under Eq. (3.14)?

−δLψ = δ
“
iψ†σµ∂µψ

”
= δ

“
iψ†α̇σ

µα̇α∂µψα
”

= iδψ†α̇σ
µα̇α∂µψα + iψ†α̇σ

µα̇α∂µ(δψα)

= i(−iεβσνβα̇∂νφ
∗)σµα̇α∂µψα + iψ†α̇σ

µα̇α∂µ(+iσν
αβ̇
ε†β̇∂νφ)

= εσνσµ∂µψ∂νφ
∗ − ψ†σµσνε†∂µ∂νφ

˛̨̨
f ′g = (fg)′ − f ′g

= [∂µ(εσνσµψ∂νφ
∗)− εσνσµψ∂µ∂νφ∗]− ψ†σµσνε†∂µ∂νφ

˛̨̨
A =

1

2
(A+A)

=

»
∂µ(εσνσµψ∂νφ

∗)−
1

2
(εσνσµψ∂µ∂νφ

∗ + εσνσµψ∂µ∂νφ
∗)

–
−

1

2

“
ψ†σµσνε†∂µ∂νφ+ ψ†σµσνε†∂µ∂νφ

”
=

»
∂µ(εσνσµψ∂νφ

∗)−
1

2
(εσνσµψ∂µ∂νφ

∗ + εσνσµψ∂ν∂µφ
∗)

–
−

1

2

“
ψ†σµσνε†∂µ∂νφ+ ψ†σµσνε†∂ν∂µφ

”
=

»
∂µ(εσνσµψ∂νφ

∗)−
1

2
(εσνσµψ∂µ∂νφ

∗ + εσµσνψ∂µ∂νφ
∗)

–
−

1

2

“
ψ†σµσνε†∂µ∂νφ+ ψ†σνσµε†∂µ∂νφ

”
=

»
∂µ(εσνσµψ∂νφ

∗)−
1

2
ε (σνσµ + σµσν)ψ∂µ∂νφ

∗
–
−

1

2
ψ† (σµσν + σνσµ) ε†∂µ∂νφ Indices!

=

»
∂µ(εσνσµψ∂νφ

∗)−
1

2
εα (σνσµ + σµσν) β

α ψβ∂µ∂νφ
∗
–
−

1

2
ψ†
β̇

(σµσν + σνσµ)β̇α̇ ε
†α̇∂µ∂νφ

˛̨̨
Eq. (3.17)

=
h
∂µ(εσνσµψ∂νφ

∗)− εαηµνδβαψβ∂µ∂νφ∗
i
− ψ†

β̇
ηµνδβ̇α̇ε

†α̇∂µ∂νφ

= [∂µ(εσνσµψ∂νφ
∗)− εαψα∂µ∂µφ∗]− ψ†α̇ε

†α̇∂µ∂
µφ

= ∂µ(εσνσµψ∂νφ
∗)− εψ∂µ∂µφ∗ − ψ†ε†∂µ∂µφ

˛̨̨
Eq. (3.16)

= ∂µ(εσνσµψ∂νφ
∗)− εψ∂µ∂µφ∗ − ε†ψ†∂µ∂µφ

= ∂µ(εσνσµψ∂νφ
∗)− [∂µ(εψ∂µφ∗)− ε∂µψ∂µφ∗]−

h
∂µ(ε†ψ†∂µφ)− ε†∂µψ†∂µφ

i ˛̨̨
f ′g = (fg)′ − f ′g

= ε∂µψ∂
µφ∗ + ε†∂µψ

†∂µφ+ ∂µ
h
εσνσµψ∂νφ

∗ − εψ∂µφ∗ − ε†ψ†∂µφ
i

(3.19)

= −δLψ (3.20)
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We can now easily show that Eq. (3.11) is invariant under SUSY transformations:

δS =

∫
d4x (δLφ + δLψ)

=

∫
d4x

{ [
ε†∂µψ

†∂µφ+ ∂µφ
∗ε∂µψ

]
−
[
ε∂µψ∂

µφ∗ + ε†∂µψ
†∂µφ+ ∂µ

(
εσνσµψ∂νφ

∗ − εψ∂µφ∗ − ε†ψ†∂µφ
)] }

= −
∫
d4x ∂µ

(
εσνσµψ∂νφ

∗ − εψ∂µφ∗ − ε†ψ†∂µφ
)

(3.21)

This is a total derivative and (by the usual arguments) does not contribute to the action
S given in Eq. (3.11).

3.2.2 The SUSY Algebra

What we have shown so far is that the transformation of a boson into a fermion and vice
versa (as given in Eq. (3.12) and Eq. (3.14)) leaves the action in Eq. (3.11) invariant.
We still do not know whether these transformations consistently define an algebra. For
that, we need to show that there is a set of generators which transform into each other
and do not lead to results outside the algebra. Strictly speaking, the SUSY generators
are part of what we call a “graded Lie algebra”, but for the time being, we need not
indulge in such details. Let us start by exploring what the commutator of two SUSY
generators looks like. Note that in the context of an algebra, only the commutator is
well-defined. In general, it does not make sense to talk about the product of two elements
of an algebra (whereas in a group, it is of course fine).

