

Guillaume.Pignol**@** lpsc.in2p3.fr ESIPAP, febuary 2019

Two frontiers of particle physics

Energy frontier (LHC): producing heavy unstable particles at colliders, e.g.

- W boson, $m_W = 80 \text{ GeV}$
- Higgs boson, $m_H = 125 \text{ GeV}$
- Dark matter particle?

Precision frontier: detecting the effect of virtual particles.

The neutron beta decay, lifetime of 15 minutes, proceeds via the exchange of the virtual W.

Fundamental structure of the Standard Model inferred from properties of the decay (e.g. parity violation).

New physics at the precision/intensity frontier

New particles could induce super-rare decays.

Example: a new boson with $m_X = 10^{15}$ GeV could induce the proton decay with a lifetime of

$$au_p pprox rac{M_X^4}{lpha^2 m_p^5} pprox 10^{33} ext{ years}$$

It would violate the conservation of baryon and lepton number.

New particles could induce exotic couplings.

An **electric dipole moment** (EDM) is an interaction of the spin of a particle with the electric field.

This coupling **violates time reversal symmetry**, and is connected with the matter-antimatter asymmetry of the Universe.

The search for the EDM of the neutron is highly sensitive to interesting new physics.

Detecting the neutron electric dipole moment

$$\widehat{H} = -d_n \, \vec{E} \cdot \vec{\sigma}$$

If the neutron EDM is $d_n = 10^{-27} e$ cm And the electric field is E = 15 kV/cm The neutron spin will make one full turn in a time $\frac{\pi\hbar}{d_n E} = 1.4 \times 10^6$ s = 4 years

In order to detect such a tiny coupling we need:

- The slowest possible neutrons to maximize the interaction time in the electric field
- An intense source of such neutrons to maximize the statistical sensitivity

Large neutron factories

multi-disciplinary facilities

Biology Chemistry Material sciences Magnetism Nuclear physics Particle physics

A typical neutron scattering experiment

Fission or Spallation sources

FISSION

- steady chain reaction
- ~ 2 neutron/fission
- Energy ~ 2 MeV

SPALLATION

- Accelerator driven
- Pulsed or steady
- ~ 20 neutrons/proton
- Energy ~ 20 MeV

G.J. Russell, Spallation physics—an overview, Proceedings of ICANS-XI, KEK-Report Vol. 90-25, 291–299, 1991

Thermalization of fast neutrons

Moderator material with hydrogen or deuterium.

In heavy water the mean free path is about 2 cm and it takes about 35 collision to thermalize.

Thermal neutron

$$E = kT = 25 \text{ meV}$$

ILL reactor

Heavy water moderator and reflector Ø2.5 m

Fuel: HEU (93.3% 235)

Hot source

Cold source: 20 L of Liquid D2 at 20K

Compare the flux

PWR power reactor 3 GW
Thermal neutron flux
~ 10¹⁴ n/cm²/s

ILL high flux reactor 58 MW
Thermal neutron flux
~ 1.5 x 10¹⁵ n/cm²/s

SNS pulsed source (60 Hz)
Thermal neutron flux
Peak ~ $3x10^{16}$ n/cm²/s
Average ~ $4x10^{13}$ n/cm²/s

About 10 Big neutron sources available for fundamental physics in the world

Fission ~ 2 MeV

Resonant capture ~ 10 eV

Thermal neutrons:

kT = 25 meV @ T = 300 K

Fermi potentials ~ 100 neV

fast

epithermal

cold

ultracold

Neutron spectrum

Mirror effect at grazing incidence

Particles and waves

Neutron interaction with a single nucleus

Potential scattering described by non-relativistic quantum scattering theory. For nonrelativistic neutrons, nuclei look point-like ($kR_{\text{nucl}} \ll 1$):

- Isotropic scattering
- Energy-independent

Neutron wave function corresponding to the scattering process

$$\psi(r) = e^{i k x} - b \frac{e^{i k r}}{r}$$
scattering X-section
$$\sigma = 4\pi b^{2}$$

For a catalog, see www.ncnr.nist.gov/resources/n-lengths
Surprisingly, almost all nuclei have b > 0.

