Physical Assessment of the Load Following and Starting Procedures for the Molten Salt Fast Reactor

E. MERLE-LUCOTTE, D. HEUER, A. LAUREAU, M. BROVCHENKO, M. ALLIBERT, M. AUFIERO

merle@lpsc.in2p3.fr – Professor at Grenoble INP/PHELMA and in the Reactor Physics Group of Laboratoire de Physique Subatomique et de Cosmologie de Grenoble (CNRS-IN2P3-LPSC / Grenoble Alpes University)

With the support of the IN2P3 institute of CNRS and the NEEDS French Program, of the EVOL Euratom FP7 Project, of Grenoble Institute of Technology
The concept of Molten Salt Fast Reactor (MSFR)

Advantages of a Liquid Fuel

- Homogeneity of the fuel (no loading plan)
- Fuel = coolant ⇒ Heat produced directly in the heat transfer fluid
- Possibility to reconfigure quickly and passively the geometry of the fuel (gravitational draining)
- Possibility to reprocess the fuel without stopping the reactor

+ Gen4 criteria ⇒ step1 = Neutronic optimization of MSR:
- Safety: negative feedback coefficients
- Sustainability: reduce irradiation damages in the core
- Deployment: good breeding of the fuel + reduced initial fissile inventory

2008: Definition of an innovative MSR concept based on a fast neutron spectrum, and called MSFR (Molten Salt Fast Reactor)

- All feedback reactivity coefficients negative
- No solid material in the high flux area: reduction of the waste production of irradiated structural elements and less in core maintenance operations
- Good breeding of the fissile matter thanks to the fast neutron spectrum
- Actinides burning improved thanks to the fast neutron spectrum

R&D objectives

The renewal and diversification of interests in molten salts have led the MSR provisional SSC to shift the R&D orientations and objectives initially promoted in the original Generation IV Roadmap issued in 2002, in order to encompass in a consistent body the different applications envisioned today for fuel and coolant salts.

Two baseline concepts are considered which have large commonalities in basic R&D areas, particularly for liquid salt technology and materials behavior (mechanical integrity, corrosion):

- The Molten Salt Fast-neutron Reactor (MSFR) is a long-term alternative to solid-fuelled fast neutron reactors offering very negative feedback coefficients and simplified fuel cycle. Its potential has been assessed but specific technological challenges must be addressed and the safety approach has to be established.

- The AHTN is a high temperature reactor with better compactness than the VHTR and positive safety potential for medium to very high unit power.
The concept of Molten Salt Fast Reactor (MSFR)

Three circuits:
- Fuel salt circuit
- Intermediate circuit
- Thermal conversion circuit

ICAPP’2015– Nice, France
Molten Salt Fast Reactor (MSFR): fuel circuit

Core (active area):
No inside structure

Outside structure: Upper and lower Reflectors, Fertile Blanket Wall

+ 16 external recirculation loops:
 - Pipes (cold and hot region)
 - Bubble Separator
 - Pump
 - Heat Exchanger
 - Bubble Injection
The concept of Molten Salt Fast Reactor (MSFR)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power</td>
<td>3000 MWth</td>
</tr>
<tr>
<td>Mean fuel salt temperature</td>
<td>750 °C</td>
</tr>
<tr>
<td>Fuel salt temperature rise in the core</td>
<td>100 °C</td>
</tr>
<tr>
<td>Fuel molten salt - Initial composition</td>
<td>77.5% LiF and 22.5% [ThF$_4$ + (Fissile Matter)F$_4$] with Fissile Matter = 233U/ enrichedU/ Pu+MA</td>
</tr>
<tr>
<td>Fuel salt melting point</td>
<td>565 °C</td>
</tr>
<tr>
<td>Fuel salt density</td>
<td>4.1 g/cm3</td>
</tr>
<tr>
<td>Fuel salt dilation coefficient</td>
<td>8.82×10^{-4}/ °C</td>
</tr>
<tr>
<td>Fertile blanket salt - Initial composition</td>
<td>LiF-ThF$_4$ (77.5%-22.5%)</td>
</tr>
<tr>
<td>Breeding ratio (steady-state)</td>
<td>1.1</td>
</tr>
<tr>
<td>Total feedback coefficient</td>
<td>-5 to -7 pcm/K</td>
</tr>
<tr>
<td>Core dimensions</td>
<td>Diameter: 2.26 m</td>
</tr>
<tr>
<td></td>
<td>Height: 2.26 m</td>
</tr>
<tr>
<td>Fuel salt volume</td>
<td>18 m3 (½ in the core + ½ in the external circuits)</td>
</tr>
<tr>
<td>Blanket salt volume</td>
<td>7.3 m3</td>
</tr>
<tr>
<td>Total fuel salt cycle</td>
<td>3.9 s</td>
</tr>
</tbody>
</table>
The concept of Molten Salt Fast Reactor (MSFR)

