Latest PhD Thesis

  • SOUCHARD Julien, Started in Oct. 2017
  • LE COZ Sandra - Radiodétection des gerbes atmosphériques à l'Observatoire Pierre Auger, Grenoble University, Oct. 2014
    HAL Id: tel-01400693

 

2019

  1. Multi-Messenger Physics with the Pierre Auger Observatory
    The Pierre Auger Collaboration, Front. Astron. Space Sci. 6:24 (2019)
    [arxiv.org/abs/1904.11918] [doi: 10.3389/fspas.2019.00024 ]
  2. Measurement of the average shape of longitudinal profi les of cosmic ray air-showers at the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP03(2019)018
    [arxiv.org/abs/1811.04660] [doi: 10.1088/1475-7516/2019/03/018]
  3. Probing the origin of ultra-high energy cosmic rays with neutrinos in the EeV energy range at the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP10(2019)022
    [arxiv.org/abs/1906.07422] [doi: 10.1088/1475-7516/2019/10/022]
  4. Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory
    The Pierre Auger Collaboration, Phys. Rev. D 100, 082003
    [arxiv.org/abs/1901.08040] [doi: 10.1103/PhysRevD.100.082003]
  5. Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP11(2019)004
    [arxiv.org/abs/1906.07419] [doi: 10.1088/1475-7516/2019/11/004]


2016-2018

2018

  1. Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory
    The Pierre Auger Collaboration, The Astrophysical Journal, Volume 868, Number 1 (2018)
    [arxiv.org/abs/1808.03579] [doi: 10.3847/1538-4357/aae689]
  2. Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP10(2018)026
    [arxiv.org/abs/1806.05386] [doi:10.1088/1475-7516/2018/10/026]
  3. Indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources
    The Pierre Auger Collaboration, The Astrophysical Journal Letters 853:L29, 2018
    [arXiv: 1801.06160] [doi: 10.3847/2041-8213/aaa66d]


  4. GIGAS: a set of microwave sensor arrays to detect molecular bremsstrahlung radiation from extensive air shower, R. Gaior, I. Al Samarai, C. Bérat, et al. Nucl. Instr. Meth. A 888 (2018) 153−162


2017

  1. Inferences on Mass Composition and Tests of Hadronic Interactions from 0.3 to 100 EeV using the water-Cherenkov Detectors of the Pierre Auger Observatory
    The Pierre Auger Collaboration, Phys. Rev. D 96, 122003
    [arXiv: 1710.07249] [doi: 10.1103/PhysRevD.96.122003]
  2. Search for High-Energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
    ANTARES Collaboration, IceCube Collaboration, The Pierre Auger Collaboration, and LIGO Scientific Collaboration and Virgo Collaboration, The Astrophysical Journal Letters, 850:L35, 2017
    [arXiv: 1710.05839] [iopscience/10.3847/2041-8213/aa9aed]

  3. Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
    The Pierre Auger Collaboration, 2017 JINST 12 T10005
    [arXiv: 1702.01392] [doi: 10.1088/1748-0221/12/10/T10005]
  4. Multi-messenger Observations of a Binary Neutron Star Merger
    The Astrophysical Journal Letters 848:L12, 2017
    [doi: 10.3847/2041-8213/aa91c9] [iopscience/10.3847/2041-8213/aa91c9]
  5. Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8×1018 eV
    The Pierre Auger Collaboration, Science 357 (2017)
    [doi: 10.1126/science.aan4338] [arXiv: 1709.07321]
  6. Spectral Calibration of the Fluorescence Telescopes of the Pierre Auger Observatory
    The Pierre Auger Collaboration, Astroparticle Physics 95C (2017) 44-56
    [doi: 10.1016/j.astropartphys.2017.09.001] [arXiv: 1709.01537]
  7. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP 06 (2017) 026
    [doi: 10.1088/1475-7516/2017/06/026] [arXiv: 1611.06812]
  8. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP 04 (2017) 038
    [doi: 10.1088/1475-7516/2017/04/038] [arXiv: 1612.07155]
  9. Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory
    The Pierre Auger Collaboration, JCAP 04 (2017) 009
    [doi: 10.1088/1475-7516/2017/04/009] [arXiv: 1612.01517]
  10. A targeted search for point sources of EeV photons with the Pierre Auger Observatory
    A. Aab et al. 2017 ApJL 837 L25
    [arXiv: 1612.04155]
  11. Muon Counting using Silicon Photomultipliers in the AMIGA detector of the Pierre Auger Observatory
    The Pierre Auger Collaboration, JINST 12 (2017) P03002
    [doi: 10.1088/1748-0221/12/03/P03002] [arXiv: 1703.06193]
  12. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory
    The Pierre Auger Collaboration
    [arXiv: 1702.02835]


