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¥ Top Pair Production at Tevatron

* Two production modes proon ~ q
- gq annihilation 85%, gluon fusion 15% )
- LHC: 10% /90% e
. Cross section .

Zfdx di f(x,00) f(x 00) 0 [8,m, ] %

-y are the input partons mdex
0000

- f(x, u’) is a parton density function (PDF)

- Factorization and renormalization scale are g 00000
usually chosen to be the same u ~m. To g
estimate systematics uncertainties the 0.5m %
and 2m,_scales usually are used g W 0
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Cross-section

* The NLO+NLL calculation vyield ~ 7 pb, e.g. BCMN hep-
ph/9801375, updated in Cacciari et al. Hep-ph/0303085 (CTEQES6,
MRST):

6.8, @ 1.98 TeV, m = 175 GeV N
(~830 @14 TeV) ww
* Calculated cross-section has a

top mass dependence and the &
measured cross-section depends = it -
on top mass due to the e
acceptance. The SM prediction g T LA
on the cross-section - mass T e

m, (GeV)

d e pe n d e n C e C O u Id be te Ste d (b Ut Figure 12:  Total tf production cross-section in pj collisions at V'S = 2.0 TeV, as a

1 function of the top-quark mass, Dashed lines: NLO result; solid lines; NLO+NLL result,
n O m as S m e aS u re m e nts VI a th e Upper lines: gt = my/2; lower lines: pp = 2my.
cross-section).
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Decay modes
* |n SM dominant 2-body decay t—Whb.

l
Assuming unitarity of 3-generation CKM W : |
matrix: [V, | = 0.9990-0.9992 @ 90% CL, ¢ » e
B(t—>Wb) ~ 100% " ,
e I'~ 1.4 GeV @m =175 GeV: top decays Top Pair Decay Channels
before top-flavored hadrons or tt-
quarkonium bound states can form. Top S o 2],
quark spin efficiently transferred to the final g s
state. 3 |2 E|®
* Top final state signature: e 1] tautjets
. E 3 | muontjets
- All jets: 46%, huge background o IS5 || electron+iets
- Lepton +jets: 30% moderate background W lewlr wd | s

- Dileptons: ~5%, small background

- Tau + X: ~14%, significant background
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Monte Carlo

* Aplgen generator is used usually in

the cross-section measurement. PRL 94, 221801 (2005)
Fixed order results are not reliable .
. . - "% DO
in the divergent region (QCD § | e o te0cev (xao00
. . ~ 10 Fo < pMaX < eV (x
radiative effects). R 100 < ohec < 130 oV (20). .
. O 4p3L 0 75<pr*<100GeV
* Solutions: LN
= 102 =

— Analytic resummation (collect

divergent terms and sum to all 10 | |
orders) are not available for many O
processes. B
(] . 1] 10 E — NLO
- Monte Carlo “resummation” : use a J: ---- LO

model to represent activity below a 0 /' NLOUET++ (CTEQS.1M)
M= Wy = 0.5 p7™

cut off (turned to data), e.g. Pythia oL MR

together with fixed order generator, e o " (radf
dijet

e.g. AIEgen
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DES Monte Carlo (2)

* Double counting of contributions is an issue. Use existing

scheme to solve this problem (e.g. S. Hoeche et al.,
hep-ph/0602031).

* MC generation.

- Matrix element generation: generate samples with different
narton multiplicities which fill the phase space except for the
narton levels cuts used to avoid divergences.

- Parton shower application: divergent phase space filled by the
narton shower, however, multiplicity bins are not overlap

- Matching scheme (MLM in Alpgen): parton shower
constrained to prevent overlap between multiplicity bins

- Using: merge different final state weighted with a
corresponding cross-section
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D5 TEVATRON

Collider Run Il Peak Luminosity
2A0E+32 240E+32

200E+32 200E+32

160E+32 & 1 B0E+32

1.20E+32 A 120E432

Peak Luminosity

8.00E+31 8.00E+31

4.00E+31

Main Injector 400!
& Recycler :

e

| 4 Peak Luminosity + Peak Lum 20x Average |

* Current performance: Instantaneous luminosity 1.5x1032 cm2s?; delivered
integrated luminosity: ~1.3 fb'. Meeting design performance in 2004 and 2005.