European Project “EVOL” Evaluation and Viability Of Liquid fuel fast reactor

FP7 (2011-2014): Euratom/Rosatom cooperation

Objective: to propose a design of MSFR given the best system configuration issued from physical, chemical and material studies

MSFR reference design

- Thermo-hydraulic design optimization
- Neutronic benchmark

Fraction of delayed neutrons:

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>$\beta_{\text{circulation}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOL $^{233}\text{U started MSFR}$</td>
<td>332 pcm</td>
<td>165 pcm</td>
</tr>
</tbody>
</table>

Temperature feedback coefficients:

<table>
<thead>
<tr>
<th>In pcm/K</th>
<th>Void</th>
<th>Doppler</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOL $^{233}\text{U-started}$</td>
<td>-3.26</td>
<td>-3.74</td>
<td>-6.67</td>
</tr>
</tbody>
</table>

Evaluated with 1D kinetic point model
MSFR and Safety Evaluation

Some design aspects impacting the MSFR safety analysis

• Liquid fuel
 ✓ Molten fuel salt acts as reactor fuel and coolant
 ✓ Relative uniform fuel irradiation
 ✓ A significant part of the fissile inventory is outside the core
 ✓ Fuel reprocessing and loading during reactor operation

• No control rods in the core
 ✓ Reactivity is controlled by the heat transfer rate in the HX + fuel salt feedback coefficients, continuous fissile loading, and by the geometry of the fuel salt mass
 ✓ No requirement for controlling the neutron flux shape (no DNB, uniform fuel irradiation, etc.)

+ Combined to the negative thermal feedback coefficient

 ⇀Possibility of large and fast load following
MSFR: Physical Analysis of Load-Following – Neutronics calculations

Point-Kinetic (PK) model:

\[
\rho(t) = \frac{dk}{dT} \left(1 - \rho(t)\right)^2 [T(t) - T_0] + I(t)
\]

\[
\frac{\partial P}{\partial t}(t) = \frac{\rho(t)-\beta_{\text{circ}}}{l(1-\rho(t))} P(t) + A. \sum_i \lambda_i C_i(t)
\]

\[
\frac{\partial C_i}{\partial t}(t) = \frac{\beta^i_{\text{circ}} P(t)}{l(1-\rho(t)) A} - \lambda_i C_i(t)
\]

\[
\frac{\partial T}{\partial t}(t) = \frac{P(t)-P_0}{C_P d}
\]

Precursor motion taken into account with \(\beta^i_{\text{circ}} = \beta^i \frac{\lambda_i}{\lambda_i + a_i} \) with the coefficients \(a_i \) defined as (*)

\[
\frac{1}{\tau \delta} \left[1 - e^{-\lambda_i \tau (1 - \delta)} \right] \left[1 + e^{-\lambda_i \tau \delta} \right]
\]

With \(\delta = \) the fuel salt fraction in the core and \(\tau = \) the salt circulation time in the fuel circuit

Limits: Follow-up of the precursors is evaluated here only for a constant fuel velocity during the transient + stationary precursor production density + heat extraction considered as instantaneous

Improved Point-Kinetic (IPK)\(^*\) model:

Reactivity:
\[
\rho(t) = \sum_{f \in \text{core}} \left(\frac{dk}{dT} \right)_f [T_f(t) - T^{0}_f] + I_f(t)
\]

Power:
\[
\frac{\partial P}{\partial t}(t) = \frac{\rho(t) - \beta_{\text{eff}}}{l(1 - \rho(t))} P(t) + A \sum_{f \in \text{core}} \sum_{i} \lambda_i C^i_f(t)
\]

Precursor density of family i:
\[
\frac{\partial C^i_m}{\partial t}(t) = \frac{\beta^i \cdot P_m(t)}{l(1 - \rho(t))} A - \lambda_i C^i_m(t)
\]