Neutron interaction with a collection of nuclei

Incident neutron with energy $E = (\hbar k)^2/2m$

Nucleus number j at position $\overrightarrow{R_i}$

Self consistency of the wave function

$$\psi(\vec{r}) = e^{i k x} - \sum_{j} \psi(\vec{R}_{j}) b \frac{e^{ik|r - R_{j}|}}{|\vec{r} - \vec{R}_{j}|}$$

Using the relation

$$(\Delta + k^2) \frac{e^{ik|\vec{r} - \overrightarrow{R_j}|}}{|\vec{r} - \overrightarrow{R_j}|} = -4\pi \,\delta(\vec{r} - \overrightarrow{R_j})$$

We find the wave equation

$$(\Delta + k^2)\psi(\vec{r}) = 4\pi b \sum_j \delta(\vec{r} - \vec{R}_j)\psi(\vec{r}) \approx 4\pi b n \psi(\vec{r})$$

n is the nuclear density of the medium

Neutron Fermi potential

Defining the Fermi potential of a medium

$$V_F = \frac{2\pi\hbar^2}{m} b n$$

The wave equation is a Schrodinger equation with the potential V

$$\left(-\frac{\hbar^2}{2m}\Delta + V_F\right)\psi(\vec{r}) = E\,\psi(\vec{r})$$

For cold neutrons, bulk matter is characterized by its Fermi potential. We expect wave phenomena (refraction, reflection, tunnel transmission..).

Solid matter characterized by the Fermi potential V_F

Condition for total reflection of neutrons of energy E (Fermi & Zinn 1946)

$$E \sin^2 \theta < V_F$$

Nickel, 28Ni

Boiling point

Density (near r.t.)

2651 °F)

4946 °F)

 8.908 g/cm^3

3003 K (2730 °C,

Exercises

- 1. Calculate the Fermi potential of Nickel
- 2. What is the maximum reflection angle on a Nickel surface for a cold neutron of wavelength 0.9 nm?

Z-Symb-A	% or T1/2	Ι	bc
28-Ni			10.3 ± 0.1
28-Ni-58	67.88	0	14.4 ± 0.1
28-Ni-60	26.23	0	2.8 ± 0.1
28-Ni-61	1.19	3/2	7.6 ± 0.06
28Ni-62	3.66	0	-8.7 ± 0.2
28-Ni-64	1.08	0	-0.37 ± 0.07

Application: neutron guides

ILL High Flux Reactor

Neutron distribution channel at ILL

Ultracold neutrons (UCNs)

Neutrons with energy < 200 neV, are totally reflected by material walls.

They can be stored in material bottles for long times (minutes).

They are significantly affected by gravity.

UCN plumbing

UCNs are guided through evacuated stainless steel pipes (about 10 cm diameter) and bends.

Losses are generally percents/meter

Exercises

- 1. Calculate the velocity for an UCN with an energy of 200 neV
- 2. Calculate the De-Broglie wavelength of the same UCN
- 3. What is the proportion of UCNs (say E < 300 neV) in a Maxwell spectrum of thermal neutrons at 300 K?
- 4. A neutron is dropped at rest from a height of h = 1 m. What is the kinetic energy of that neutron when hitting the ground at h = 0?

UCN and gravity

UCNs feel gravity

$$V(z) = mg \ z = 1.02 \frac{\text{neV}}{\text{cm}} \times z$$

Very important for UCN techniques

- We accelerate UCNs to detect them (otherwise they would bounce off the detector window).
- Some UCN traps do not need a roof.

Example: the "U" filter

To remove UCNs with energy E<80 neV,

Just set h = 80 cm

UCNs and magnetic fields

Neutron magnetic moment

$$\mu_n \times (1 \text{ T}) = 60 \text{ neV}$$

Magnetic fields act on the spin ½ neutron

$$V = -\vec{\mu}_n \vec{B}$$

Input: unpolarized UCNs

Magnetized foil

Output: polarized UCNs

Summary about UCN interactions

UCNs can be manipulated using

- The nuclear force (Fermi potentials ~ 100 neV)
- The gravitational force (1 m = 100 neV)
- Magnetic fields (1T = 60 neV)

They are used to study the fundamental interactions and symmetries

- Weak interaction (beta decay period 10 min)
- Electromagnetic properties of the neutron (EDM)
- Gravitational effects

UCN source at ILL

Turbine with counter rotating blades to decelerate the neutrons

Superthermal production of UCNs in superfluid He

Input: intense beam of cold neutrons with a wavelength of 8.9 A

The superfluid Helium needs to be cooled down to 0.7 K

UCN source at the Paul Scherrer Institute

pulsed UCN source One kick per 5 min online since 2011

600 MeV 2.2 mA

Worldwide comparison of UCN sources

PHYSICAL REVIEW C 95, 045503 (2017)

