COSMOLOGIE : SCIENCE DE L’UNIVERS ET RESISTANCE ACTIVE

Aurélien Barrau

« Résister c'est créer » écrivait le philosophe Gilles Deleuze. C'est sans doute suivant ce mode que la science de l'Univers – peut-être la plus fondamentale qui soit – se déploie aujourd'hui dans un geste effectivement créateur. Les résistances à mettre en œuvre sont multiples : au niveau intellectuel, contre l'écueil du conformisme ; au niveau culturel, contre les paradigmes dominants ; au niveau sociétal, contre l'attrait du plus valorisant ; au niveau politique, contre une logique néo-libérale obnubilée par les applications et valorisations potentielles. Résister, c'est aussi penser contre la créance commune pour trouver de nouvelles représentations, de nouveaux systèmes symboliques, de nouvelles manières de « faire des mondes » ou, ce qui revient au même, de nouveaux éclairages sur certaines versions du monde. La physique du cosmos, aujourd'hui peut-être plus que jamais, doit résister avec véhémence.

La cosmologie, science de l'Univers dans son ensemble, est une discipline singulière. De par son objet et de par ses méthodes. L'expérience « création de l'Univers » n'a effectivement eu lieu qu'une fois. Elle est irreproducible. Ce qui, manifestement, rend impraticable le processus usuel d'inférence des lois à partir de l'observation de régularités lors de la reproduction à l'identique de plusieurs expériences similaires. De plus, l'observateur fait partie du système qu'il entend décrire, ce qui s'inscrit en faux par rapport au protocole naturel de « mise à distance » de l'objet étudié. Enfin, les « conditions initiales » doivent être générales par le système lui-même puisqu'il n'existe, par définition, ni antériorité, ni extériorité au système-univers. Sans même mentionner que les énergies en jeu dans les premiers instants de l'histoire cosmologiques sont bien au-delà de ce qui a été étudié sur Terre et que, à l'inverse de la démarche habituelle, c'est l'état « final » de l'objet d'étude qui est connu et son état initial qui est recherché. De façon remarquable, en dépit de ces singularités et de ces difficultés (à moins que ce ne soit en partie grâce à elles ?), la cosmologie est devenue une science et même une science de précision. Le modèle standard du « Big Bang » est aujourd'hui très convaincant parce qu'étayé par de solides piliers.

Au niveau observationnel, l'expansion de l'Univers s'est – difficilement – imposée pour plusieurs raisons convaincantes : les galaxies s'éloignent toutes les unes des autres, les

1 Astrophysicien au Laboratoire de Physique Subatomique et de Cosmologie (CNRS), professeur à l'Université Joseph Fourier et membre de l'Institut Universitaire de France.

abondances des éléments chimiques dans l’univers sont en accord avec les prédictions de la physique nucléaire dans un scénario de Big Bang, on observe une « évolution » du contenu du Cosmos qui serait difficilement explicable si celui-ci était statique et éternel, enfin, le « rayonnement fossile » se comporte exactement comme attendu. Ce fond diffus est aujourd’hui au cœur des investigations de la cosmologie observationnelle : première lumière de l’Univers, il a été observé par les satellites américains COBE et WMAP et est actuellement scruté, avec une précision inégalée, par le satellite européen Planck3. Ce bain de rayonnement qui empli tout l’espace confirme avec éloquence le modèle du Big Bang et, de plus, conserve de fines empreintes de la physique de l’Univers très primordial – des tous premiers instants – qui, lentement, révèlent leurs secrets.

En parallèle à ces fondements expérimentaux, le modèle standard de la cosmologie s’est déployé par l’édification du cadre théorique indispensable à sa compréhension profonde : la relativité générale. La grande théorie d’Einstein montre que l’espace-temps n’est plus le lieu des phénomènes mais qu’il est, lui-même, un phénomène ! Autrement dit, dans un contexte relativiste, l’espace-temps devient dynamique : l’expansion de l’Univers n’est pas un déplacement de matière dans l’espace mais est une dilatation de l’espace lui-même. Dans cette étrange partie d’échec cosmique, la morphologie des cases évolue avec le temps et se distord suivant la position des pièces… C’est aussi ce cadre, celui de la relativité, qui donne sens à l’étude de ces astres fascinants que sont les trous noirs : poussant le modèle à son paroxysme ils présentent une structure si complexe qu’en leur sein, l’espace se change en temps et le temps en espace4.

Malgré ses succès le modèle est imparfait. Des paradoxes s’immiscent dans le paradigme. Trois pierres d’achoppement font aujourd’hui vaciller l’édifice.

