PART I: Supersymmetry

Formulae:

Space-time metric:

- $\eta^{\mu \nu}=\operatorname{diag}[1,-1,-1,-1]$

In the Weyl representation:

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \left(\sigma^{\mu}\right)_{\alpha \dot{\alpha}} \\
\left(\bar{\sigma}^{\mu}\right)^{\dot{\alpha} \alpha} & 0
\end{array}\right), \gamma^{5}=\left(\begin{array}{cc}
\delta_{\beta}^{\alpha} & 0 \\
0 & \delta_{\dot{\beta}}^{\dot{\alpha}}
\end{array}\right), \frac{1}{2} \Sigma^{\mu \nu}=\left(\begin{array}{cc}
i\left(\sigma^{\mu \nu}\right)_{\alpha}^{\beta} & 0 \\
0 & i\left(\bar{\sigma}^{\mu \nu}\right)_{\dot{\beta}}^{\dot{\alpha}}
\end{array}\right)
$$

with

$$
\left(\sigma^{\mu}\right)_{\alpha \dot{\alpha}}=\left(I_{2}, \vec{\sigma}\right),\left(\bar{\sigma}^{\mu}\right)^{\dot{\alpha} \alpha}=\left(I_{2},-\vec{\sigma}\right)
$$

where $\vec{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ are the Pauil matrices. Furthermore,

$$
\left(\sigma^{\mu \nu}\right)_{\alpha}^{\beta}=\frac{1}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right),\left(\bar{\sigma}^{\mu \nu}\right)_{\dot{\beta}}^{\dot{\alpha}}=\frac{1}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right) .
$$

$\underline{\text { Some spinor relations: }}$

- $\chi \psi:=\chi^{\alpha} \psi_{\alpha}=\psi \chi, \bar{\chi} \bar{\psi}:=\bar{\chi}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}}=\bar{\psi} \bar{\chi},(\chi \psi)^{\dagger}=\psi^{\dagger} \chi^{\dagger}=\bar{\psi} \bar{\chi}$
- $\chi \sigma^{\mu} \bar{\psi}:=\chi^{\alpha} \sigma_{\alpha \dot{\alpha}}^{\mu} \bar{\psi}^{\dot{\alpha}}, \bar{\chi} \bar{\sigma}^{\mu} \psi:=\bar{\chi}_{\dot{\alpha}} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \psi_{\alpha}$
- $\left(\chi \sigma^{\mu} \bar{\psi}\right)^{\dagger}=\psi \sigma^{\mu} \bar{\chi}$
- $\chi \sigma^{\mu} \bar{\psi}=-\bar{\psi} \bar{\sigma}^{\mu} \chi$
- $\chi \sigma^{\mu \nu} \psi=-\psi \sigma^{\mu \nu} \chi, \bar{\chi} \bar{\sigma}^{\mu \nu} \bar{\psi}=-\bar{\psi} \bar{\sigma}^{\mu \nu} \bar{\chi}$
- $\left(\chi \sigma^{\mu \nu} \psi\right)^{\dagger}=\bar{\chi} \bar{\sigma}^{\mu \nu} \bar{\psi}$
a) Write down the $(N=1)$ SUSY algebra in terms of the 10 bosonic generators of the Poincaré group $\left(P^{\mu}, J^{\mu \nu}\right)$ and the 4 fermionic generators (Q_{α}, and $\bar{Q}_{\dot{\alpha}}$). Here Q_{α} ($\alpha=1,2$), and $\bar{Q}_{\dot{\alpha}}(\dot{\alpha}=\dot{1}, \dot{2})$ are 2-component Weyl spinors transforming according to the $(1 / 2,0)$ and ($0,1 / 2$)-representations of the Lorentz group, respectively.
b) In 4-component notation we define the Majorana spinor $Q_{M, a}(a=1,2, \dot{1}, \dot{2})$:

$$
Q_{M}=\binom{Q_{\alpha}}{\bar{Q}^{\dot{\alpha}}}
$$

Show that the Dirac-adjoint spinor is given by $\bar{Q}_{M}=\left(Q^{\beta}, \bar{Q}_{\dot{\beta}}\right)$.
c) Show that

