Physique des Particules | & 1l
Les groupes SU(n)

P. Del Amo Sanchez
Univ. Savoie/LAPP Annecy

oy e CLUAPP

MONT BLANC

. Schienbein
Univ. Grenoble Alpes/LPSC Grenoble

UNIVERSITE LPQ
« Grenoble O

el Laboratoire de Physique
Al p es Subatomique et de Cosmo|.

Master PSC, 2016/2017

Wednesday 14 September 16



)

2)
3)
4)
5)
6)

7)

8)

Literature

Michele Maggiore, A Modern Introduction to Quantum Field Theory, Oxford
University Press, chap. 2

H. F. Jones, Groups, Representations and Physics, Taylor & Francis, New York
Hamermesh, Group Theory

Wu-Ki Tung, Group Theory in Physics,World Scientific

H. Georgi, Lie algebras in particle physics, Frontiers in Physics

Notes of V. Derya (webpage I. Schienbein; Internships)

Robert Cahn, Semi-Simple Lie Algebras and Their Representations, freely
available on internet

R. Slansky, Group Theory for Unified Model Building, Phys. Rep. 79 (1981)
|-128

Wednesday 14 September 16



One page summary of the world

Gauge group

Particle
content

Lagrangian
(Lorentz + gauge +
renormalizable)
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e BW?—+,2° and W, W7 W* W~

e Fermions acquire mass through Yukawa couplings to Higgs
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The general theoretical framework
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Special relativity (SR)

® All inertial observers see the same physics:
® same light speed c

® |orentz symmetries = Space-time “rotations”

= (t,T)

r* = natr” = x*x, = invariant

Nuy — dlag(lv _17 _17 _1)

® Energy-momentum relation: p = (E,p), p? = m? = E? - p?
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Special relativity (SR)

® |orentz group O(1,3) ={A|ATn A =n}
® Proper Lorentz group SO(1,3) ={A|ATn A=n,det A= 1}

® Proper orthochronous Lorentz group SO+(1,3): Ago = |
Called the Lorentz group in the following

® Poincare group = Inhomogeneous Lorenz group = ISO+(1,3)

50O.+(1,3) and space-time Translations
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Quantum Mechanics (QM)

e Determinism is not fundamental: Az* X Ap, >

® Nature is random — probability rules

® [he vacuum is not void, it fluctuates!

(7/2)0}

® (lassical physics emerges from constructive interference of probability

amplitudes:

A= [ldg] exp(iSla(t), q(t))

a rational for the least action principle

- %
R . N/
slnm “-—‘:‘3’_.1_. ' L\}'—»E._-’;--Z:"__ YDUﬂ L"E = [D'(” e"‘ L("')

The Path Integral Formulation of Your Life
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Quantum Field Theory (QFT)

® The general theoretical framework in particle physics is
Quantum Field Theory

® Weinberg I

QFT is the only way to reconcile quantum mechanics with special
relativity

“QFT = QM + SR”
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Quantum Field Theory (QFT)

® QM.:It’s the same quantum mechanics as we know it!
e SR:

® Relativistic wave equations are not sufficient!
We need to change number and types of particles in
particle reactions

® Need fields and quantize them (“quantum fields™)

[Particles = Excitations (quanta) of fields ]
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Symmetries |
(Lie groups, Lie algebras)
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Symmetries are described by Groups

A group (G, ®) is a set of elements G together with an operation
® : G x G — G which satifies the following axioms:

e Associativity: Va,b,ce G: (a®b) ©c=a® (b® c)
e Neutral element: de € G :Va e G:e®a=a®e=a

o Inverse element: Va € G :Ja e G : a7l 0a=a0al=e¢

The group is called commutative or Abelian if also the following axiom
is satisfied:

e Commutativity: Va.be G:a®b=b®a
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Lie groups (simplified)

A Lie group is a group with the property that it
depends differentiably on the parameters that define it.
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Lie groups (simplified)

A Lie group is a group with the property that it
depends differentiably on the parameters that define it.

e The number of (essential) parameters is called the
dimension of the group.

e Choose the parametrization such that ¢(0) = e.
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Lie groups (simplified)

A Lie group is a group with the property that it
depends differentiably on the parameters that define it.

e The number of (essential) parameters is called the
dimension of the group.

e Choose the parametrization such that ¢(0) = e.