Temperature:
\[
\frac{\partial T_m}{\partial t}(t) = \frac{P_m(t)}{C_P d_m}
\]

With \(\beta_{\text{eff}} = \sum_i \beta_i \left| \frac{\sum_{f \in \text{core}} C^i_f}{\sum_{f \in \text{reactor}} C^i_f} \right|_{\text{equ}} \)

and \(\frac{dk}{dT} = \sum_{f \in \text{core}} \left(\frac{dk}{dT_f} \right) = -5 \text{ pcm/K} \)

Utilization of two meshes:
- fixed mesh used to calculate neutronics variables (reactivity, fission power)
- mobile mesh linked to the motion and local properties of the fluid (precursor abundance, temperature...)

- Heat exchanger = power extraction in the cells located in the downstream area outside the core
- Power distribution in core (sine x Bessel functions)
- Residual heat taken into account
- Salt volume expansion (overflow tank)

\(^*\) A. Laureau. “MSFR - Etude des transitoires Cinétique point par zone”, Master Internship, Grenoble Institute of Technology/LPSC-IN2P3-CNRS France (2011)
MSFR: Physical Analysis of Load-Following – Neutronics calculations

Model comparison: Instantaneous variation of the extracted power

IPK model ⇒ oscillations physically explained by the fuel salt circulation, due to the variation of temperature and of precursor abundance in the salt exiting and re-entering the core after a short interval (circulation time of ~4s)

MSFR: good behavior thanks to the large negative thermal feedback coefficients
Load following transients (IPK model): exponential decrease of the extracted power from 100% to 50% /25%

Fission power produced in the core follows the extracted power
⇒ MSFR core driven by the extracted power thanks to its large negative feedback coefficients + energy deposited directly in the coolant

Small variations (< 23 K) of the average fuel temperature evaluated

⇒ Satisfactory behavior of the MSFR for load following
MSFR: Physical Analysis of Load-Following – Thermal calculations

Case studied here with a simple quasi-stationary model to optimize the heat transfers: thermal issues in the fuel circuit for a grid load following of around 50% in 10 minutes

Strong coupling between thermal hydraulics and neutronics (feedback coefficients) ⇒ crucial role of the pumps and heat exchangers for the definition and evaluation of the operating procedures

Parameters available to drive the power variation

- flow velocity of the fuel salt controlled by the pumping power in the fuel circuit
- flow velocity of the intermediate fluid controlled by the pumping power in the intermediate circuit
- input temperature of the intermediate fluid in the heat exchangers which may be adjusted thanks to a by-pass bringing a fraction of the outlet flow to the inlet flow
MSFR: Physical Analysis of Load-Following – Thermal calculations

Case studied here with a simple quasi-stationary model to optimize the heat transfers: thermal issues in the fuel circuit for a grid load following of around 50% in 10 minutes

Power excursion from 3 GWth to 1.5 GWth in some minutes results in a mean temperature variation of less than 10 degrees for the heat exchanger plates.
Conclusions and Perspectives

⇒ Flexibility of the liquid-circulating fuel MSFR during normal operation: very promising for load-following

⇒ Improved Point-Kinetic (IPK) model: very fast calculations – preliminary validation with the COUPLE code developed at KIT in the frame of the EVOL FP7 project

⇒ In the frame of the SAMOFAR (“A Paradigm Shift in Nuclear Reactor Safety with the Molten Salt Fast Reactor” – 2015-2019) project of H2020: development of a MSFR power plant simulator based on the IPK model for the kinetics calculations and adjusted to the TFM+CFD tool – to assess the dynamic behavior of the overall plant, define the operation procedures of the reactor and determine the associated controls and safety margins
Thank you for your attention!
http://lpsc.in2p3.fr/gpr/gpr/french/publis-rsf.htm
Improved Point-Kinetic (IPK)\(^(*)\) model implementation:

Salt circulation in the MSFR

Elementary cell

Mesh in the horizontal plan

Mesh in the vertical plan

\(^(*)\) A. Laureau. “MSFR - Etude des transitoires Cinétique point par zone”, Master Internship, Grenoble Institute of Technology/LPSC-IN2P3-CNRS France (2011)
Coupling Strategy: Transient Fission Matrix & CFD codes