Premièrement, l’essentiel de la masse de l’Univers est de nature inconnue. Pire encore, on peut montrer que cette « matière noire » n’est pas constituée des particules identifiées en physique des hautes énergies. L’énigme est donc double : cosmologique, bien sur, puisqu’il s’agit de la composante dominante de l’Univers ; mais aussi corpusculaire, puisqu’il s’agit de découvrir de nouvelles particules non encore répertoriées. Les solutions possibles sont peu nombreuses et la plus convaincante consiste à supposer l’existence d’une nouvelle symétrie fondamentale (dite supersymétrie) de la Nature qui lirait les forces avec les corps (c’est à dire les « interactions » avec les « objets »). De celle-ci, devrait découler l’existence de particules lourdes et stables qui constituerait la matière noire de l’Univers, environ 60 fois plus abondante que la matière directement visible ! La « traque », tant auprès des accélérateurs de particules, qu’avec des moyens astrophysiques, est aujourd’hui une préoccupation centrale des physiciens et cosmologistes.

Deuxièmement, il y a une dizaine d’années, des observations fiables ont montré que l’expansion de l’univers était de plus en plus rapide. Comment l’univers peut-il donc accélérer si la seule force à l’œuvre à grande échelle, la gravitation, est une force ... attractive ? L’expansion n’est pas troublante : la relativité générale prédit un

3 Voir le site http://www.planck.fr
comportement dynamique de l’espace. Mais l’expansion de plus en plus rapide est très délicate à expliquer. Ce problème majeur est l’objet d’une attention particulière et suscite des efforts considérables, tant au niveau observationnel que théorique. Il est, à l’heure actuelle, difficile de trouver une solution simple et élégante à ce mystère associé pourtant à une énergie deux fois plus grande encore que celle de la matière noire5 !

Troisièmement, le Big Bang lui-même, en tant qu’instant originel, est incompréhensible. Il est une prédiction de la relativité générale là où, précisément, la théorie cesse d’être valide ! Elle cesse de l’être pour une raison simple : la grande théorie d’Einstein ignore les leçons de la mécanique quantique. Mécanique quantique qui montre, justement, qu’à petite échelle tout devient discontinu – comme si le travail d’ourdissage du réel se dévoilait –, que les particules élémentaires sont douées d’ubiquité et qu’une vision probabiliste doit remplacer l’usuel déterminisme. Concilier relativité générale et physique quantique est une tâche extraordinairement difficile à laquelle se sont attelés les plus grands esprits depuis plus que 80 ans. Dans une certaine mesure, le cœur du problème réside dans le concept de temps : alors qu’il est centrale et « extérieure » en mécanique quantique, il n’existe – strictement – pas en relativité générale. L’approche la plus aboutie pour concilier, sans hypothèse révolutionnaire supplémentaire, les grands principes du monde des quanta et de celui d’Einstein est sans conteste la gravitation quantique à boucles6. L’espace y est réinterprété comme un fin maillage de boucles fondamentales : il devient discret, comme formé de petits « atomes » élémentaires. Appliqué à l’Univers dans son ensemble, le modèle transforme radicalement notre vision cosmologique : le Big Bang, la singularité primitive, disparaît et se trouve remplacée par un « grand rebond ». Autrement dit, il existerait un « avant Big Bang », un espace en contraction qui aurait rebondit lorsque sa densité devint gigantesque et aurait donné naissance à l’expansion actuellement observée. Cette élégante théorie, mathématiquement bien définie, est de plus potentiellement testable puisque ce rebond pourrait avoir laissé de fines empreintes décelables dans le rayonnement fossile. Il n’est pas exclu que les observations des prochaines décennies permettent de faire enfin entrer la gravitation quantique dans le champ de la physique « expérimentale » et c’est une situation sans précédent !

En parallèle, l’autre approche spéculative dominante, la théorie des cordes7, contribue à poser la question vertigineuse de l’existence d’univers multiples. Il semble que l’inflation — augmentation considérable de la « taille » de l’Univers dans ses premiers instants — crée non pas un, mais une infinité d’univers-bulles décorrelés les uns des autres ! La théorie des cordes, ou peut-être une autre méta-théorie, les emplit ou les structure avec des lois physiques différentes. Nouvelle blessure narcissique, après Copernic, Darwin et

5 En un certain sens, il existe une solution simple dans le cadre de la relativité générale : une constante cosmologique. Mais sa valeur demeure extraordinairement délicate à comprendre.
Freud : c’est notre univers lui-même qui se trouve déchu de son piédestal et réinterprété comme un flot dérisoire et contingent dans ce vaste « plurivers »⁸. Ailleurs, des mondes sans lumière, des mondes sans matière, des mondes à 10 dimensions… là où tout devient possible.