Let δε1 and δε2 denote 2 SUSY transformations. Note that we have to chose 2 different
values ε1 and ε2 for the infinitesimal parameter of the SUSY transformation, otherwise it
will be the same transformation and trivially commute. Let us first apply it to a bosonic
field φ:

(δε1δε2 − δε2δε1)φ = δε1 (δε2φ)− δε2 (δε1φ)
∣∣∣Eq. (3.12)

= δε1 (ε2ψ)− δε2 (ε1ψ)

= ε2δε1ψ − ε1δε2ψ
∣∣∣Eq. (3.14)

= εα2 (+iσµαα̇ε
†α̇
1 ∂µφ)− εα1 (+iσµαα̇ε

†α̇
2 ∂µφ)

= εα2 (+iσµαα̇ε
†α̇
1 ∂µφ)− εα1 (+iσµαα̇ε

†α̇
2 ∂µφ)

= i(ε2σ
µε†1 − ε1σµε

†
2)∂µφ

= ε3 i∂µφ with ε3 := ε2σ
µε†1 − ε1σµε

†
2 (3.22)

From quantum field theory we know that i∂µ corresponds to the momentum operator
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Pµ, so we have just proven that the commutator of two SUSY transformations is a
translation (in space and time).

Homework 3.2 Prove the following identities:

χα(ξη) = −ξα(ηχ)− ηα(χξ) (Fierz identity) (3.23)

ξ†σµχ = −χσµξ† = (χ†σµξ)∗ = −(ξσµχ†)∗ (3.24)

Here is a proof of the Fierz identity:

εαβ(χη) = εαβχ
γηγ = εαβε

γδχδηγ = εαβε
γδχδηγ

= (δδαδ
γ
β − δ

γ
αδ

δ
β)χδηγ = χαηβ − χβηα

χα(ξη) = χαξ
βηβ = −ξβχαηβ = −εβγξγχαηβ

= −εβγξγ(χβηα + εαβ(χη))

= −εβγξγχβηα − εβγεαβξγ(χη)

= −ξβχβηα − εγβεβαξγ(χη)

= −(ξχ)ηα − δγαξγ(χη)

= −(−1)2ηα(ξχ)− ξα(χη) Q.E.D.

Let us now repeat the same calculation for a fermion field:

(δε1δε2 − δε2δε1)ψα = δε1 (δε2ψα)− δε2 (δε1ψα)
∣∣∣Eq. (3.14)

= δε1

(
+iσµαα̇ε

†α̇
2 ∂µφ

)
− δε2

(
+iσµαα̇ε

†α̇
1 ∂µφ

)
=
(

+iσµαα̇ε
†α̇
2 ∂µδε1φ

)
−
(

+iσµαα̇ε
†α̇
1 ∂µδε2φ

) ∣∣∣Eq. (3.12)

=
(

+iσµαα̇ε
†α̇
2 ∂µ(ε1ψ)

)
−
(

+iσµαα̇ε
†α̇
1 ∂µ(ε2ψ)

)
=
(

+iσµαα̇ε
†α̇
2 ε1∂µψ

)
−
(

+iσµαα̇ε
†α̇
1 ε2∂µψ

)
= iσµαα̇ε

†α̇
2 εβ1∂µψβ − iσ

µ
αα̇ε

†α̇
1 εβ2∂µψβ

∣∣∣Just to make the index structure clear!

= i(σµε†2)α(ε1∂µψ)− i(σµε†1)α(ε2∂µψ)
∣∣∣Eq. (3.23): χα = (σµε†2)α, ξ = ε1, η = ∂µψ

= i
[
−ε1α(∂µψσµε

†
2)− ∂µψα(σµε†2ε1)

]
− i
[
−ε2α(∂µψσµε

†
1)− ∂µψα(σµε†1ε2)

] ∣∣∣Collect ψα

= i
(
σµε†1ε2 − σµε

†
2ε1

)
∂µψα − iε1α(∂µψσµε

†
2) + iε2α(∂µψσµε

†
1)

∣∣∣Eq. (3.16)

= i
(
ε2σ

µε†1 − ε1σµε
†
2

)
∂µψα − iε1α(∂µψσµε

†
2) + iε2α(∂µψσµε

†
1)

∣∣∣Eq. (3.24)

= i
(
ε2σ

µε†1 − ε1σµε
†
2

)
∂µψα + iε1α(ε†2σ

µ∂µψ)− iε2α(ε†1σ
µ∂µψ) (3.25)
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Note that the last two terms vanish because of the (Weyl) equation of motion: σµ∂µψ =
0. Then Eq. (3.25) reduces to the generator of spacetime translations Pµ with the same

infinitesimal parameter ε3 := ε2σ
µε†1−ε1σµε

†
2 as in Eq. (3.22). As a result, we have shown

that also for fermions, the commutator of two SUSY transformations is the 4-momentum
operator.

3.2.3 Off-shell Formulation

In Section 3.2.2 we have shown that the SUSY algebra closes, if we use the classical
equations of motion. We would like SUSY to be a symmetry of the Lagrangian itself.
This will then guarantee that SUSY will also be respected at the quantum level. To
this end, we introduce an auxiliary complex scalar field F with the following Lagrangian
density:

LF = F ∗F (3.26)

Its equation of motion is

∂µ
∂LF
∂(∂µF )

− LF
∂F

= 0  F ∗ = F = 0 (3.27)

Note that the field F has no propagating degrees of freedom. It is only a book-keeping
device and has no physical significance. We simply use it as a trick to render the
Lagrangian supersymmetric even if we are off-shell, i.e. not using the equations of motion.