Example:
Rotation R(¢) € SO(3) by an angle ¢ around the z-axis:

cosgp —sing 0
R(¢p) = | singp cos¢p O

0 0 1
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Generators of a Lie group

Be D(a) an element of a n-dimensional Lie-group G, & = (a1, ..., an).

0 with D(0) = e:

We can do a Taylor expansion around «

. = J ..
D(a@) =D(0) + » 5 —D(@)ja=00a + - .

:e—l—iZaaT"“—l—...
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Generators of a Lie group

Be D(a) an element of a n-dimensional Lie-group G, @ = (a, ...

We can do a Taylor expansion around & = 0 with D(0) = e:

, - 0 .
D(a@) =D(0) + » 5 D(@)ja=00a + - .
:e—l—iZaaT”’—l—...

The T* (a =1,...,n) are the generators of the Lie group:

T = — [ 8(;17(07)]

|@=0
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Generators of a Lie group

Be D(d) an element of a n-dimensional Lie-group G, @ = (a1, ..., a,).

We can do a Taylor expansion around o = 0 with D(@) =

The T* (a =1,...,n) are the generators of the Lie group:

Ta = [ aiaD(&)]

The group element for general & can be recovered
by exponentiation:

|@=0

D(A) = lim (e + 37 ) = 120
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Lie algebra

® The generators T?form a basis of a Lie algebra

Def.: A Lie algebra g 1s a vector space together with a
skew-symmetric bilinearmap [, [: gxg— g
(called the Lie bracket) which satisfies the Jacob1 identity
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Lie algebra

® The generators T?form a basis of a Lie algebra
® [Ta’Tb] = j fab, T (Einstein convention)

® The f°. are called structure constants

Def.: A Lie algebra g 1s a vector space together with a
skew-symmetric bilinearmap [, [: gxg— g
(called the Lie bracket) which satisfies the Jacob1 identity
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Lie algebra

® The generators T?form a basis of a Lie algebra
® [Ta’Tb] = j fab, T (Einstein convention)
® The f2° are called structure constants

® Any group element connected to the neutral element
can be generated using the generators:

g = exP(i Ca Ta) (Einstein convention)

Def.: A Lie algebra g 1s a vector space together with a
skew-symmetric bilinearmap [, [: gxg— g
(called the Lie bracket) which satisfies the Jacob1 identity
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Rank

® Rank = Number of simultanesouly diagonalizable generators
® Rank = Number of good quantum numbers

® Rank = Dimension of the Cartan subalgebra
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Symmetries ||
(Representations)
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Representations of a group

® Def.:A linear representation of a group G on a vector spaceV
is a group homomorphism D:G— GL(V).

® Remarks:

® g D(g), where D(g) is a linear operator acting onV

® The operators D(g) preserve the group structure:
D(g1 g2) = D(g1) D(g2), D(e) = identity operator

® Vs called the base space, dimV = dimension of the representation
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Representations of a group

® A representation (D,V) is reducible if a non-trivial subspace
UcV exists which is invariant with respect to D:

vegeG: vuelU: D(g)ucU

® A representation (D,V) is irreducible if it is not reducible

® A representation (D,V) is completely reducible if all D(g) can
be written in block diagonal form (with suitable base choice)
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Representations of a Lie algebra

® Def.:A linear representation of a Lie algebra A on a vector spaceV
is an algebra homomorphism D:A—End(V).

® Remarks:

® t— [=D(t),whereT is a linear operator acting onV

® The operators D(t) preserve the algebra structure:
[t2,t]=i foc t = [T3,TP]=i fRPc T©

® A representation for the Lie algebra induces a representation for
the Lie group
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Tensor product

Composite systems are described mathematically by the tensor
product of representations

® Tensor products of irreps are in general reducible!