* Long term luminosity plan :

— Instantaneous luminosity: 3x103? cms* by 2007

- Delivered integrated luminosity: 4.1 fb* (Base) - 8.2 tb'! (Design)

Peak Lum 20x Average
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DO detector
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g9 Data Quality: calorimeter example

e

2

* The very first step in analysis is a data quality selection

- Removing “bad” runs (hardware failure)
— Remove noisy cells or tower before reconstruction

- Remove noisy events

MET includes cells with E>0 (no CH)
No correction

* Additional algorithms applied to improve® i
ﬁ L
Bad runs were removed

quality of reconstructed calorimeters

Noisy events were removed

OO0 E .

objects

Bad cells/towers were removed

- Remove isolated cells with high signal

- Remove “noisy” region: cells with
10

small signal, when no neighbors

‘;E

| ~FT] ]
0 5 100 150 200 250 300 350 400
Missing ET, GeV

present with significantly large signal
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Jet identifications

* Iterative cone algorithm is used for the
jets reconstructions (split and merge
proto-jets).

* Apply jet identifications criteria: EM
fraction not too high; jet is not purely
hadronic; no jet formed by single cluster or
one tower; jet should be confirmed by L1
trigger readout.

* Correct jet energy with JES is the crucial
part of many analysis, e.g. top mass
measurement (see C. Royon JES

resentation later today)
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S Object ID and trigger efficiencies

* The object ID and trigger efficiencies is measured in
data: Z—ee, Z—uu, yHet and compared with MC

* For a perfect agreement need to introduced additional
scale factors and object over-smearing. Scale factors
produced for the object with “standard” selection and
have dependence from the chosen parameters (p,, 1, ¢,

Z.,, ...). The typical average corrections are 1 — 10 %.

* Another product of this comparison are the efficiencies
systematics. Usually less than several percent.
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b-tagging

—

o
®

e b-jet efficiency DO
- — c-jet efficiency
Es ~ mis-tagging rate (<x10)

ety T

—o—
- &—

W \ Impact parameter P

Efficienc

& P
A 0
| T

o
!‘NI

R S e S el
20 40 60

] Jet p (Gc?V)
* Before: secondary vertex tagging was one from the several available

at DO

* Now: Neural Network tagger is under certifications. Use more inputs:
decay length significance of the Secondary Vertex (SV), weighted
combination of the N___ _with high IP significance; probability that the

jet originates from the PV; y? of the SV, number of tracks used to
reconstruct the SV, mass of the SV; number of SV found in the jet;

=]

* Efficiency rise to 60% and more per jet.
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ALL-JETS FINAL STATE

* Final state: at least 6 jets (with 2 b-jets). Large branching
ratio (46%), but huge QDC background Cqcp > 9000 o,

* Preselection: at least 6 jets (p,>15 — 45

GeV), isolated lepton veto, jets should
come from the same primary vertex

-, * Use b-tagging to suppress the QCD
"~ background

* Final selection, 2 approaches:

— Neural network discriminant based

on the kinematic variables

— Mass peak discriminant
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¥ SECONDARY VERTEX TAGGING

* Typical efficiency to have at

Efficiency

0.8- o b-jet efficiency DO least one b-tag in a 7 event is
;= edstellicincy 61%. Use muon-tagged jets to
0'6:_ SRS measure data / MC efficiency
o.al ++ +++ correction factor and then
i+++ + apply this factor to MC.
0.2- * 1or 2 b-tagged jets required
o/ N for NN analysis
20 40 60

Jet p, (GeV) * 2 b-tag + not-tag for all other
jets required in mass peak
analysis

Top Workshop IN2P3 TOP PRODUCTION (DILEPTON & ALL-JETS FINAL STATES) 14



NN: background estimation

* Tag rate in background data events (TRF) is 3%. This
includes: b-jets, c-jets, mis-tag rate for light jets.
* TRF was measured using the pre-selected 6 jet sample

(contains mainly background) and parametrized in n, o,
p,of the jets, primary vertex Z, sum of jet p, (H,).

* Corrected background prediction for the double tag
events, because bb+jets contributions increased.

* Use NN output outside the tt peak for the
normalization.

Top Workshop IN2P3 TOP PRODUCTION (DILEPTON & ALL-JETS FINAL STATES)
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FIG. 7: The output discriminant of N N,;, an artificial neural
network with six input nodes. N N,; is optimized to distin-
guish between fully hadronic ¢ Monte Carlo events (signal)
and multijet production (background).

¥ NEURAL NETWORK DISCRIMINANT

1) Scalar sum of the p_ of four leading
jet (H,)

2) Aplanarity: a linear combination of
the eigenvalues of a normalized
momentum tensor

3) The geometric mean of the
transverse energies of the fifth and
six leading jets (E

T56)

4) The weighted RMS of 1 of the six
leading jets (<n®>)

5) The second smallest di-jet mass in
the event (M** )

6) The minimal mass likelihood value
over all combination (M)
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DES Mass peak discriminant

* Cuts on aplanarity, sphericity,
centrality and distance between 2
b-taged jets are used for selection.