3 techniques

- selection out of a thermal flux ILL PF2 source
- Superthermal production and accumulation in superfluid He ILL SUN-2, ILL GRANIT, TRIUMF
- Superthermal production in solid deuterium
 PSI, Los Alamos, Mainz (TRIGA)

Comparison of ultracold neutron sources for fundamental physics measureme

Diter Ries standard stainless steel bottle

Importance of neutron detection

- Monitoring in nuclear reactors
- Radiation safety
- Detection of special nuclear materials (233U and 239Pu)
- Cosmic ray detection, monitoring the flux
- Neutrino detectors $v + p \rightarrow e^+ + n$
- Etc...

Remember: You can't directly detect neutrons...

Neutrons should be converted in a detectable particle first.

Neutron inelastic reactions

Neutron capture

$$n + {}^{A}X \rightarrow {}^{A+1}X^* + \gamma$$
 a.k.a. $X(n, \gamma)$

Charged reactions

$$n + {}^{A}X \rightarrow p + {}^{A}Y$$
 a.k.a. $X(n, p)Y$

a.k.a.
$$X(n,p)Y$$

$$n + {}^{A}X \rightarrow \alpha + {}^{A-3}Y$$
 a.k.a. $X(n, \alpha)Y$

Fission

$$n + 235U \rightarrow PF_1 + PF_2 + \nu n$$
 a.k.a. $U(n, f)$

THE 1/v LAW
$$\sigma(v) = \sigma(v_0) \frac{v_0}{v}$$

One finds in tabulated neutron data the thermal cross sections

$$\sigma^{\text{th}} = \sigma(2200 \text{ m/s})$$

(n, γ) capture: $n + {}^A_Z X \rightarrow \gamma + {}^{A+1}_Z X$

Energy release $Q = (m_X + m_n - m_W)c^2$ a.k.a. the neutron separation energy of the nucleus W.

All stable nuclei have Q>0 EXCEPT for **4He**. Thus, **4He** is the only stable element with zero capture cross section for slow neutrons.

(n,p) reaction $n + {}^A_Z X \rightarrow p + {}_{Z-1}^A Y$

Energy release $Q = (m_X + m_n - m_p - m_Y)c^2$ Slow neutrons undergo (n,p) reaction only if $Q > B_c$

Only one possibility $n + {}^{3}\text{He} \rightarrow p + t$

(n, α) reaction $n + {}^A_Z X \rightarrow \alpha + {}^{A-3}_{Z-2} Y$

Energy release $Q=(m_X+m_n-m_\alpha-m_Z)c^2$ Slow neutrons undergo (n,a) reaction only if $Q>B_c$ Only two possibilities

$$n + {}^{6}\text{Li} \rightarrow \alpha + t$$

 $n + {}^{10}\text{B} \rightarrow \alpha + {}^{7}\text{Li}$

Validity of the 1/v law

$$\sigma(v) = \sigma(v_0) \frac{v_0}{v}$$

Three possible neutron convertors

	³ He (<i>n</i> , <i>p</i>)	⁶ Li (<i>n</i> ,α)	¹⁰ B (<i>n</i> ,α)
Abundance	0.014 %	7.6 %	19.9 %
$\sigma^{ ext{th}}$	5330 barn	937 barn	3837 barn
	p 764 keV	α 2.056 MeV	α 1.47 MeV
Kinetic energy of products	t 191 keV	t 2.728 MeV	Li 0.84 MeV
or products			γ 0.48 MeV

Gaseous detectors

proportional counters filled with ³He or BF₃

Solid detectors

scintillators **LiF** silicon detectors with Boron solid conversion layer

Exercises

- 1. Calculate the kinetic energy of the products for the reaction $n + {}^{3}\text{He} \rightarrow t + p$
- 2. Consider a 1 cm thick multiwire proportional chamber filled with 1 bar of ³He. What is the detection efficiency for thermal neutrons?
- 3. The same detector is filled with 10 mbar of ³He, what is the detection efficiency for UCNs? For thermal neutrons?