We now have to figure out the transformation properties of F . Since we introduced it
to cancel the unwanted terms in Eq. (3.25) (last 2 terms), it makes sense to make the
following ansatz:

F → F + δF, where δF = +iε†σµ∂µψ and δF ∗ = −i∂µψ†σµε (3.28)

To see whether this ansatz works one has to repeat the calculation in Eq. (3.25) (the
answer is yes). However, since we modified the Lagrangian,

S =

∫
d4x (∂µφ

∗∂µφ+ iψ†σµ∂µψ + F ∗F ) =:

∫
d4x (Lφ + Lψ + LF ), (3.29)

we cannot expect the new Lagrangian to be invariant under the SUSY transformations,
and indeed, it is not. We can easily fix that by changing the transformation properties
of ψ:

ψ → ψ+δψ, where δψα = +iσµαα̇ε
†α̇∂µφ+ εαF and δψ†α̇ = −iεασµαα̇∂µφ∗+ ε†α̇F

∗

(3.30)
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Note that this is plausible, since F is a new scalar degree of freedom in the theory, and
if we are looking for a transformation that turns a fermion into a boson, we should
allow it to appear on the right-hand side of the Eq. (3.30). Out of the same reason, the
transformation of φ does not change (it changes to a fermion).

This field F is simply called “the F -term”. It plays an important role in discussing the
phenomenology of SUSY (scalar potential, spontaneous SUSY breaking, interactions in
the superpotential), so remember its name and where it came from.

Due to time constraints, I will not prove the following important statements which I
leave as homework. The calculations are completely analogous to the previous ones, so
you should encounter no big problems.

Homework 3.3 Show that the Lagrangian for the Wess-Zumino model given in Eq. (3.29)
on the preceding page is invariant under the SUSY transformations given by Eq. (3.12)
on page 14, Eq. (3.30) on the preceding page, and Eq. (3.28) on the previous page.

Homework 3.4 Show that the commutator of two SUSY transformations is a spacetime
translation, i.e.

(δε1δε2 − δε2δε1)X = ε3 i∂µX, where X = φ, ψα, F and ε2σ
µε†1− ε1σµε

†
2. (3.31)

3.2.4 Adding Interactions

So far we have been working with the free Lagrangian

Lfree = Lφ + Lψ + LF = ∂µφ
∗∂µφ− iψ†σµ∂µψ + F ∗F (3.32)

and proved that it is invariant under SUSY transformations. Now we want to add
interactions. For ease of reference, we summarize all SUSY transformations in one
place:

δφ = εψ δφ∗ = ε†ψ†

δψα = +iσµαα̇ε
†α̇∂µφ+ εαF δψ†α̇ = −iεασµαα̇∂µφ∗ + ε†α̇F

∗

δF = +iε†σµ∂µψ δF ∗ = −i∂µψ†σµε
(3.33)

For the most general interaction Lagrangian Lint, we make the following ansatz:

Lint = −1

2
W ij(φ, φ∗)ψiψj +W i(φ, φ∗)Fi + xij(φ, φ∗)FiFj − U(φ, φ∗) + c.c. (3.34)

Some remarks are in order:

• i, j are indices that count the Weyl spinors in the theory (e.g. different quarks).

• We have arranged the terms in powers of ψ, i.e. W ij, W i, xij and U are polynomials
in φ and φ∗.

19



• We need not consider terms like F ∗F , since they are already part of the free
Lagrangian, cf. Eq. (3.32).

• The sum of mass dimensions of each term must be 4. Remember: Scalar=1,
Fermion=3/2, F-term=2.

• From this we immediately know that W ij, W i, xij and U contain 1, 2, 0, and 4
power(s) of φ and/or φ∗, respectively.

• A priori there is no connection between W ij and W i. We have given them similar
names, since it will turn out later that they indeed are connected. For the following
discussion, we must assume that they are independent.

We will now step-by-step constrain the form of the interaction Lagrangian. For this, we
proceed in several steps.

U(φ, φ∗) must be identically zero

The term U(φ, φ∗) only contains scalar fields, so its SUSY transformation will be (see
Eq. (3.33))

δεU ∼ εψŨ(φ, φ∗) or δεU ∼ ε†ψ†Ũ(φ, φ∗), (3.35)

where Ũ is some other function of φ and/or φ∗. If the Lagrangian in Eq. (3.34) is to
be supersymmetric, this contribution needs to be cancelled by one of the other terms in
Lint. Note that Lfree in Eq. (3.32) is invariant by itself and therefore cannot produce a
term that cancels δεU .

Let is go through the terms in Lint one by one.

The variation of W ijψiψj cannot cancel δεU , since

δε
(
W ijψiψj

)
∼ δεW

ijψiψj +W ijδεψiψj +W ijψiδεψj (3.36)

will either contain 2 ψ’s (first term in Eq. (3.40)) or 1 derivative (second and third term
in Eq. (3.40)), and δεU is not of this form.