2016

  1. Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory
    The Pierre Auger Collaboration, Phys. Rev. D 94, 122007 (2016)
    [doi: 10.1103/PhysRevD.94.122007] [arXiv: 1608.07378]
  2. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory
    The Pierre Auger Collaboration, PRL 117, 192001 (2016)
    [doi: 10.1103/PhysRevLett.117.192001] [arXiv: 1610.08509]; Editors suggestion
  3. Search for Ultra-relativistic Magnetic Monopoles with the Pierre Auger Observatory
    The Pierre Auger Collaboration, Phys. Rev. D 94, 082002 (2016)
    [doi: 10.1103/PhysRevD.94.082002] [arXiv: 1609.04451]
  4. Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum 
    The Pierre Auger Collaboration, Phys.Lett. B762 (2016) 288-295
    [doi: 10.1016/j.physletb.2016.09.039] [arxiv: 1609.08567]
  5. Measurement of the Muon Production Depths at the Pierre Auger Observatory
    Laura Collica for the Pierre Auger Collaboration, Eur. Phys. J. Plus (2016) 131: 301 (Bruno Rossi Prize)
    [doi: 10.1140/epjp/i2016-16301-6] [arxiv: 1609.02498]

  6. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
    The Pierre Auger Collaboration, Phys. Rev. D 93, 122005 (2016)
    [arXiv: 1508.04267] [doi: 10.1103/PhysRevD.93.122005]

  7. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy
    The Pierre Auger Collaboration, PRL 116, 241101 (2016)
    [arXiv: 1605.02564] [doi: 10.1103/PhysRevLett.116.241101]

  8. Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory
    The Pierre Auger Collaboration, Phys. Rev. D 93, 072006 (2016)
    [arXiv: 1604.00978] [doi: 10.1103/PhysRevD.93.072006]

  9. The Pierre Auger Observatory Upgrade - Preliminary Design Report
    A. Aab et al. (Pierre Auger Collaboration)
    [arXiv: 1604.03637]

  10. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory
    The Pierre Auger Collaboration, JINST 11 (2016) P02012
    [doi: 10.1088/1748-0221/11/02/P02012]

  11. Nanosecond-level time synchronization of autonomous radio detector stations using a reference beacon and commercial airplanes
    The Pierre Auger Collaboration, JINST 11 (2016) P01018
    [doi: 10.1088/1748-0221/11/01/P01018] [arXiv: 1512.02216]

  12. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
    The Pierre Auger Collaboration, Telescope Array Collaboration, IceCube Collaboration JCAP 01 (2016) 037
    [doi: 10.1088/1475-7516/2016/01/037] [arXiv: 1511.09408]

 


 

Contact (researcher) :
Corinne Berat This email address is being protected from spambots. You need JavaScript enabled to view it.


We are constantly submitted to ionizing rays, either from natural or from artificial origin, visible or not. Sun light consists in visible natural rays. The sun is also a natural source of invisible rays (UV, IR)

Among natural ionizing rays, some are coming from space, and are nammed cosmic rays. Other are coming from the earth (natural radiactivity from rock). This page is dedicated to cosmic rays.

 

2012: 100 years of cosmic rays ;  the anniversary of their discovery by V.F. Hess

  • A poster exhibition ("Le mystère des rayons cosmiques", in french) has been realized by the IN2P3 to celebrate the  100 years of cosmic rays and the anniversary of their discovery.

    "Le mystère des rayons cosmiques" : une exposition IN2P3 pour fêter le centenaire de la découverte des rayons cosmiques.
    Cette exposition retrace un siècle d’aventures dignes de Jules Verne. Pour tenter de percer le mystère des rayons cosmiques, les physiciens n’ont pas ménagé leurs efforts en menant leurs expériences en ballons, à bord de cargos autour du monde ou sur les plus hauts sommets... L’aventure se poursuit encore aujourd’hui avec des techniques toujours plus pointues.

    16 posters,  A0 format. The LPSC has one copy of the exhibition.