11.009305355

 ^{11}B

80%

Nucleus	nat. ab.	atomic mass [u]		
$^{1}\mathrm{H}$	99.99%	1.0078250322		
$^2\mathrm{H}$	0.015%	2.0141017781	neutron mass	$mc^2 = 939.565379(21) \text{ MeV}$
$^{3}\mathrm{H}$		3.0160492779	Planck conversion constant	$\hbar c = 197.3269718(44) \text{ MeV fm}$
$^{3}\mathrm{He}$	$10^{-4}\%$	3.0160293201	Avogadro constant	$N_A = 6.02214129(27) \times 10^{23} \text{ mol}^{-1}$
$^4{ m He}$	100%	4.0026032541	Boltzmann constant	$k_B = 1.3806488(13) \times 10^{-23} \text{ J/K}$
$^6{ m Li}$	7.5%	6.0151228874	Atomic mass unit	$u = 931.494028(23) \text{ MeV/c}^2$
$^7{ m Li}$	92.5%	7.0160034366		
$^{10}\mathrm{B}$	20%	10.012936949		

The neutron beta decay lifetime

$$n \rightarrow p + e^- + \bar{\nu}_e + 782 \text{ keV}$$

Free neutron lifetime

$$\tau_n = (880.2 \pm 1.0) \text{ s}$$
 [PDG 2018]

Particle physics

extracting CKM matrix element

Astrophysics and Neutrinos

Calculating weak semi-leptonic processes like

$$p + p \to d + e^+ + \nu_e$$
$$\bar{\nu}_{\mu} + p \to \mu^+ + n$$

Cosmology

Predicting the
yields of the
BigBang
Nucleosynthesis

Two complementary experimental methods

Counting the dead neutrons: BEAM METHOD

A detector records the decay products in a well defined part of a neutron beam. A neutron beam is indeed radioactive due to beta decay.

$$-\frac{dN}{dt} = \frac{N}{\tau_n}$$

Counting the surviving neutrons: BOTTLE METHOD

UCNs are stored in a bottle, the number of neutrons remaining in the bottle after a certain storage time t is measured.

$$N(t) = N(0)e^{-t/\tau_n}$$

Early beam method: counting the electrons

shutter

Christensen et al (1972)

Modern beam method: counting the protons

Nico et al (2005)

Protons produced almost at rest (endpoint energy = 800 eV) are accumulated in a Penning trap.

Principle of a bottle UCN measurement

Typical sequence

- Switch moved to FILL position, Valve OPEN for 20 s
- 2. Close Valve, Switch moved to EMPTY position
- 3. Wait period T
- 4. OPEN Valve, count neutrons

Repeat the sequence with different T

UCN storage curve

Problem: UCN losses at wall reflection are not negligible.

$$\frac{1}{\tau_{st}} = \frac{1}{\tau_n} + \frac{1}{\tau_{\text{wall}}}$$

Estimating the wall losses

The probability for a UCN to be lost at a wall collision can be of the order of

$$\mu \approx 10^{-4}$$

The mean free path between collisions is of the order of

$$\lambda \approx 30 \text{ cm}$$

The frequency of wall collisions for a velocity of 3 m/s is of the order of

$$f = \frac{v}{\lambda} \approx 10 \text{ Hz}$$

The partial lifetime due to wall losses is thus of the order of

$$\tau_{\rm wall} = \frac{1}{f\mu} \approx 1000 \, \rm s$$

Useful Clausius law

Consider a bottle with arbitrary shape, of volume V and surface S.

When mechanical equilibrium is achieved (isotropic velocity distribution) the mean free path between wall collisions is

$$\lambda = \frac{4 V}{S}$$

Results valid without gravity!

More on wall losses (complicated topic)

 The wall loss probability is energydependent

$$\mu(E) = 2\eta \left(\frac{V}{E} \operatorname{asin} \sqrt{\frac{E}{V}} - \sqrt{\frac{V}{E} - 1} \right)$$

- It depends on temperature (the colder the better)
- Losses can be calculated from absorption and inelastic scattering cross section data. But measured losses are generally higher, due to surface impurities (hydrogen, in particular)

Example: MAMBO 1 (ILL, 1989)

The trap geometry is varied, one extrapolates the storage time to infinite mean free path

Current status on the neutron lifetime

There is a persisting **discrepancy of 8 s (3.9 \sigma)** between the bottle method combination and the beam method combination.

To be continued...

^{*}Nico result (2005) was superseded by an updated and improved result, Yue (2013);

Electric and Magnetic Dipoles

Spin precession due to the magnetic dipole μ_n

Spin precession due to the electric dipole d_n ?

$$\widehat{H} = -\mu_n B \, \widehat{\sigma}_z - d_n E \, \widehat{\sigma}_z$$

Electric dipole violates time reversal invariance!

