QCD and collider physics - Problem sheet

Problem 1

Let T_{a} be Hermitian $\left(T_{a}^{\dagger}=T_{a}\right)$ and traceless $\left(\operatorname{Tr}\left(T_{a}\right)=0\right) n \times n$ matrices. Show that there are $n^{2}-1$ linearly independent matrices and that the structure constants $f_{a b c}$ in $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}$ are real.

Problem 2

Show that $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}$ and $\operatorname{Tr}\left(T_{a} T_{b}\right)=\frac{1}{2} \delta_{a b}$ lead to $f_{a b c}=-f_{a c b}$.
Hint : Calculate $\operatorname{Tr}\left(T_{c}\left[T_{a}, T_{b}\right]\right)$ and take into account that $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)$.

Problem 3

a) Prove the Fierz identity

$$
\sum_{a=1}^{n^{2}-1}\left(T_{a}\right)_{i j}\left(T_{a}\right)_{k l}=\frac{1}{2}\left(\delta_{i l} \delta_{j k}-\frac{1}{n} \delta_{i j} \delta_{k l}\right)
$$

Hint: Use $\operatorname{Tr}\left(T_{a} T_{b}\right)=\frac{1}{2} \delta_{a b}$ in order to calculate m_{0} and m_{a} in

$$
M=m_{0} \mathbf{1}_{n}+\sum_{a=1}^{n^{2}-1} m_{a} T_{a}
$$

where M is an arbitrary Hermitian $n \times n$ matrix.
b) Prove

$$
\sum_{a=1}^{n^{2}-1} T_{a} T_{a}=C_{F} \mathbf{1}_{n} \quad \text { with } \quad C_{F} \equiv \frac{n^{2}-1}{2 n}
$$

Problem 4

The generators (X_{a}) of the adjoint representation of the Lie algebra su(n) can be defined as $\left(X_{a}\right)_{b c}:=$ $-i f_{a b c}$. Show that the generators respect the algebra :

$$
\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c}
$$

Hint: Use $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}$ and the Jacobi identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Problem 5

Calculate λ in

$$
\sum_{c, d=1}^{n^{2}-1} f_{a c d} f_{b c d}=\lambda \delta_{a b}
$$

using

$$
\sum_{a, b=1}^{n^{2}-1} X_{a} X_{a}=C_{A} \mathbf{1}_{n^{2}-1}
$$

with $C_{A} \equiv n$. Show in addition that

$$
\begin{aligned}
\sum_{a=1}^{n^{2}-1} T_{a} T_{b} T_{a} & =\left(C_{F}-\frac{C_{A}}{2}\right) T_{b} \\
\sum_{a, b=1}^{n^{2}-1} f_{a b c} T_{a} T_{b} & =i \frac{C_{A}}{2} T_{c}
\end{aligned}
$$

Problem 6

Confirm the results of problems 3,4 , and 5 for the group $\mathrm{SU}(2)$ by direct calculation. In this case $f_{a b c}=\epsilon_{a b c}$ and $T_{a}=\frac{1}{2} \sigma_{a}$ with the Pauli matrices :

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