The variation of W iFi cannot cancel δεU , since

δε
(
W iFi

)
∼ δεW

iFi +W iδεFi (3.37)

will either contain an F -term (first term in Eq. (3.41)) or a derivative (second term in
Eq. (3.41)), and δεU is not of this form.

The variation of xijFiFj cannot cancel δεU , since

δε
(
xijFiFj

)
∼ δεx

ijFiFj + xijδεFiFj + xijFiδεFj (3.38)

will contain at least one F -term, and δεU is not of this form.

Hence we conclude that U(φ, φ∗) = 0.
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xij must be identically zero

Above we had already concluded that xij is a polynomial of degree zero in φ and φ∗,
i.e. it does not contain these fields. Its SUSY transformation is

δε
(
xijFiFj

)
∼ xijδεFiFj + xijFiδεFj ∼ xijF ε†σµ∂µψ. (3.39)

The variation of W ijψiψj cannot cancel Eq. (3.39), since in

δε
(
W ijψiψj

)
∼ δεW

ijψiψj +W ijδεψiψj +W ijψiδεψj (3.40)

the first term has 2 ψ’s, and the second and third terms will either contain no F -term
or no derivative.

The variation of W iFi cannot cancel Eq. (3.39), since in

δε
(
W iFi

)
∼ δεW

iFi +W iδεFi (3.41)

the first term will have no derivative, and the second term will have no F -term.

Hence we conclude that xij = 0.

W ij contains only φ and no φ∗ (“holomorphic”)

Note that we have proven that U ≡ xij ≡ 0, and consequently Lint simplifies to

Lint = −1

2
W ij(φ, φ∗)ψiψj +W i(φ, φ∗)Fi. (3.42)

Consider its variation:

δεLint = −1

2

δW ij

δφk
δεφk(ψiψj)−

1

2

δW ij

δφ∗k
δεφ
∗k(ψiψj)−

1

2
W ijδεψiψj −

1

2
W ijψiδεψj

+
δW i

δφk
δεφkFi +

δW i

δφ∗k
δεφ
∗kFi+W

iδεFi (3.43)

Note that the red terms all contain 4 Weyl spinors, the blue terms all contain 1 spacetime
derivative, and the green terms are all linear in F . As a consequence, they have to cancel
separately.
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The red terms:

−1

2

δW ij

δφk
δεφk(ψiψj)−

1

2

δW ij

δφ∗k
δεφ
∗k(ψiψj)

= −1

2

δW ij

δφk
εψk(ψiψj)−

1

2

δW ij

δφ∗k
ε†ψ†k(ψiψj)

= −1

2

1

3

(
δW ij

δφk
εψk(ψiψj) +

δW ij

δφk
εψk(ψiψj) +

δW ij

δφk
εψk(ψiψj)

)
− 1

2

δW ij

δφ∗k
ε†ψ†k(ψiψj)

= −1

2

1

3

(
δW ij

δφk
εψk(ψiψj) +

δW ki

δφj
εψj(ψkψi) +

δW jk

δφi
εψi(ψjψk)

)
− 1

2

δW ij

δφ∗k
ε†ψ†k(ψiψj)

(3.44)

It is easy to see that W ij is symmetric in i, j:

W ijψiψj
rename

= W jiψjψi
Eq. (3.16)

= W jiψiψj  W ji = W ij (3.45)

If δW ij/δφk were cyclic in i, j, k, then the term in brackets in Eq. (3.44) would cancel
as a consequence of the Fierz identity:

δW ij

δφk
εψk(ψiψj) +

δW ki

δφj
εψj(ψkψi) +

δW jk

δφi
εψi(ψjψk)

=
δW ij

δφk
εψk(ψiψj) +

δW ij

δφk
εψj(ψkψi) +

δW ij

δφk
εψi(ψjψk)

=
δW ij

δφk
εα (ψkα(ψiψj) + ψjα(ψkψi) + ψiα(ψjψk))

∣∣∣Eq. (3.23)

= 0 (3.46)

Since ε and ψi, ψj, ψk are arbitrary, one can see that the converse is also true: If
Eq. (3.46) vanishes identically, δW ij/δφk is cyclic in i, j, k.

Another observation is that there is no Fierz or any other identity that could possible
cancel the terms corresponding to δW ij/δφ∗k. These terms have the form ψ†kψiψj, and
if we permute the indices, every time another field will carry the dagger (note that
i 6= j 6= k), and a cancellation is impossible unless the fields are real. This is a very
important result and justifies to be boxed:

W ij is holomorphic, i.e. W ij = W ij(φ) and W ij 6= W ij(φ∗)

Let us summarize what we know so far. W ij does not depend on φ∗ and is a polynomial
of degree at most 1 (see remarks following Eq. (3.34) on page 19):

W ij = M ij + yijkφk (3.47)

22



We can go one step further (we will see later why this is very useful!) and use the fact
that W ij is symmetric in i, j and its variation δW ij/δφk is cyclic in i, j, k:

W ij =
∂2

∂φi∂φj
W

(3.48)

with

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk. (3.49)

W is called the superpotential. The reason why we chose to rewrite W ij as the second
derivative of W is that we will see that we can also relate Wi to W . Thus, all interactions
will be given in terms of a single function W .