Hunting the neutron Electric Dipole Moment

One measures the neutron Larmor precession frequency f_L in weak Bagdetic and strong Electric fields

$$f_L(\uparrow\uparrow) - f_L(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d_n E$$

Neutron EDM

The most sensitive experiments use Ramsey's method with polarized ultracold neutrons stored in a "precession" chamber Here a cylinder, Ø47 cm, H12 cm.

the Big BANG

CP violation and baryogenesis

Inflation ends?

100 GeV

Electroweak transition

1 MeV -

1eV

Decoupling of CMB

1 meV Today

boiling

broken phase $\phi \neq 0$

Sakharov's Baryogenesis recipe (1967)

- Baryon number not conserved
- Universe out of equilibrium
- Violation of CP symmetrynEDM

Current nEDM bound constrains many scenarios of BSM electroweak baryogenesis

First EDM experiment with a neutron beam

Vary the RF frequency and measure the resonance curve to extract f_L . Do it for parallel and antiparallel E and B fields.

Statistical sensitivity:

$$\sigma d_n = \frac{\hbar}{2 \alpha E T \sqrt{N}}$$

 $T \approx 1 \text{ ms}$

The slower, the better...

Ramsey's method

"Spin up" neutron...

Apply π /2 spinflip pulse...

Free precession...

duration T

Second $\pi/2$ spin-flip pulse

Statistical sensitivity:
$$\sigma d_n = \frac{n}{2 \, \alpha \, E \, T \, \sqrt{N}}$$

UCN nEDM apparatus (Sussex/RAL/ILL)

Apparatus installed at the ILL reactor Grenoble (1986-2009)

Best limit: $d_n < 3 \times 10^{-26} e$ cm obtained with 1998 - 2002 data

[Baker et al, PRL (2006); Pendlebury et al, PRD (2015)]

Scheme of the apparatus at PSI

Problem: the analyzing foil

What is the optimal height of the analyzing foil in the nEDM experiment?

The analyzing foil consists of a thin layer of magnetized iron. The precession chamber, situated at height H above the analyzing foil, stores neutrons in the energy range 0 < E < 120 neV. Calculate the Fermi potential of non-magnetized iron. Suppose now that the foil is magnetized to a saturation field of Bs = 2 T. Neutrons with spin aligned with the magnetic field are dubbed *low field seekers*, those with spin anti-parallel with the magnetic field are dubbed *high field seekers*.

- 1. Calculate the Fermi potential of the magnetized foil for high and low field seekers.
- 2. Discuss the optimal height H to maximize the spin-analysis efficiency.
- 3. Estimate the transmission of the foil.

Iron, thickness 400 nm

Aluminum substrate, thickness 25 µm

material	$\rho \; [\mathrm{g/cm^3}]$	M [g/mol]
aluminum	2.70	27.0
boron	2.34	10.8
iron	7.87	55.8

Nucleus	nat. ab.	b [fm]	σ_a^{th} [barn]	atomic mass [u]
27 Al	100%	3.449	0.231	26.981538531
$^{54}\mathrm{Fe}$	5.8%	4.2	2.25	53.9396105
$^{56}\mathrm{Fe}$	91.7%	9.94	2.59	55.934936326
$^{57}\mathrm{Fe}$	2.2%	2.3	2.48	56.935394

Typical measurement sequence at PSI, 1 cycle every 5 minutes

Uncorrected neutron frequency

$$f_{\rm n} = \frac{\gamma_n}{2\pi} B$$

Mercury-corrected neutron frequency

The mercury comagnetometer compensates for the residual magnetic field fluctuations

Bouncing neutrons

The vertical motion is a simple quantum well problem

$$-\frac{\hbar^2}{2m_i}\frac{d^2\psi}{dz^2} + m_g gz \,\psi = E \,\psi$$

We want to test Enstein's equivalence principle for a quantum particle in a classical gravity field.

Discovery of the quantum states at ILL

0.1

120

140

Problem: micrometric position sensitive detector

- 1. Calculate the Fermi potential of (i) natural boron (ii) pure ¹⁰B. Why do we have to use isotopically pure boron?
- 2. We choose a boron layer thickness of 200 nm. Discuss this choice in terms of neutron conversion efficiency (for UCNs of velocity 3 m/s), Si detector efficiency and spatial resolution.