    To see the poster :http://lapp-phototheque.in2p3.fr/2012-rayonsCosmiques/

    25 November - 14 December 2012 : the exhibition was installed at the lycée  Marie Reynoard, Villard Bonnot

    exposition_Marie_Reynoard_1exposition_Marie_Reynoard_2

    8 March -12 april 2013 : at the  Lycée Condorcet, Belfort

    2013-03-12 13.43.34Est Republicain 1erMars2013

     12 April - 20 May 2013 :  Lycée Follereau, Belfort

 

Sparks chamber, cloud chamber

  • Cloud chamber : link to the description page (in french)
  • Sparks chamber : link to the description page (in french)
  • Poster Cloud chamber pdf
  • Poster Sparks chamber pdf

Useful links

Lectures and Conferences (in French)

Contact researcher :
Corinne Berat This email address is being protected from spambots. You need JavaScript enabled to view it.

  • "Des rayons en provenance du cosmos" , et "Femmes au CNRS" conférences au Lycée Condorcet de Belfort, 8 mars 2013.
  • "Des rayons en provenance du cosmos" , incluant une escapade dans un champ (de Higgs) (pdf) conférence au lycée Marie Reynoard, 14 décembre 2012
  • "Des rayons cosmiques qui font la pluie et le beau temps" (pdf) Conférence MidiSciences à l'UJF, Grenoble, mars 2012
  • "Les rayonnements cosmiques" (pdf) Conférence grand public à la Foire de Lyon, mars 2011
  • "Rayonnements Cosmiques" (fichier ppt) Conférence grand public, "soirs d'été au Chevalet", Aspres sur Buëch
  • "Le rayonnement cosmique de haute énergie" Conférence d'intérêt général SFP, 9 février 2006
  • "Scruter le cosmos" (fichier ppt) Université Ouverte de l'UCBL, Mars 2005
  • "Energies extrêmes" (fichier ppt) réalisé pour l'Université Ouverte de l'UCBL, Février 2004
  • Cours donné au LPSC, dans le cadre des rénions du vendredi, en Mai 2004, en 3 parties (fichiers pdf)

 

NOY: a Neutrino Observatory network project based on stand-alone air shower detector arrays

 

We have developed a self powered stand alone particle detector array dedicated to the observation of horizontal tau air showers induced by high energy neutrinos interacting in mountain rock. Air shower particle detection reach a 100% duty cycle and is practically free of background when compared to Cerenkov light or radio techniques. It is thus better suited for rare neutrino event search. An appropriate mountain to valley topological configuration has been identified and the first array has been deployed on an inclined slope at an altitude of 1500 m facing to Southern Alps near the city of Grenoble (France). A full simulation has been performed. A detailed cartography and elevation map was used to draw a neutrino energy dependent mountain tomography chart. The array acceptance was evaluated between 100 TeV and 100 EeV from a decaying tau air shower simulation. The effective surface is determined from the shower lateral extension at array location, and is found to be much larger than the geometrical array area. The single array yearly exposure will be 1014 cm2.sr.y at 100 PeV. The embedded data acquisition system consists of an eight channel, 12 bits, 250 MHz digitizer associated to a FPGA containing a trigger definition design, a time tagging referenced by a GPS board and a Linux core processor. PMT high voltage supplies are remote controlled via serial or USB port. Data and slow control data are stored on a flash memory. Remote control and data transfer are operated under a commercial wireless communication system. This low consumption data acquisition system is self powered via solar energy. Several independent arrays can be deployed on the same site. Other sites around the world with a similar topography can contribute to a neutrino observatory network. Some other sites are already under study. At last, special care is dedicated to the educational and outreach aspects of such a cosmic ray detector

NOY: a neutrino observatory network project based on stand alone air shower detector arrays
F. Montanet, D. Lebrun, J. Chauvin, E. Lagorio, and P. Stassi
Astrophys. Space Sci. Trans., 7, 369-372, 2011
Abstract   Full Article (PDF, 433 KB)

NOY: a Neutrino Observatory network project based on stand-alone air shower detector arrays
D. Lebrun, F. Montanet, J. Chauvin, D-H. Koang, E. Lagorio and P. Stassi
PROCEEDINGS OF THE 31st ICRC, ŁÓDZ 2009
Full Article (PDF, 289 KB)

noy presentation html 131e7897

Warning The english content of this web site is currently under construction

Subcategories