Two kind of intermediate fluid considered in this study: liquid metal or fluoride salt.
MSFR: conceptual design of the salt heat exchangers

<table>
<thead>
<tr>
<th>Constrained Parameter</th>
<th>Limiting value ((P_{Oi}))</th>
<th>Acceptable deviation ((\sigma_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum thickness of the fuel salt channel</td>
<td>2.5 mm</td>
<td>0.05 mm</td>
</tr>
<tr>
<td>Minimum thickness of the plate</td>
<td>1.75 mm</td>
<td>0.035 mm</td>
</tr>
<tr>
<td>Maximum speed of the fuel salt</td>
<td>3.5 m/s</td>
<td>0.07 m/s</td>
</tr>
<tr>
<td>Maximum speed of the intermediate fluid (liquid lead)</td>
<td>1.75 m/s</td>
<td>0.035 m/s</td>
</tr>
<tr>
<td>Maximum speed of the intermediate fluid (salt)</td>
<td>5.5 m/s</td>
<td>0.11 m/s</td>
</tr>
<tr>
<td>Maximum temperature of the materials</td>
<td>700 °C</td>
<td>1 °C</td>
</tr>
<tr>
<td>Minimum margin to solidification of the fuel salt</td>
<td>50 °C</td>
<td>1 °C</td>
</tr>
<tr>
<td>Minimum margin to solidification of the intermediate fluid</td>
<td>40 °C</td>
<td>1 °C</td>
</tr>
</tbody>
</table>

Each set of values of the variable parameters evaluated with the quality function: \[
\prod_i \exp \left(\frac{P_i - P_{Oi}}{\sigma_i} \right)
\]

Variables of the study:
- the diameter of the pipes
- the thickness of the plates
- the gap between the plates on the intermediate fluid side (or “thickness of the intermediate fluid channel”)
- the fuel salt temperature at core entrance
- the fuel salt temperature increase within the core
- the temperature increase of the intermediate fluid in the heat exchangers
- the mean temperature difference between the two fluids within the heat exchangers
MSFR optimization: thermal-hydraulic studies

PhD Thesis of A. Laureau
Steady state neutronic / thermal-hydraulic coupling dedicated to liquid fuel reactor

Velocity - m/s
Temperature - °C

CFD mesh - 1/16 core 300 k cells

ICAPP’2015– Nice, France
The control equations for the liquid-fuel in the COUPLE code are written as following:

Mass conversation equation:
\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U) = 0
\]

Momentum conversation equation:
\[
\frac{\partial \rho u_i}{\partial t} + \nabla \cdot (\rho U u_i + p) = \nabla \cdot \eta \nabla u_i
\]

Energy conversation equation:
\[
\frac{\partial \rho T}{\partial t} + \nabla \cdot (\rho U T) = \nabla \cdot \left(\frac{\lambda}{C_p} \nabla T + \frac{S_T}{C_p} \right)
\]

See ANS-2013 Meeting presentation:
- based on the multi-group (here 2) diffusion theory while considering flow effects of the liquid-fuel

Diffusion equation for the neutron flux of group g:

$$\frac{1}{\nu_g} \frac{\partial \phi_g}{\partial t} = S_g + \chi_{p,g} (1 - \beta) \sum_{g'=1}^{G} (\nu \Sigma_{f,g'}) \phi_{g'}(r,t) + \sum_{i=1}^{I} \chi_{d,i,g} \lambda_i C_i(r,t)$$

$$+ \sum_{g'=1}^{G} \sum_{g'=g} \phi_{g'}(r,t) - \sum_{t,g} \phi_g(r,t) + \nabla \cdot D_g(r) \nabla \phi_g(r,t) - \frac{1}{\nu_g} \nabla \cdot [\mathcal{U} \phi_g(r,t)]$$

The balance equation for the delayed neutron precursor of family i:

$$\frac{\partial C_i(r,t)}{\partial t} = \beta_i \sum_{g'=1}^{G} (\nu \Sigma_{f,g'}) \phi_{g'}(r,t) - \lambda_i C_i(r,t) - \nabla \cdot [\mathcal{U} C_i(r,t)]$$
Steady state calculation

- Half of the core model
- with 112/130 cells in the R/Z directions

Heat exchanger model:
Negative heat source

Pump model:
Injection velocity profile adjusted to avoid recirculation
Concept of Molten Salt Fast Reactor (MSFR)