® They are a direct sum of irreps: Clebsch-Gordan decomposition

® Examples:
® System of two spin-1/2 electrons

® Mesons: quark-anti-quark systems, Baryons: systems of three quarks
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Symmetries |l
(Space-time symmetries)
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Space-time symmetry

® The minimal symmetry of a (relativistic) QFT is the Poincaré symmetry

e Observables should not change under Poincare transformations of
® Space-time coordinates x = (t,X)
® Fields d(x)
e States of the Hilbert space |p, ...)

® Need to know how the group elements are represented as operators
acting on these objects (space-time, fields, states)

® At the classical level Poincareé invariant Lagrangians is all we need
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Poincare algebra |

® Poincare group = Lorentz group SO+(1,3) + Translations
® | orentz group has 6 generators: Juy =- v
Lorentz algebra: [Juv , Jpo]= -i (Nup Jvo - Nuo Jvp - [M <> V])

® Poincaré group has 10=6+4 generators: Juv, Py

Poincare algebra:
[Pp,Pv]zo,[Juv,P}\]zi(nv}\ Pu - N PV),LorentZ algebr'a
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Poincare algebra |

® Poincaré group has 10=6+4 generators: |uv, Py

® 3 Rotations — angular momentum [i=1/2 & Jik

[Ji)il =i €ijk Jx

® 3 Boosts = K=o
[Ku K] = -1 &k Ji; [uKi] =1 &k K

® 4 Translations = energy/momentum P,
[i,P]] = i € P, [Ki,P]] = -i 0i Po,[Po,Ji] =0, [Po,Ki] =i P
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Tensor representations of so(|,3)
(integer spin)

® All physical quantities can be classified according to their
transformation properties under the Lorentz group

® Representations characterized by two invariants:
mass, spin (Casimir operators P%,W?)

® Physical particles are irreps of the Poincare group:

¢ = scalar, Vy=vector, Tuv = tensor,...
s=0 s=| s=?
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Spinor representations of so(,3)
(half integer spin)

® 50o(l,3) ~sl(2,C) ~ su(2)L x su(2)r

Jm" = i Kn, o = - T Kl O™, Jn™ ] = 0, [0i%)iT] = i &ijk Ji¥s [itsdi™] = 1 Eiji Ji
® su(2)Lr labelled by jLr=0, 1/2,1,3/2,2, ...

® (jujr) = (0,0) scalar

® (1/2,0) left-handed Weyl spinor; (0,1/2) right-handed Weyl spinor

o (1/2,1/2) vector

® Dirac spinor = (1/2,0) + (0,1/2) is reducible (not fundamental)
Note: (1/2,0) and (0,1/2) can have different interactions

® Majorana spinor = (1/2,0) + (0,1/2)¢ for neutral fermions only
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Representation of so(1,3) on fields

® A field d(x) is a function of the coordinates
® Lorentz transformation: x*—=x’* = AH, xV, > P’
® Scalar field: @' (x’) = P(x)

At the same time ®’(X’) = exp(i 1/2 Wuy JHY) P(X)

Comparison allows to find a concrete expression for |HV:
JWV = LKV + SV with SHV=0, LKV = xH PV - xV P where P* =i g¥

® Similar procedure for Weyl, Dirac,Vector fields, ...
and for the full Poincare group
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Symmetries 1V
(Unitary symmetries)
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Internal symmetries

® (Coleman-Mandula theorem:

The most general symmetry of a relativistic QFT:

Space-time symmetry x Internal symmetry (direct product)
® Algebra: direct sum space-time generators and internal symmetry generators
® 3 rotations
® 3 boosts
® 4 translations

® generators [° of internal symmetry
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SU(n)

® Group:SU(n) ={U e My(C)|UTU = I, det U = |}
® Algebra:su(n) = {t e My(C) | tr(t) =0, tl = t}
® dim SU(n) = dim su(n) = n?-I
® rank su(n) = n-I
® Important representations (D,V):
® The fundamental representation: n (V is an n-dimensional vector space)

® The anti-fundamental representation: n*

® The adjoint representation:V = su(n), dimension of adjoint representation = n?-|
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SU(2)

® dim SU(2) = dim su(2) = 2%-1 =3
® ranksu(2)=2-1 =1
® Algebra: [ti,t]]=i €Eum tm