Bien que l’hypothèse du multivers soit éventuellement testable, contrairement à ce qu’une interprétation superficielle pourrait laisser penser, elle interroge à l’évidence nos attentes par rapport à la science de la nature. Elle pose question, joue avec les frontières et les linéaments. Elle invite à porter une attention subtile aux petits détails oubliés par la tradition, aux pierres d’achoppement et aux points de friction, aux paradoxes et aux apories. Très exactement ce qu’en de toutes autres circonstances un grand philosophe français nommait une … déconstruction⁹ ! Bien sûr la déconstruction, au sens derridien donc, a eu très peu affaire à la physique. Et cela pour une double raison que l’on ne peut que déplorer. D’abord, au niveau sociologique, parce que nous sommes encore et nous étions déjà – par anticipation – dans les contrecoups de la triste affaire Sokal¹⁰ assimilant toute velléité aux audaces postmodernes à une imposture. Ensuite, plus profondément, au niveau ontologique : parce que la physique peine à se penser comme une construction, ce qui constituerait évidemment l’étape préliminaire indispensable à toute déconstruction. Et ce ne sont pas, sur cette voie, les seuls philosophes post-structuralistes français qui peuvent aider, mais également les « relativistes » américains d’inspiration analytique : de Goodman à Rorty en passant par Putnam et Davidson. Relativisme qui, contrairement à une idée trop ancrée dans l’air du temps, n’a rien d’un nihilisme épistémique ou d’un laxisme axiologique mais constitue, tout à l’inverse, une exigence de rigueur et de responsabilité. Dans ce geste, celui d’un constructivisme associé à son inévitable déconstruction, il y aurait naturellement quelque chose d’humble puisqu’il s’agirait de reconnaître à la physique le droit à n’être pas la seule version correcte du réel. Mais il y aurait aussi quelque chose d’une ambition puisqu’il s’agirait de déculper les modes possibles de nos rapports-au(x)-réel(s).

Bien évidemment, ces questionnements scientifiques et philosophiques, suscités par les avancées récentes, nécessitent également un accompagnement politique et sociétal. Ou plus exactement : ils requièrent certaines conditions permettant leurs développements et de leurs ramifications. Celles-ci ne sont bien évidemment pas réunies aujourd’hui. D’une part, parce que la recherche fondamentale, celle qui ne vise pas les applications mais se pense comme une manière de découvrir/inventer le réel, est moins qu’anecdotique dans les préoccupations gouvernementales. Mais aussi, et de façon plus insidieuse, parce que les méthodes de gestion, de gouvernance et de pilotage de la recherche, mises en place depuis quelques années et importées du fonctionnement des entreprises privées, sont très lourdes de conséquences. Mise en compétition systématique des chercheurs, classement, évaluation, sélection arbitraire … jusqu’à l’oubli de la finalité de la démarche. Curieusement, jamais la bureaucratie de la

⁸ Voir Aurélien Barrau et al., Multivers, Paris, La Ville Brûle, 2011
⁹ A propos des liens entre déconstruction et physique, voir Aurélien Barrau et Jean-Luc Nancy, Dans quels mondes vivons nous, Paris, Galilée, 2011
¹⁰ Alan Sokal et Jean Bricmont, Impostures intellectuelles, Paris, LGF, 1999
recherche n’aura été si lourde que sous un régime dont le libéralisme offensif est revendiqué : le quotidien du praticien de la science est de plus en plus tourné vers l’administration, l’évaluation et les interminables demandes de financement. Ce système doublement néfaste – par le temps considérable qu’il prend aux chercheurs et par l’ambiance délétère qu’il instaure – est non seulement idéologiquement critiquable mais il est aussi pratiquement inepte : la science tend progressivement à n’être plus l’enjeu de la recherche scientifique ! Il révèle une méconnaissance grave des *habitus* de la recherche et une incompréhension profonde des motivations de ses acteurs : les scientifiques, comme les philosophes ou les artistes, n’ont pas besoin de primes et de classements, de carottes et de bâtons, pour mieux travailler. Bien au contraire, ce régime de surveillance généralisée et d’inégalités exacerbées est évidemment inhibiteur et démoralisant. Ils ont, en revanche, besoin de deux « circonstances favorables ». La première est la « sécurité » matérielle : disposer d’un poste fixe et stable (ce qui n’est guère dans l’air du temps), non assujetti à un rythme de publication intense et à des renouvellements incertains. C’est l’évidente condition de possibilité de la prise de risque intellectuelle. Les grandes découvertes exigent de tels risques et ils ne sont possibles qu’avec du temps et de la sérénité : très exactement ce que le système d’évaluation systématique – généralement à très court terme – en cours d’instauration rend impossible. La seconde est plus évidente encore, presque triviale : c’est la liberté. Créer sur demande et sur projet, sur contrat et sur ordre, sous contrainte et sous contrôle, est juste une contradiction dans les termes. Mais, vue d’une certaine idéologie droitière, la liberté, semble-t-il, inquiète. En cosmologie aussi, manifestement, « résister c’est créer » et, pour créer, il faut plus que jamais résister.