Next step: requires multidisciplinary expertise (reactor physics, simulation, chemistry, safety, materials, design...) from academic and industrial worlds

Cooperation frames:
- **Worldwide**: Generation 4 International Forum (GIF)
- **European**: collaborative project Euratom/Rosatom EVOL (FP7) – European project SAMOFAR (H2020) + SNETP SRIA Annex
- **National**: IN2P3/CNRS and interdisciplinary programs PACEN and NEEDS (CNRS, CEA, IRSN, AREVA, EdF), structuring project ‘CLEF’ of Grenoble Institute of Technology

R&D objectives
The renewal and diversification of interests in molten salts have led the MSR provisional SSC to shift the R&D orientations and objectives initially promoted in the original Generation IV Roadmap issued in 2002, in order to encompass in a consistent body the different applications envisioned today for fuel and coolant salts.

Two baseline concepts are considered which have large commonalities in basic R&D areas, particularly for liquid salt technology and materials behavior (mechanical integrity, corrosion):

- The Molten Salt Fast-neutron Reactor (MSFR) is a long-term alternative to solid-fuelled fast neutron reactors offering very negative feedback coefficients and simplified fuel cycle. Its potential has been assessed but specific technological challenges must be addressed and the safety approach has to be established.
- The AHTR is a high temperature reactor with better compactness than the VHTR and positive safety potential for medium to very high unit power.
MSFR and the European project EVOL

European Project “EVOL” Evaluation and Viability Of Liquid fuel fast reactor
FP7 (2011-2013): Euratom/Rosatom cooperation

Objective: to propose a design of MSFR by end of 2013 given the best system configuration issued from physical, chemical and material studies

- Recommendations for the design of the core and fuel heat exchangers
- Definition of a safety approach dedicated to liquid-fuel reactors - Transposition of the defence in depth principle - Development of dedicated tools for transient simulations of molten salt reactors
- Determination of the salt composition - Determination of Pu solubility in LiF-ThF4 - Control of salt potential by introducing Th metal
- Evaluation of the reprocessing efficiency (based on experimental data) – FFFER project
- Recommendations for the composition of structural materials around the core

WP2: Design and Safety
WP3: Fuel Salt Chemistry and Reprocessing
WP4: Structural Materials

12 European Partners: France (CNRS: Coordinateur, Grenoble INP, INOPRO, Aubert&Duval), Pays-Bas (Université Techno. de Delft), Allemagne (ITU, KIT-G, HZDR), Italie (Ecole polytechnique de Turin), Angleterre (Oxford), Hongrie (Univ Techno de Budapest)

+ 2 observers since 2012: Politecnico di Milano et Paul Scherrer Institute

Coupled to the MARS (Minor Actinides Recycling in Molten Salt) project of ROSATOM (2011-2013)

Partners: RIAR (Dimitrovgrad), KI (Moscow), VNIITF (Snezinsk), IHTIE (Ekateriburg), VNIKHT (Moscow) et MUCATEX (Moscow)
ICAPP’2015 – Nice, France

MSFR optimization: neutronic benchmark (EVOL)

POLIMI calculations performed with SERPENT

<table>
<thead>
<tr>
<th></th>
<th>Initial Fuel Salt Composition – EVOL Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>233U-started MSFR</td>
</tr>
<tr>
<td></td>
<td>TRU-started MSFR</td>
</tr>
<tr>
<td>Th</td>
<td>38 281 kg</td>
</tr>
<tr>
<td></td>
<td>19.985 %mol</td>
</tr>
<tr>
<td>233U</td>
<td>4 838 kg</td>
</tr>
<tr>
<td></td>
<td>2.515 %mol</td>
</tr>
<tr>
<td>Th</td>
<td>30 619 kg</td>
</tr>
<tr>
<td></td>
<td>16.068 %mol</td>
</tr>
<tr>
<td>Actinides</td>
<td>Pu 11 079 kg</td>
</tr>
<tr>
<td></td>
<td>5.628 %mol</td>
</tr>
<tr>
<td></td>
<td>Np 789 kg</td>
</tr>
<tr>
<td></td>
<td>0.405 %mol</td>
</tr>
<tr>
<td></td>
<td>Am 677 kg</td>
</tr>
<tr>
<td></td>
<td>0.341 %mol</td>
</tr>
<tr>
<td></td>
<td>Cm 116 kg</td>
</tr>
<tr>
<td></td>
<td>0.058 %mol</td>
</tr>
</tbody>
</table>