® The fundamental representation: 2
Ti = 1/2 i (i=1,2,3), Oi Pauli matrices

® irreps: Basis states |j,jz>, j=0,1/2,1,3/2,2,...; j==j, -j+ |, ..., j-1,]
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SU(3)

e dim SU3) = dim su(3) = 32-1 = 8
® ranksu(3)=3-1=2
® A|gebl‘ai [ta,tb]zi fabc tc

® The fundamental representation: 3
Ti = 1/2 \i (i=1,2,3), Ai Gell-Mann matrices

® The structure constants can be calculated using the generators in the
fundamental irrep: faoc =-2i Tr([Ta, Tb] Tc)

® irreps: labeled by 2 integer numbers (rank = 2)
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Glossary of Group Theory: |. Basics

® Group
® discrete, continuous,Abelian, non-Abelian
® subgroup = subset which is a group
® invariant subgroup = normal subgroup
® simple group = has no proper invariant subgroups

® Lie group: continuous group which depends differentiably on its parameters

® Lie

dimension = number of essential parameters

algebra

generators = basis of the Lie algebra; elements of the tangent space TG
dimension = number of linearly independent generators

structure constants = specifiy the algebra (basis dependent)

subalgebra = subset which is an algebra

ideal = invariant subalgebra

simple algebra = has no proper ideals (smallest building block; irreducible)

semi-simple algebra = direct sum of simple algebras
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Glossary of Group Theory: ll. Representations

® Representations
® of groups
e of algebras
® equivalent, unitary, reducible, entirely reducible
® irreducible representations (irreps)
e fundamental representation
® adjoint representation

® Direct sum of two representations

® Tensor product of two representations
® C(Clebsch-Gordan decomposition
® Clebsch-Gordan coefficients

® Quadratic Casimir operator

® Dynkin index
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Glossary of Group Theory: lll. Cartan-VWeyl

e Cartan-Weyl analysis of simple Lie algebras:G=H @ E

® H = Cartan subalgebra = maximal Abelian subalgebra of G

® rank G = dimension of Cartan subalgebra = number of
simultaneously diagonalisable operators

® [E = space of ladder operators
® Root vector (labels the ladder operators)

® positive roots = if first non-zero component positive
(basis dependent)

® simple roots = positive root which is not a linear combination
of other positive roots with positive coefficients

® Weight vector (quantum numbers of the physical states)

® heighest weight
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Glossary of Group Theory: IV. Dynkin

® Dynkin diagrams
® complete classification of all simple Lie algebras by Dynkin
® Dynkin diagrams <= simple roots — roots — ladder operators

® Dynkin diagrams <= simple roots — roots — geometrical interpretation of
commutation relations

® (Cartan matrix

® Simple Lie algebra <= root system <> simple roots <= Dynkin diagrams <>
Cartan matrix

® Dynkin lables (of a weight vector)

® Dynkin diagrams + Dynkin labels = recover whole algebra structure

® analysis of any irrep of any simple Lie algebra (non-trivial in other notations)
® tensor products

® subgroup structure, branching rules

Wednesday 14 September 16



Wednesday 14 September 16



The general procedure

e Introduce Fields & Symmetries
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The general procedure

® Introduce Fields & Symmetries

e Construct a local Lagrangian density
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The general procedure

® [ntroduce Fields & Symmetries
® Construct a local Lagrangian density
¢ Describe Observables

® How to measure them!

® How to calculate them?
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The general procedure

® Introduce Fields & Symmetries
® Construct a local Lagrangian density
® Describe Observables

® How to measure them!?