$$
\begin{aligned}
{\left[P^{\mu}, Q_{M}\right] } & =0 \\
{\left[J^{\mu \nu}, Q_{M}\right] } & =-\frac{1}{2} \Sigma^{\mu \nu} Q_{M} \\
\left\{Q_{M}, \bar{Q}_{M}\right\} & =2 \gamma^{\mu} P_{\mu}
\end{aligned}
$$

with γ^{μ} and $\Sigma^{\mu \nu}:=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ in the Weyl representation.
Hint: Consider $\left\{Q_{M, a}, \bar{Q}_{M, b}\right\}$ for fixed $a, b=1,2, \dot{1}, \dot{2}$.
d) The SUSY algebra can be expressed entirely in terms of commutators with the help of anti-commuting parameters $\xi^{\alpha}, \bar{\xi}_{\dot{\alpha}}$ and $\eta^{\alpha}, \bar{\eta}_{\dot{\alpha}}$:

$$
\left\{\xi^{\alpha}, \xi^{\beta}\right\}=\left\{\xi^{\alpha}, Q_{\beta}\right\}=\ldots=\left[P_{\mu}, \xi^{\alpha}\right]=0
$$

Evaluate the following commutators using the algebra in a):
(i) $\left[P_{\mu}, \xi Q\right]=\left[P_{\mu}, \bar{\xi} \bar{Q}\right]$
(ii) $\left[J^{\mu \nu}, \xi Q\right],\left[J^{\mu \nu}, \bar{\xi} \bar{Q}\right]$
(iii) $[\xi Q, \eta Q]=[\bar{\xi} \bar{Q}, \bar{\eta} \bar{Q}]$
(iv) $[\xi Q, \bar{\eta} \bar{Q}]$
where we use the summation convention $\xi Q:=\xi^{\alpha} Q_{\alpha}, \bar{\xi} \bar{Q}:=\bar{\xi}_{\dot{\alpha}} \bar{Q}^{\dot{\alpha}}$.
a) Write down the Wess-Zumino Lagrangian for massless ($m=0$) and non-interacting ($g=0$) fields A and ψ
b) In this case $(m=0, g=0)$ the SUSY transformations are given by

$$
\begin{aligned}
\delta_{\xi} A & =\sqrt{2} \xi \psi \\
\delta_{\xi} \psi & =-i \sqrt{2} \sigma^{\mu} \bar{\xi} \partial_{\mu} A
\end{aligned}
$$

Here, we use again the summation convention and free indices α have been suppressed. Write down the transformation rules for the conjugate fields which can be obtained by hermitian conjugation:
(i) $\delta_{\xi} A^{*}=\left(\delta_{\xi} A\right)^{\dagger}=\ldots$
(ii) $\delta_{\xi} \bar{\psi}=\left(\delta_{\xi} \psi\right)^{\dagger}=\ldots$
c) Show that

$$
\frac{1}{\sqrt{2}} \delta_{\xi}\left[\left(\partial_{\mu} A^{*}\right)\left(\partial^{\mu} A\right)\right]=-\bar{\xi} \bar{\psi} \square A-\xi \psi \square A^{*}+\partial_{\mu} K_{1}^{\mu}
$$

with$:=\partial_{\mu} \partial^{\mu}$. Specify K_{1}^{μ}.
d) Show that

$$
\frac{1}{\sqrt{2}} \delta_{\xi}\left[i \bar{\psi} \bar{\sigma}^{\mu} \partial_{\mu} \psi\right]=\bar{\xi} \bar{\psi} \square A+\xi \psi \square A^{*}+\partial_{\mu} K_{2}^{\mu}
$$

Specify K_{2}^{μ}.
Hint: $\sigma^{\mu} \bar{\sigma}^{\nu}=\eta^{\mu \nu}+2 \sigma^{\mu \nu}, \bar{\sigma}^{\mu} \sigma^{\nu}=\eta^{\mu \nu}+2 \bar{\sigma}^{\mu \nu}$ and $\sigma^{\mu \nu}=-\sigma^{\nu \mu}, \bar{\sigma}^{\mu \nu}=-\bar{\sigma}^{\nu \mu}$.
e) Conclude that the action is invariant under this symmetry: $\delta_{\xi} S=0$.

