## Low energy physics program



Guillaume Pignol (LPSC Grenoble) rECFA meeting, Paris, 15 March 2013 Gravity

## Free fall of antihydrogen

#### **Testing the Weak Equivalence Principle**

- valid for ordinary macroscopic bodies at the 10<sup>-12</sup> level
- valid for antimatter at the 10<sup>-6</sup> level from indirect means: anticlocks, SN1987,  $K_0/\overline{K}_0$
- Goal of AEgIS and GBAR: direct free fall measurement of antihydrogen





AEgIS, production of cold antihydrogen out of 100 mK antiprotons



GBAR, cooling trapped Hbar+ to produce ultracold (15 µK) antihydrogen

$$v_T = v_H = 0.5 \text{ m/s}$$
  
L = 0.1 m  $\rightarrow$  h = 20 cm

#### **Antimatter Experiment – Gravity – Interferometry - Spectroscopy**



#### Agenda

- 2013 (pbar beam off) : oPs, protons
- 2014 Hbar production at 100 mK
- 2015 first free fall measurement

#### **GBAR**

2015 installation

2016 ELENA proton commissioning

2017 first antiprotons, measure Hbar+



(AEgIS)

# **Ultracold neutrons (UCN)**



are reflected by material walls

# **UCN** sources in Europe

#### ILL 58 MW high flux reactor

- PF2 instrument, since 1985
- UCNs extracted from 20K moderator 2 UCN/cm<sup>3</sup> in EDM experiment
- Superfluid He source for GRANIT

first UCN in 2010, now 4/cm<sup>3</sup>, 100/cm<sup>3</sup> possible





- PSI 600 MeV, 2.5 mA proton beam
- →lead spallation target
- → solid deuterium UCN convertor
- First UCN in 2010

Designed for 50/cm<sup>3</sup> in EDM experiment Now 2/cm<sup>3</sup>

#### **Bouncing neutrons: quantum states**

Neutrons with energy < 100 neV can bounce above a glass mirror.



The vertical motion is a simple quantum well problem

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + mgz\psi = E\psi$$



## **Resonant transitions**





#### The GRANIT instrument at the Institut Laue Langevin



Agenda

2012 Commissioning UCN source 2013 Connect source to GRANIT

2014 Physics run



## nEDM to probe electroweak baryogenesis

Sakharov conditions at electroweak phase transition

1 Departure from thermal equilibrium requires BSM scalar sector to get a strong first order transition. May or may not be accessible at the LHC

*And the second for t* 

#### *3 Violation of B conservation* SM sphaleron transitions in the symmetric phase



#### Example: minimal electroweak baryogenesis



#### Principle of the nEDM measurement







Second π/2 spinflip pulse



## **Current nEDM apparatus at PSI**



Shielded magnetic environment  $B_0 = 1 \mu T$  Homogeneity <  $10^{-3}$ Time stability <  $10^{-6}$ 



Electric field 150 kV / 12 cm

OILL apparatus moved from ILL to PSI in 2009

## nEDM@PSI project

Phase I (2005-2009) Upgrade the apparatus at ILL



Phase II (2009-2015) Apparatus installed at PSI Start datataking 2013

Sensitivity goal 1 x 10<sup>-26</sup> e cm

Phase III (2015-2022) Build new apparatus

- double chamber
- Increase E field
- larger magnetic shield

Sensitivity goal 1 x 10<sup>-27</sup> e cm

#### **Conclusion:** by the next rECFA meeting we should 1 Have seen the free fall of antihydrogen $2.5 \text{ m/s} < v_x < 3.5 \text{ m/s}$ 0.5 $-|2\rangle \rightarrow |1\rangle$ transition probability - |3> $\rightarrow$ |1> 0.4 $|3\rangle$ 0.3 0.2 0.1 0<sub>0</sub> 200 250 50 100 150 excitation frequency [Hz]

2 observe transition frequencies of the neutron bouncer with **GRANIT** 

3 measure nonzero nEDM or exclude simple scenarios for **EW** baryogenesis





## Laboratories / Experiments

| Experiments                   | French Laboratories                                                                     |
|-------------------------------|-----------------------------------------------------------------------------------------|
| AEgIS                         | Université Claude Bernard, Lyon<br>Laboratoire Aimé Cotton, Orsay                       |
| GBAR                          | Laboratoire Kastler Brossel, Paris<br>CSNSM, Orsay<br>CEA IRFU, Saclay<br>ILL, Grenoble |
| GRANIT                        | ILL, Grenoble<br>LPSC, Grenoble<br>LMA, Lyon                                            |
| nEDM                          | LPC, Caen<br>LPSC, Grenoble<br>CSNSM, Orsay                                             |
| Cern Axion Solar Telescope    | CEA IRFU, Saclay                                                                        |
| Neutron lifetime              | LPC, Caen                                                                               |
| Vacuum Magnetic Birefringence | LNCMI, Toulouse                                                                         |