® How to calculate them!?

e Falsify: Compare theory with data
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Fields & Symmetries
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Matter content of the Standard Model

(including the antiparticles)

MATTER Hicas GAUGE
ur, vy, h+
Q — (3,2) 1/3 L — (1,2)_1 H — (1,2)1 A (].,].)0
dL €r, ho
Ui—i (g, 1)_4/3 6% (]_, 1) 2 W (]_, 3)0
dCR (g, ]_) 2/3 V]C% (]_7 1) 0 G (8, 1)0
ug, L %3 _ h~ _
Q° = (3,2).4y3 || L¢ = (1,2), | H= (1,2) 1 || A | (1,1)
d$ S hY
UR (3,1) 4/3 ER (1,1)_2 (1,3)0
dr (3, 1>-2/3 VR (1,1) ¢ G | (8,1)o

Wednesday 14 September 16




Matter content of the Standard Model

® |eft-handed up quark uL:
® | HWeyl fermion: uLa~(1/2,0) of so(l,3)
® a color triplet: uLi~3 of SU(3).
® Indices: (UL)ix With i=1,2,3 and x=1,2
® Similarly, left-handed down quark d.
® uLand diL components of a SU(2)L doublet: Qg = (UL, dp) ~ 2
® Q carries a hypercharge 1/3: Q ~ (3,2)1/3 of SU(3)c x SU(2)L x U(I)y

® |ndices: Qgix with f=1,2 ;i=1,2,3 and &=1,2
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Matter content of the Standard Model

® There are three generations: Qi , k =1,2,3
® |ot’s of indices: Qipix(X)

® We know how the indices B,i,x transform under
symmetry operations (i.e., which representations we have
to use for the generators)
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Matter content of the Standard Model

® Right-handed up quark ur:
® RH Weyl fermion: Ura.~(0,1/2) of so(l,3)
® 3 color triplet: uri~3 of SU(3).
® asinglet of SU(2)L: ur~1 (no index needed)
® uRr carries hypercharge 4/3: ur ~ (3,1)a4/3
® |[ndices: (UR)ix. With i=1,2,3 and &.=1,2 (Note the dot)

® Note that Ur®~ (3%,1).4/3
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Matter content of the Standard Model

® Again there are three generations: Urk, k =1,2,3
® |ot’s of indices: URkic.(X)

® And so on for the other fields ...
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Terms for the Lagrangian
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How to build Lorentz scalars?
Scalar field (like the Higgs)

Real field ¢

Note: The mass dimension

1 1 term in the
5 M¢8M¢ . §m2¢2 of each th

Lagrangian has to be 4!

Complex field ¢ = %(901 + 1¢2)
0,0 0" — m*¢* P
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How to build Lorentz scalars?
Fermions (spin 1/2)

Left-handed Weyl spinor

ik -
oo, r O.,u — (1’ O'Z)

Right-handed Weyl spinor oM — (17 . O'Z)
Z.@DEOM@M?#R

Mass term mixes left and right

it a0, + o 0,hr — m(Yig + Phir)

Dirac spinor in chiral basis

U = Yr — _ _
-~ \Wr i\DV”aﬂ\If —mUPYV¥  with U = \IJJWO and ~* = (

E,U

ok
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How to build Lorentz scalars?
Vector boson (spin 1)

U(1) gauge boson (“Photon”)

1 1
——F B+ —mzAﬂA“ where F,, =0,4, —0,A,

4 2 \

Mass term allowed by Lorentz invariance;
forbidden by gauge invariance

In principle, there is a second invariant Violates Parity, Time reversal, and CP

1 " 1 symmetry; prop. to a total divergence

_ZFWFW with F),, = §6WWFPJ — doesn’t contribute in QED

BUT strong CP problem in QCD
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Gauge symmetry

® |dea: Generate interactions from free Lagrangian by
imposing local (i.e. ot = o¢(x)) symmetries

® Does not fall from heavens; generalization of ‘minimal
coupling’ in electrodynamics

® Final judge is experiment: It works!
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Local gauge invariance
for a complex scalar field

0,0" 0" — m*d* ¢ s invariant under ¢ — ¢,
What if now X = X(x) depends on the space-time!