W i is holomorphic and given in terms of the superpotential

Now consider the terms that contain 1 spacetime derivative (blue terms in Eq. (3.43) on
page 21):

δεLint ⊃ −1

2
W ijδεψiψj −

1

2
W ijψiδεψj +W iδεFi

= −W ijδεψiψj +W iδεFi

∣∣∣W ij is symmetric

= −W ijψαi δεψjα +W iδεFi

∣∣∣Eq. (3.33)

= −W ijψαi (iσµαα̇ε
†α̇∂µφj + εαFj) +W i(+iε†σµ∂µψ)

∣∣∣Eq. (3.24)

= −W ijψαi (iσµαα̇ε
†α̇∂µφj + εαFj) +W i(−i∂µψσµε†)

∣∣∣no derivative; drop it

= −iW ij∂µφjψiσ
µε† − iW i∂µψσ

µε†
∣∣∣Eq. (3.48)

= −i ∂
2W

∂φi∂φj
∂µφjψiσ

µε† − iW i∂µψσ
µε†

= −i∂µ
(
∂W

∂φi

)
ψiσ

µε† − iW i∂µψσ
µε† (3.50)

This last expression is a total derivative and hence does not contribute to the action, if
and only if

W i =
∂W

∂φi
.

(3.51)

This means that we can express W ij and W i in terms of the same holomorphic function
W , the superpotential.
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The rest of the terms cancel against each other

We now show that all the remaining terms (green) in Eq. (3.43) on page 21 and
in Eq. (3.50) on the previous page cancel:

δW i

δφk
δεφkFi +

�
�

��δW i

δφ∗k
δεφ
∗kFi +W ijψiεFj =

δW i

δφk
δεφkFi +W ijψiεFj

∣∣∣W is holomorphic

=
δW i

δφk
εψkFi +W ijψiεFj

∣∣∣Eq. (3.33)

=
δW i

δφk
εψkFi +W ijεψiFj

∣∣∣Eq. (3.16)

=
∂2W

∂φi∂φk
εψkFi +W ijψiεFj

∣∣∣Eq. (3.51)

=
∂2W

∂φi∂φk
εψkFi +

∂2W

∂φi∂φj
ψiεFj

∣∣∣Eq. (3.48)

=
∂2W

∂φi∂φj
εψiFj +

∂2W

∂φi∂φj
ψiεFj

∣∣∣k → j and W ij symmetric in i, j

= 0 (3.52)

3.2.5 “Phenomenology” of the Wess-Zumino Model

We will now consider the Lagrangian for a single chiral supermultiplet in the presence
of interactions

L = Lfree + Lint

= ∂µφ
∗∂µφ− iψ†σµ∂µψ + F ∗F − 1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
+W iFi +W i∗F ∗i

(3.53)

where the most general form for the superpotential W is given by Eq. (3.49) on the
preceding page:

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.54)

Ê We can express the Fi’s by the Wi’s.

Consider the terms in Eq. (3.65) that only contain F or F ∗:

L ⊃ F i∗Fi +W iFi +W i∗F ∗i (3.55)

The equations of motion give

L
∂Fi
− ∂µ

∂L
∂(∂µFi)

= 0  F i∗ = −W i (3.56)
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and

L
∂F i∗ − ∂µ

∂L
∂(∂µF i∗)

= 0  Fi = −W ∗
i (3.57)

Ë We can now completely eliminate the Fi’s and write everything in terms of the super-
potential W and its derivatives by substituting Eq. (3.56) and Eq. (3.57) into Eq. (3.65).

L = ∂µφ
∗∂µφ− iψ†σµ∂µψ + F ∗F − 1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
+W iFi +W i∗F ∗i

= ∂µφ
∗∂µφ− iψ†σµ∂µψ −

1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
−WiW

i∗ (3.58)

Ì The term WiW
i∗ in Eq. (3.58) is known as the scalar potential :

V (φ, φ∗) = W iW ∗
i = F i∗Fi (3.59)

Note that it is always non-negative, since it is a modulus-squared (i.e. A∗A = |A|2 ≥ 0
is always true for any A ∈ C). As such, it is always bounded from below.

We will write out explicitly the scalar potential for later purposes (disregard Li since it
is not present in SM):

V = W iW ∗
i =

(
��L
i +M ijφj +

1

2
yijkφjφk

)(
��L
∗
i +M∗

imφ
m∗ +

1

2
y∗imnφ

m∗φn∗
)

= M ijφjM
∗
imφ

m∗ +
1

2
yijkφjφkM

∗
imφ

m∗ +M ijφj
1

2
y∗imnφ

m∗φn∗ +
1

4
yijkφjφky

∗
imnφ

m∗φn∗

= M ijM∗
imφjφ

m∗ +
1

2
yijkM∗

imφjφkφ
m∗ +

1

2
M ijy∗imnφjφ

m∗φn∗ +
1

4
yijky∗imnφjφkφ

m∗φn∗

(3.60)

This part of the Lagrangian gives the interaction of the scalars among each other and
determines their masses. Later, in the MSSM, the Higgs potential will be part of the
scalar potential. Note that it is completely determined by the F -term. That’s the reason
why in the MSSM the Higgs mass can be calculated and is not a free parameter like in
the SM.