PhD Thesis of M. Brovchenko

LPSC-IN2P3 calculations performed with MCNP (coupled to in-house material evolution code REM)

Static calculations (BOL here):
Good agreement between the different simulation tools – High impact of the nuclear database
MSFR optimization: neutronic benchmark (EVOL)

Largely negative feedback coefficients, ∀ the simulation tool or the database used

Evolution calculations: Very good agreement between the different simulation tools – High impact of the nuclear database
Safety analysis: objectives

• Develop a safety approach dedicated to MSFR
 • Based on current safety principles e.g. defense-in-depth, multiple barriers, the 3 safety functions (reactivity control, fuel cooling, confinement) etc. but adapted to the MSFR.
 • Integrate both deterministic and probabilistic approaches
 • Specific approach dedicated to severe accidents:
 – Fuel liquid during normal operation
 – Fuel solubility in water (draining tanks)
 – Source term evaluation

• Build a reactor risk analysis model
 • Identify the initiators and high risk scenarios that require detailed transient analysis
 • Evaluate the risk due to the residual heat and the radioactive inventory in the whole system, including the reprocessing units (chemical and bubbling)
 • Evaluate some potential design solutions (barriers)
 • Allow reactor designer to estimate impact of design changes (design by safety)
H2020 SAMOFAR project – Safety Assessment of a MOlten salt FAst Reactor

« A Paradigm Shift in Nuclear Reactor Safety with the Molten Salt Fast Reactor »

(2015-2019 – Around 3 Meuros)

Partners: TU-Delft (leader), CNRS, JRC-ITU, CIRTEN (POLIMI, POLITO), IRSN, AREVA, CEA, EDF, KIT, PSI + CINVESTAV

5 technical work-packages:

WP1 Integral safety approach and system integration
WP2 Physical and chemical properties required for safety analysis
WP3 Experimental proof of i) shut-down concept and ii) natural circulation dynamics for internally heated molten salt
WP4 Accident analysis
WP5 Safety evaluation of the chemical plant
MSFR: draining system

Three Confinement barriers:

First barrier: fuel envelop, composed of two areas: critical and sub-critical areas

Second barrier: reactor vessel, also including the reprocessing and storage units

Third barrier: reactor wall, corresponding to the reactor building

Design of the Draining Tanks=

to keep the liquid fuel for long durations in a sub-critical geometry and at a controlled temperature

Poor thermal conductivity of the molten salts combined with criticality issues

⇒ salt layer thickness limited in the draining tank

⇒ Flat draining tanks with a large surface and a small thickness, immersed in a pool of water for cooling
Draining tanks of the MSFR (ENC2014 conference)

MSFR = liquid circulating fuel ⇒ dedicated safety approach required

Draining system = protection system for the MSFR (no safety rods)

⇒ Main safety issue

Objective of the present study: find simple (even if not optimal) solutions to manage the heat extraction of the fuel salt in the draining system and give an idea of the characteristic phenomena and time periods for this safety system

<table>
<thead>
<tr>
<th>Fuel position</th>
<th>System failure</th>
<th>Associated grace period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>After fuel circulation instant stop - without core damaging</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Core</td>
<td>After fuel circulation stop with inertia - without core damaging</td>
<td>1 hour</td>
</tr>
<tr>
<td>Core</td>
<td>Extra draining delay - with core destruction</td>
<td>+20 minutes</td>
</tr>
<tr>
<td>Draining tank</td>
<td>Absence of water - no tank damaging</td>
<td>30 minutes to 1 hour</td>
</tr>
<tr>
<td>Draining tank</td>
<td>Absence of water - tank damaging</td>
<td>6 hours</td>
</tr>
<tr>
<td>Draining tank</td>
<td>Absence of heat extraction from water remaining liquid and unpressurized</td>
<td>12 hours</td>
</tr>
<tr>
<td>Draining tank</td>
<td>Absence of heat extraction from water - vaporization into the third barrier</td>
<td>23 days</td>
</tr>
</tbody>
</table>

Perspectives: Improve the thermal calculations to be more realistic (incl. convection) + Evaluation of other cooling modes (e.g. using an inert salt) in the draining system + Coupled safety and design studies (MSFR simulator)