0,(€°06)" 04 (£ g) — ()" ()
_ @L@ia(w) o+ elal(z) 5M¢]*[aueia(w) o+ glalz) "] — m2d* ¢
= [ie"*™0,a(x) - ¢ + D - 9,0 [ie" P a(x) - ¢ 4 M . GrP] — m2 g
= [—ie @9, a(x) - ¢* + e D) . 9,6 [ie" PO a(z) - ¢ 4 M) OHP] — mEp*p
= —ie ™9, a(z) - ¢ - i@ ora(z) - ¢
— e @9 a(x) - p* - ) L grg
4 e tal@) 0, 0" - ieia(w>au@(x) 0,
Lol L g g o) . g
—m¢"¢
= 0u¢ - 0"¢ —m*¢"¢ + non-zero terms - N ot invariant under U(1)!
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Local gauge invariance
for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define
D, =0,+1tA,,
where the gauge field A, transforms as

A, — A, -0,
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Local gauge invariance
for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define D¢ — (9, + il Au = 8u04($)])[6m(x)¢]'
= 0[] +i[A, — Ouar(2)] [
D, =0,+1iA, = i@ 0(x) - ¢ + P, ¢ + iA,* P — i0,a(x)e ¢

= @9,p +iA,e ¢
= ™) 0,6 +1iA,]¢
AN — Au — @LO( — eia(m)D’u¢

where the gauge field A, transforms as
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Local gauge invariance
for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define Dy¢ — (0, + i[Ay — 8uoz(a:)])[em(x)gb]'
= 0[] +i[A, — Ouar(2)] [
D, =0,+1iA, = i@ 0(x) - ¢ + P, ¢ + iA,* P — i0,a(x)e ¢

= @9,p +iA,e ¢
= ™) 0,6 +1iA,]¢
A/,L — Au — @LO( — eia(x)D’u¢

where the gauge field A, transforms as

Nota bene:

e We call D, the covariant derivative, because it transforms just like ¢ itself:

¢ — D¢ and D, — DD, ¢
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Local gauge invariance
for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define Du¢ — (0 + i[A, — 8ﬂoz(a:)])[em(x)gb]

= ,[*@6] + i[A, — (@)@

_ iem(m)aﬂ@(ﬂf) . ¢ 4+ eia(x)augb 4+ Z'Auem(w)gb . i@ua(aj)em(@gb
= e "9,0 +iA,e ¢

_ ez’a(m) [au¢+ ZAN]gb

A/,L — A,u — @LO( — eia(x)D,u¢

D, =0,+1tA,,

where the gauge field A, transforms as

Nota bene:

e We call D, the covariant derivative, because it transforms just like ¢ itself:

¢ — D¢ and D, — DD, ¢

DM¢*DM¢ - m2¢*¢ N e—ia(x)DM¢* . eioz(x)D,u¢ o m2€—ia(x)¢* . eioz(x)¢ _ DILL¢*D,U,¢ o m2

Wednesday 14 September 16



Expanding the Lagrangian

D,¢*D'¢p — m>¢*¢ invariant under local U(1) transformations

[Dmb*D“ ¢ —m'Q"p = 0,0"0"d +iA($0,0" — ¢*0pd) + ¢" A, A" — m%%}

4 )

e Demand symmetry — Generate interactions
e Generated mass for gauge boson (after ¢ acquires a vacuum expectation value)

e Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

m?A, A" — m*(A, — 0,a)(A, — d,a) #m°A, A"

e Simplest form of Higgs mechanism

e Vector-scalar-scalar interaction
\_ Y,
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Non-Abelian gauge symmetry

Abelian Non-Abelian: component notation | Non-Abelian: vector notation
[ — piolz) [ — pio®(@)T8 [] — pio®(@)T8

d— Udp o' — U, d" d - UP

A, AT A,

A, — A, —d,« AST® — UALTUT — £(0,U)U" A, = UAU = (0, U)U"

F, =0,A —0,A,
Fo—

F,, invariant

Ee, = 0,A% — 0,A% — gf*A> AS,

FL, F invariant

F, =0,A,—0,A,+i9/A,, A
F,—UF,U!

Tr(F,, F") invariant

D, =0, +19A,Tg
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Conjecture

® All fundamental internal symmetries are gauge symmetries.

® Global symmetries are just “accidental” and not exact.
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Spontaneous Symmetry Breaking
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The Higgs mechanism

® The Higgs potential:V =p2 ¢pip + A (pTP)?
® Vacuum = Ground state = Minimum ofV:

® If u>>0 (massive particle): @min = 0 (no symmetry breaking)

® If u2<0: Pmin = v = £(-p%/A)!72
These two minima in one dimension correspond to a continuum of minimum values
in SU(2).
The point ¢ = 0 is now instable.