Í What about the interaction of the fermions?

The relevant part of the Lagrangian is

L ⊃ −1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
= −1

2

(
(M ij + yijkφk)ψiψj + (M∗

ij + y∗ijkφ
k∗)ψi†ψj†

)
= −1

2
M ijψiψj −

1

2
yijkφkψiψj −

1

2
M∗

ijψ
i†ψj† − 1

2
y∗ijkφ

k∗ψi†ψj†

(3.61)
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So we obtain mass terms for the fermions and the cubic fermion-fermion-scalar Yukawa
interactions.

Î Now we want to show that the scalar and fermion masses are equal. Consider the
equation of motion for the scalar fields φi:

∂L
∂φm∗

−∂µ
∂L

∂(∂µφm∗)
= 0  M ijM∗

imφj−∂µ∂µφm = 0  ∂µ∂
µφm = M ijM∗

imφj+. . .

(3.62)

In other words,

∂µ∂
µφm = M ijM∗

imφj ↔ ∂µ∂
µφm = M∗

miM
ijφj ↔ ∂µ∂

µφm = (M∗M) j
m φj

(3.63)

This corresponds to scalar fields with mass matrix M∗M (remember the Klein-Gordan
equation (�+m2)φ = 0). Now consider the equation of motion for the Weyl fermions.

∂L
∂ψk†

−∂µ
∂L

∂(∂µψk†)
= 0  iσµ∂µψk−W ∗

ikψ
i† = 0  iσµ∂µψk = M∗

kiψ
i† (3.64)

Remember that one cannot write down a mass term for a single Weyl spinor; we always
need a left-handed and right-handed one, and that’s why we have the hermitian conjugate
spinor on the right-hand side of the equation. Comparing Eq. (3.64) with the Dirac
equation in the chiral basis (iσµ∂µψL = mψR and iσµ∂µψR = mψL), we conclude that
the mass matrix (for the Dirac spinor corresponding to 2 Weyl spinors) is indeed Mki.
As a consequence, the scalar and fermion mass matrices are equal.

Ï So what do the interactions look like? For ease of reference, we reproduce in the
following lines the full interacting Lagrangian of the simplest supersymmetric model,
i.e. we takeEq. (3.58) and substitute the expression for W ij in Eq. (3.61) and for the
scalar potential in Eq. (3.82):

L = Lfree + Lint

= ∂µφ
∗∂µφ− iψ†σµ∂µψ−

1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
−WiW

i∗

= ∂µφ
∗∂µφ− iψ†σµ∂µψ−

1

2
M ijψiψj −

1

2
yijkφkψiψj −

1

2
M∗

ijψ
i†ψj† − 1

2
y∗ijkφ

k∗ψi†ψj†

+M ijM∗
imφjφ

m∗ +
1

2
yijkM∗

imφjφkφ
m∗ +

1

2
M ijy∗imnφjφ

m∗φn∗ +
1

4
yijky∗imnφjφkφ

m∗φn∗

(3.65)
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j k

i

j k

i

i j

k l

j k

i

yijkφiψjψk y∗ijkφ
i∗ψj†ψk† yijny∗k`nφiφjφ

k∗φ`∗ M∗
iny

jknφi∗φjφk

j k

i

i j i j ij

M iny∗jknφiφ
j∗φk∗ M ijψiψj M∗

ijψ
i†ψj† M∗

ikM
kjφi∗φj

Ð Now remember the problem with the quadratic divergences.

H

f

∆m2
H = − |λf |

2

8π2 Λ2
UV + . . .

S

H
∆m2

H = λS
16π2 [Λ2

UV − 2m2
S log(ΛUV/mS) + . . .]

The magic of SUSY is that λf = yijk and λS = yijny∗k`n (see table above), and this is
exactly what is needed for the quadratic divergence to cancel!

3.2.6 Summary

Let us pause for a moment and summarize what we have learned so far.

• The simplest supersymmetric model (Wess-Zumino model) without interactions is
given by
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Lfree = ∂µφ
∗∂µφ− iψ†σµ∂µψ

δφ = εψ, δψα = +iσµαα̇ε
†α̇∂µφ

(3.66)

• If you insist that the SUSY algebra should close off-shell, you need to introduce
an auxiliary field:

Lfree = ∂µφ
∗∂µφ− iψ†σµ∂µψ + F ∗F

δφ = εψ, δψα = +iσµαα̇ε
†α̇∂µφ+ εαF, δF = +iε†σµ∂µψ

(3.67)

• Note that for each Weyl spinor, you have to introduce one complex scalar.

• All interactions can be described in terms of a single, holomorphic function that
we call the superpotential. This includes masses for the fermions and bosons.

• The full Lagrangian with interactions takes the form:

L = ∂µφ
∗∂µφ− iψ†σµ∂µψ −

1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
−W iW ∗

i

W i =
∂W

∂φi
, W ij =

∂2W

∂φi∂φj

(3.68)

• The part of the Lagrangian which contains only scalar fields is called the scalar
potential :

V (φ, φ∗) = W iW ∗
i = F i∗Fi (3.69)

• The masses of the fermions and bosons are exactly equal. This is in stark contra-
diction to experiment, so if SUSY is realized in Nature, it must be broken.