* Background estimation:

- Multijets QCD events + W+jets
background distributions derived
from data (random “b-tag”)

- Additional correction applied to
take into account correlation
between b-jets

- Normalized background sample
using jj mass spectrum (m < 65
GeV)
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Results

* NN: use cut on NN, subtract the background contribution,
extract cross-section separately for the one tag and double
tag events and combine them.

* Mass peak discriminant (main syst. is a backg. prediction):
o= 12.1 +4.1(stat) +4.6 (syst) pb, m=175 GeV, L~360 pb*
e CDF: 8.3 + 1.0 (stat) **°_ .(syst), L ~ 1000 pb'

>
> — . ©120— DG Run Il Prelimina 360 pb'
3 89" pg Run 11 Preliminary (360 pb") o i ry ( pb)
% 70— = D@ Data Candidates %100— __ P2 D-ata_
5 - [[I] D@ Data Untagged Multi-Jet Events 5 i Bl Pythia tt
£ °or S 8o
o = L
E so- =
i - S 60—
40
30—
20—
10—
0_| 11 ¢+.+g+ E . XM, )
(0] 50 100 150 200 250 300 350 400 450 500 o) 50 100 150 200 250 300 350 400 450
bjj Mass (GeV) bjj Mass (GeV)
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* The “cleanest” channel for the top

e Signature: 2 b jets; 2 high p, leptons et

(electron(s), muon(s)); large missing K. ;400

production, but small branching
ratio (~6%)

antiproton =

* Main backgrounds:

- “physics” backgrounds WW, WZ and Z production (ee, Uy, ep);

- “fake” electron, muon and missing E, backgrounds;

* 4 separate analyses: ee (1.6%), uu (1.6%), eu (3.2%), lepton+track.

Branching ratios include tdecays to electron and muon.
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EVENTS SELECTION

* Electron: isolated electron-like shower in calorimeter,

matched to the track in the tracking system, p,, > 15 GeV,
nl<l.lorlS<n|<25

* Muon: track in the muon system matched to the track in the

tracking system, isolated both in the calorimeter and in the
tracking system, p, > 15 GeV, n| < 2.0

* Jets: jets-like shower in the calorimeter p,, > 20 GeV, In| < 2.5

* Missing E_: sum of the calorimeter cell transverse energies,

corrected by jet, electron, muon energy depositions. Typical
cut value 35 — 40 GeV
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¥ INSTRUMENTAL BACKGROUND

) . * Di-electron channel has a multijet and Z
%10- 3 + SE— production backgrounds due-to mismeasured
%10_2 A missing K. and misidentified electron. These

i A background estimated

10 v b b v P bl b by
0 10 20 30 40 50 60 70
Missing E ; (GeV) from data.

°* Di-muon channel has a significant contribution

from Z—pup. It is estimated with simulation

corrected by experimental resolutions.

' P R I
a a5 1 1.5 2 25 3

o TR PN T P S|

Ad(leading p, MET)

Electron likelihood | ° Electron-muon channel has a contribution

KOLM. PROB: 0.76
s DATA

3 FAKE E BCKG from multijet production due to the

[ SIM Z->1t
@ sim ww
@ SIM tt

misidentified electron. This contribution is
subtracted using the electron likelihood

distribution with signal and background

NUMBER OF ELECTRONS / 0.02

. 08 09 1
LIKELIHOOD shapes measured from data
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FINAL SELECTION

* Di-electron channel uses cut on

Ever_ltslz.
%

1 jet selection wmrisar

sphericity (sum of 2 leading o bl =2
: : - L+ Up channel
eigenvalues of a normalized DS O

momentum tensor)

-

-
0
A
r T
[
—
e
—

* Di-muon channel uses cut on the >

value calculated in Z—uu hypothesis

(2> 2) DO Preliminary

N
[4)

® Data (370 pb )

ee, e B &t (7 pb cross-sectign)

’ !'1’9 uu - Fake leptons
combined I ww/wz

[ Jzry

* Electron-muon channel uses cut on

the sum of transverse momenta of 2

Number 'ef Events
Q
AR RRRRE R

leading jet and leading lepton 102—
(H', > 122 GeV) s *
ocli 00

H. (GeV)

Top Workshop IN2P3 TOP PRODUCTION (DILEPTON & ALL-JETS FINAL STATES) 22



Y Lepton + track: event selection

 One identified lepton + track (p; > 15 GeV) + 2 jets as before

* MET (cut differs in the e and muon channel, inside or outside Z-
mass peak), 15 - 35 GeV

* Atleast one b-tagged jet. Veto on ey final state.
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Lepton + track background

* Physics background. Z—1tt, WW estimated from MC. b-
tagging efficiency for Z—1t the same as for the Z—ee, Z
—uu, for WW the same as for W+jets

* Missing K, instrumental background. Mainly Z—ee, Z—

uu events. Normalized using the ratio of the observed to
predicted number of events in the low MET region.

