Probing Dark energy with neutrons

Guillaume Pignol Habilitation à diriger les recherches, 13 May 2015

Outline

1 Neutrons, nucleosynthesis, baryogenesis

2 Dark Energy, the chameleon

3 Bouncing neutrons with GRANIT

4 Neutron interferometry experiment

Neutron optics, cold and ultracold neutrons

Neutrons with energy < 100 neV,

are reflected by material walls they can be stored in material bottles.

Big Bang nucleosynthesis

[Planck (2014)] $\eta_{\rm CMB} = (6.05 \pm 0.07) \times 10^{-10}$

[Deuterium abundance from Ly α , Cooke et al (2014)]

$$\eta_{\rm BBN} = (6.0 \pm 0.1) \times 10^{-10}$$

BBN calculations need to know the neutron lifetime:

$$\frac{\Delta(\mathrm{D/H})}{\mathrm{D/H}} = -1.6\frac{\Delta\eta}{\eta} + 0.4\frac{\Delta\tau_n}{\tau_n}$$

Density of Ordinary Matter (Relative to Photons)

Current status on the neutron lifetime

The 2015 situation There is a 3.8σ discrepancy between the bottle method combination and the beam method combination.

To be continued...

We understand nucleosynthesis, but the genesis of the asymmetry

$\eta = \frac{n_b}{n_\gamma} = 2$ per billion

is still a mystery

Baryogenesis: three Shakarov conditions

- 1 Departure from thermal equilibrium at the electroweak phase transition?
- *2 Violation of B conservation* ok with SM sphaleron transitions

3 CP violation

requires new physics beyond the electroweak scale, accessible by the next generation of EDM experiments

AAT TEP

Principle of the nEDM measurement

A non-zero EDM violates T reversal

(thus violates CP symmetry)

The running nEDM apparatus

Electric field 150 kV / 12 cm

Shielded magnetic environment $B_0 = 1 \mu T$ Homogeneity < 10^{-3} Time stability < 10^{-6} Operated at ILL (1998-2004), providing the world limit $|d_n| < 3 \times 10^{-26} e \text{ cm} (90\% CL)$

data taking at the PSI UCN source since 2012

Energy budget of the Universe in Λ CDM

69 % Dark Energy 5 % normal baryonic matter created by baryogenesis and nucleosynthesis

26% Dark Matter

1 Neutrons, nucleosynthesis, baryogenesis

2 Dark Energy, the chameleon

3 Bouncing neutrons with GRANIT

4 Neutron interferometry experiment

The expansion of the Universe

Velocity-Distance Relation among Extra-Galactic Nebulae.

The expansion accelerates

S. Perlmuter *et al* (1999) + A. Riess *et al* (1998)

Quintessence as Dark Energy

Dark Energy is (maybe) due to a cosmological scalar field φ

$$\ddot{\varphi} + 3H\dot{\varphi} + \mathcal{V}'(\varphi) = 0$$

$$w = \frac{p}{\rho} = \frac{\dot{\varphi}/2 - \mathcal{V}(\varphi)}{\dot{\varphi}/2 + \mathcal{V}(\varphi)}$$

Very low energy dynamics: $\Lambda \approx \rho_{\rm DE}^{1/4} = 2.4 \text{ meV}$

Corresponds to a distance scale $\hbar c / \Lambda = 82 \,\mu m$

Should be possible to detect if φ couples to matter!

The Khoury-Weltman mechanism

A way to reconcile gravity tests and cosmology

[Khoury & Weltman PRD 69 (2004)]

Recall: a massive Klein-Gordon field mediates a force with finite range $\hbar c/M$

$$\mathcal{V}_{\mathrm{KG}}(\varphi) = M^2 \, \varphi^2$$

Quintessence field coupled with matter:

$$\mathcal{V}_{\rm eff}(\varphi) = \mathcal{V}(\varphi) + \frac{\beta \rho}{M_{\rm Planck}} \varphi$$

Understanding the chameleon mechanism

Poisson equation for the electric potential

 $\Delta \varphi = \rho$

Electric field $d\varphi/dx$ proportional to ρ

Understanding the chameleon mechanism

1 Neutrons, nucleosynthesis, baryogenesis

2 Dark Energy, the chameleon

3 Bouncing neutrons with GRANIT

4 Neutron interferometry experiment

Bouncing neutrons: quantum states

Neutrons with energy < 100 neV can bounce above a glass mirror.

The vertical motion is a simple quantum well problem

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + mgz\,\psi = E\,\psi$$

Ma Vertical energy (peV) 5 10 15 20 25 30 35 40 45 50 Ό Height (µm)

Discovery of the quantum states at ILL Grenoble

Bouncing neutron: quantum music

Gravity resonance spectroscopy

Rabi formula

$$P_{2\to 1} = \frac{\sin^2(\sqrt{\delta\omega^2 + \Omega^2} t/2)}{1 + \delta\omega^2/\Omega^2}$$

Gravity resonance spectroscopy

How to excite resonant transitions?

Resonant transitions in GRANIT

The GRANIT instrument at ILL level C

First UCNs in GRANIT in 2013.

Producing UCNs is a delicate art.

We are getting ready for measuring something interesting...

Searching for a fifth force

$$V(z) = mgz + \beta \frac{m}{M_{\text{Planck}}} \varphi(z)$$

Field profile above the mirror

$$\varphi(z) = \Lambda(\Lambda z/\hbar c)^{2/2+n}$$

Bouncing neutron sensitivity to the chameleon

29

1 Neutrons, nucleosynthesis, baryogenesis

2 Dark Energy, the chameleon

3 Bouncing neutrons with GRANIT

4 Neutron interferometry experiment

Principle of neutron interferometry 1

Principle of neutron interferometry 2

Phase shift due to the sample:

$$\xi = -\frac{m}{k\hbar^2} \int V(x) \, dx$$

neutron potential in a chameleon field:

$$V(x) = \beta \frac{m}{M_{\text{Planck}}} \varphi(x)$$

The chameleon cell

Idea:

the chameleon field in a cell exists only in vacuum, it is suppressed by a small amount of gas (here helium)

We plot the transverse field profile $\varphi(y,z)/\Lambda$,

The experiment at the S18 instrument (ILL)

Dedicated vacuum chamber built by the Atominstitut in Vienna

Hartmut Lemmel

Results

We have measured the field profile, by moving the vacuum cell, as a function of the helium pressure

Results

9

Breaking news