• The scalar quartic coupling is not only given/determined/fixed by the Yukawa
couplings, but also fixed at such a value that the quadratic divergence mH ∼ Λ2

disappears. This is the strongest motivation for SUSY.

• Warning: The superpotential W is not a potential. It is also not a Lagrangian or
part of a Lagrangian. The superpotential is simply an auxiliary construction that
allows us to write down the terms which do contribute to the Lagrangian/potential
where the prescription is given in Eq. (3.68).
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3.3 The Vector Supermultiplet

We do not have the time to cover the vector supermultiplet in any detail, so I will only
give the results and point out the analogy to the case of a chiral supermultiplet which
we have considered in Section 3.2 on page 13. I hope this will give you “a good feeling”
and some “intuition” when dealing with vector supermultiplets. Unfortunately, this is
all I can do in only 8 hours dedicated to SUSY.

SUSY associates a boson to a fermion and vice versa, so it is not too surprising that for
a gauge field Aµ, we introduce a Weyl spinor λα (called “gaugino”). If the gauge group
G is more complicated than U(1), then we need another index to enumerate the gauge
bosons and Weyl spinors, i.e. we have Aaµ and λaα, where a = 1, . . . , dim(G). E.g. for
SU(2), a = 1, 2, 3 for the three Pauli matrices. It is clear what Lagrangian we should
write down:

Lgauge = −1

4
F a
µνF

aµν − iλa†σµDµλ
a +

1

2
DaDa (3.70)

This is in complete analogy to Eq. (3.67) on the preceding page where we of course
had to substitute the kinetic term for a scalar by the kinetic term of a vector field; the
expression for a Weyl fermion stays the same, but we substituted ∂µ → Dµ, since we
want the Lagrangian to be gauge invarant (incidentally, this couples Aaµ to λaα); and we
added an auxiliary field Da so that the SUSY algebra closes off-shell just like we had
introduced the F -term before. Not surprisingly, it is called a D-term.

Now, if you count the off-shell bosonic and fermionic degrees of freedom (d.o.f.), you find
the following: λa (for a fixed) corresponds to 2 complex = 4 real d.o.f. whereas Aaµ has
3 real d.o.f., since 1 d.o.f. is lost due to gauge fixing (e.g. Coulomb gauge ∂µA

aµ = 0).
We know that in SUSY we have equal bosonic and fermionic degrees of freedom, so we
conclude that Da should correspond to 1 d.o.f. and hence be real :

(Da)∗ = Da (3.71)

We can now do some guesswork like before and find that the Lagrangian in Eq. (3.70)
is invariant under the following SUSY transformations:

δAaµ = − 1√
2

(
ε†σµλ

a + λ†aσµε
)

(3.72)

δλaα =
i

2
√

2
(σµσνε)α F

a
µν +

1√
2
εα D

a (3.73)

δDa =
i√
2

(
ε†σµDµλ

a −Dµλ
†aσµε

)
(3.74)

Of course, we will again have to check that the SUSY algebra closes (in analogy to Section
3.2.2 on page 16), and it turns out that it does.
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So far so good. Now we want to add the matter fields, i.e. the ψk and φk which will
later correspond to the electrons and selectrons. It turns out that we have to do that in
three steps:

Ê Do the obvious, i.e. introduce the Lagrangian from Section 3.2 for “matter fields”:

Lchiral = ∂µφ
∗∂µφ− iψ†σµ∂µψ −

1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
−W iW ∗

i (3.75)

Ë This is also straightforward, namely couple matter to vector bosons by ∂µ → Dµ!

Ì It turns out that this does not suffice, and we are missing interactions of the form
ψ-φ-λ. We are forced to introduce the following interactions by hand:

(φ∗T aψ)λa, λ†a(ψ†T aφ), (φ∗T aφ)Da (3.76)

Compared to what happened in the Standard Model, this is not exactly elegant. But
stay tuned, it gets worse. Since we have introduced these extra terms to ensure in-
variance under SUSY, we also need to modify the SUSY transformations of the chiral
supermultiplet:

δφi = εψi (3.77)

δψiα = +i(σµε†)α Dµφi + εαFi (3.78)

δFi = +iε†σµDµψi +
√

2g(T aφ)i ε
†λ†a (3.79)

The full Lagrangian is now:

Lfull = Dµφ
∗Dµφ− iψ†σµDµψ −

1

2

(
W ijψiψj +W ∗

ijψ
i†ψj†

)
−W iW ∗

i ← Lchiral

− 1

4
F a
µνF

aµν − iλa†σDµλ
a +

1

2
DaDa ← Lgauge

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da ← Lextra

(3.80)

As before, we can eliminate Da:

∂L
∂Da

− ∂µ
∂L
∂Da

= 0  Da = −g(φ∗T aφ) (3.81)

Just like the F -term, the D-term contains only scalars, and consequently it contributes
to the scalar potential:

V (φ, φ∗) = F i∗Fi +
∑
a

DaDa = W ∗
i W

i +
∑
a

g2
a(φ
∗T aφ)2

(3.82)
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These two contributions are called the F -term and D-term contributions, respectively
(just that you learn the nomenclature). Note that there are as many D-terms as there
are generators in the algebra (i.e. the dimension of the algebra).