® Choosing the minimum (e.g. at +v) gives the vacuum a preferred direction in isospin
space — spontaneous symmetry breaking

® Perform perturbation around the minimum
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Higgs self-couplings

In the SM, the Higgs self-couplings are a consequence of the Higgs potential after expansion of the
Higgs field H~(1,2)| around the vacuum expectation value which breaks the ew symmetry:

4 )
1
Vi = u?H H+n(HH)? — 5mihQ + \/gmhiﬁ +
U J

with: mi — an2 : U2 — _Mz/n Notéz.v=246 GeV is fixed by the
precision measures of Gr
In order to completely reconstruct the - R
Higgs potential, on has to: h.
h
e Measure the 3h-vertex: | e
via a measurement of Higgs pair production h-.
" J
)\%\L/I — gmh

* Measure the 4h-vertex:
more difficult, not accessible at the LHC in the high-lumi phase
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One page summary of the world

Gauge group

Particle
content

Lagrangian
(Lorentz + gauge +
renormalizable)

SSB

SU(3). x SU(2), x U(1)y

MATTER HiGcas GAUGE
ur, 149 h—l_
Q = (3,2) 1/3 L = (1,2)_1 H = (1,2)1 B (1,1)0
dL €r, hO
U_% (g, 1)_4/3 6% (]., ].) ) %% (]., 3)0
d% (g, ].) 2/3 V]CDL (1, 1) 0 G (8, 1)0

1 _ A _
L=—"GG"+...Q.DQx+... (DMH)T(DMH)—MQHTH—E(HTH)%. Y@ H (ug)e

4

0
/ 1
o H — H —'—E(U)

o SU2). x U(l)y — U(1)g

e BW?—+,2° and W, W7 W* W~

e Fermions acquire mass through Yukawa couplings to Higgs
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Aestethics, Symmetry, Religion

® Gauge symmetry SU(3) x SU(2) x U(I)

® not a simple group

® left-right asymmetric (maximal parity violation)
® Matter content in different representations

® left vs right, quarks vs leptons

® Why three generations?! (Why three space dimensions?)

(“Who has ordered this!” Rabi after muon discovery)

® VWouldn't it be a revelation to have complete unification?
® one simple gauge group = one interaction

® one representation for all matter = one matter type/one
primary substance
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Attractive features of GUTs

K.S. Babu, S. Khan,1507.06712

607
50t
40+
' 307 . .
i - _ae® &3 N E4_?2><I1l}13 Ge\"j i
207 g [ 7.82x10%% Gev
gl > . .

> 4 6 8 10 12 14 16 18
Logo(u/GeV)

® Gauge coupling unification

® Explanation for quantization of electric charges
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(Some) GUT group candidates

® Gsm=SU(3) x SU(2) x U(I)
® rank[Gsm] = rank[SU(3)] + rank[SU(2)] + rank[U(1)] =2 +1 + | = 4
® Gsm < G,where G is the gauge group of the GUT theory
® rank[Gsm] <rank[G]

® Rank 4:
® SU(5) unique rank 4 candidate: 5 -+ 1()

® Nno VR, ho B-L symmetry

® Rank 5:

® SO(10): I6-plet

® Pati-Salam group G(442) = SU(4). x SU(2)L x SU(2)
® Rank 6:

® L

® Trinification [SU(3)]?
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Breaking patterns and branching rules

® Breaking patterns:
® SU(5) — Gsm = SU(3)c x U(l)em
® SO(10) = SU(S) = Gsm = SU(3)c x U(l)em
® S0O(10) = G(442) = Gsm = SU(3)c x U(1)em
® E.— SO(10) — ..
® There are two aspects:
® 2a) What are the subgroups of G with equal or lower rank?

® b) Which Higgs fields are needed for the symmetry breaking?

® Branching rules:
How does a multiplet of G split up into multiplets of Gsm
after symmetry breaking!?

® Example SU5) = Gsm:5 = (3,25 + (1,2)-3/5
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