Now you can see/guess/intuitively understand why in SUSY the Higgs mass is a pre-
diction. The Higgs will be part of the scalar potential, and the scalar potential is fully
determined by the F - and D-terms, i.e. by the Yukawa couplings, masses, and gauge
couplings.

We will now consider the interactions that follow from the Lagrangian in Eq. (3.80). For
convenience, we reproduce some previously derived expressions so that the Feynman
graphs are easier to understand:

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAaµA

b
ν

Dµφ = ∂µφ− igAaµT aRφ, e.g. T aR =
σa

2
, a = 1, 2, 3

Dµψ = ∂µψ − igAaµT aRψ, e.g. T aR =
λa

2
, a = 1, . . . , 8

Dµλ
a = ∂µλ

a − igfabcAbµλc, always (!) T aR = (fa)bc = fabc

FµνF
µν FµνF

µν iλa†σDµλ
a Dµφ

∗Dµφ Dµφ
∗Dµφ

iψ†σµDµψ (φ∗T aψ)λa λ†a(ψ†T aφ) DaDa
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4 Which Problems does SUSY Solve?

4.1 SUSY: Pros

Ê Hierarchy problem is “solved”

H

f

∆m2
H = − |λf |

2

8π2 Λ2
UV + . . .

S

H
∆m2

H = λS
16π2 [Λ2

UV − 2m2
S log(ΛUV/mS) + . . .]

ã λS = |λf |2 and introduces 2 complex scalars for each Dirac fermion

ã Quadratic divergences cancel

Ë Gauge coupling unification

ã This is an argument in favor of SUSY and GUTS!

ã Requires superparticle masses around 1 TeV? No, not sensitive to scalar masses!
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4.2 SUSY: Cons

ã Predicts equal superpartner masses  Needs SUSY breaking to be viable

ã Predicts fast proton decay  Needs R-parity to be viable

ã SUSY breaking not understood

– Allow only soft terms, i.e. do not re-introduce hierarchy problem. Circular
reasoning?

∆m2
H = m2

soft

[
λ

16π2
log(ΛUV/msoft) + . . .

]
– Predictivity to some extent lost: SM→MSSM introduces 105 new parameters

ã
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ã Experiment  might be fine-tuned after all
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4.3 Revisiting the “Problems of Modern Physics”

¶ Too many free parameters

Gauge sector: 3 couplings g′, g, g3 3

Quark sector: 6 masses, 3 mixing angles, 1 CP phase 10

Lepton sector: 6 masses, 3 mixing angles and 1+2 phases 10+2

Higgs sector: Quartic coupling λ and vev v 2

θ parameter of QCD 1

26+2

· Structure of gauge symmetry
Why the product structure SU(3)c × SU(2)L × U(1)Y ?

Why 3 different coupling constants g′, g, g3?

¸ Structure of family multiplets
One family is

(3,2)1/3 + (3,1)-4/3 + (1,1)-2 + (3,1)2/3 + (1,2)-1 + (1,1)0

Q ū ē d̄ L ν̄

Can the particles be reorganized in a single representation?

¹ Repetition of families

Why is this pattern for 1 generation replicated 3 times?
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º Mass hierarchies and texture of Yukawa couplings

up-quark mass ∼ 2× 10−3 GeV ↔ top-quark mass ∼ 172.3 GeV

Yukawa coupling of top ∼ 1, but why are the other quarks so light?

Minimal mixing in quark sector

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 '
 0.97 0.22 0.00

0.22 0.97 0.04
0.00 0.04 0.99



» Light neutrinos and texture of Yukawa couplings

Why are neutrinos so light?

∆m2
ν ∼ 10−2 − 10−5 eV,

∑
mν . 2 eV

Maximal mixing in lepton sector

UPMNS =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 '
 0.8 0.5 0.0

-0.4 0.6 0.7
0.4 -0.6 0.7


¼ Hierarchy problem

∆m2
H =−

|λf |
2

8π2 Λ2
UV+...

• Higgs mass is quadratically divergent
• Standard Model is renormalizable and infinities can be absorbed into a finite number of physical

parameters
• Hierarchy problem arises if one goes beyond renormalizability
 Cut-off ΛUV acquires physical meaning
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• Higgs mass is dragged to cut-off scale e.g. ΛUV ∼MPlanck

• However, we need a light Higgs O(100) GeV
• Analogous problems arise from presence of any heavy particle

½ Dark Matter and Dark Energy

23% of our universe is made up of dark matter and the Standard Model offers no candidate particle . . .

73% of our universe is made up of dark energy and the cosmological constant as calculated from QFT
is the worst-predicted quantity in particle physics

¾ Gravity

• Scales relevant in everyday life  Newton’s theory
• Satellites, solar system, etc.  Still Newton’s theory
• Cosmological scales  Einstein’s theory of GR
• Very small scales  Need quantum theory of gravitation
• Don’t know how to quantize gravity and how to unify with SM

→ String theory or loop quantum gravity

¿ Many other problems

Baryon asymmetry in the universe, charge quantization, . . .
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