* Lepton, track instrumental background arise from QCD
and W+jets events. Estimated using samples with
different data / background fractions.
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I3 More about physics background.

* Z and WW background is simulated using
Pythia hadronization, but results are not perfect.
Jet selection require additional correction

 Z background: Z p_reweighting, cross-section
available NNLO could be corrected with data.

* WW cross-section available for NLO, but
generator is only LO. Due to the small statistics
it is difficult to normalized WWH+jets to data.

Lead to the big systematics error on this
background contribution.
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Number of Events

Selected events

Category ee L1 ell 44
Integrated luminosity (pb™") 384 363 368 -

- ~ K ~r+0.18 : 1+0.22 : +0.33 o1+0.43
WW/ W2z 0.207719 | 0207007 | 1137042 || 1537050
Instrumental leptons 0.09 £ 0.03|0.13 £ 0.04| 2.137720 || 2.357702
T 0.2 T 2103 = T12.6 3126
Total background L.OT0s | 135, | 45772 || 6.8772
Signal efliciency 0.082 0.064 0.139 -
Expected signal 3.54£0.4(25 03[ 113513 | 17.37}

: . =104 a2 o104 28 o4 1729
Signal 4 background expectation| 4.5 - [ 3.87,; | 15.8755 || 24.1757
Selected events 5 2 21 28

3 a2 o F
70r DS Preliminary S 20 DJ Preliminary S 25 DOJ Preliminary
60 - LI>J185 | u>J [ |
. ® Data (370 pb ) ‘S 16F ® Data (370 pb ) -1620,'_ ® Data (370 pb )
50F B tt (7 pb cross-section) %14 B (7 pb cross-se pion); B ti (7 pb cross-section)
40'5_ [ Fake leptons -E12 [ Fake leptons -215:_ [ Fake leptons
g I ww/wz S .15 I wwwz S © I ww/wz
sor [Jzv = [Clzy P Dz

Jet multiplicity

150 200

0

25
Missing E; (GeV)

50 100
Leading Lepton P, (GeV)

150 200
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Lepton + track events

e + track

i+ track

Njets = 1

Njets = 2

Njets = 1 Njets = 2

Expected number of tagged events

W 0.037 == 0.002 0.010 == 0.00210.016 = 0.001 0.009 == 0.002
Z/~" — 717 0.09 = 0.02 0.13 &= 0.02 0.03 == 0.01 0.09 = 0.02
Z/~" — ee, pup 1.49 = 0.04 2.35 = 0.06 1.44 = 0.04 1.86 = 0.06
Multijet/ W +jets 0.36 == 0.06 0.35 = 0.07 0.08 4= 0.02 0.05 == 0.03
Total background 1.97 = 0.08 2.83 = 0.09 1.57 = 0.05 2.00 = 0.07
Tot. uncertainty (stat+syst) on bkg +0.91 —0.85 +0.87 —0.64 | +0.77 —0.77 +0.51 —0.49
tt 1.55 == 0.03 6.59 = 0.07 0.92 == 0.02 4.74 = 0.06
Total 3.53 = 0.08 9.4 = 0.1 2.49 = 0.05 6.74 = 0.09

Tot. uncertainty (stat+syst) on ¢¢ + bkg

+0.99 —0.86

+0.99 —0.85

+0.83 —-0.77 +0.67 —0.64

Observed number of tagged events

10

1 je)t selection

Data T 9 1 6
250 o D@ Data D@ Runil Preliminary, 370 pb” 7:_Dg Runll Preliminary, 370 pb™ o D@y Data 12" g Runll Preliminary, 370 pb™ o D Data
Wit C M - B
fi - “
ol BZ > e,y 6 Mz — ee, up 10~ Bz — ee, up
Hz > - Bz - i Bz - 1t
L DWW < 5— DWW 8 DWW
151 [Multijet/W-+jets - [IFake I/track - [JFake I/track
- 4 j (—
- - 2 jet selection

1 2
Number of Jets

Y

50
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RESULTS

Lepton + track and eu combined (L ~ 360 pb):
o=28.6"7°__(stat) + 1.1 (syst) + 0.6 (lum) pb
CDF (2 leptons, L ~ 750 pb) : 8.3+ 1.5 (stat) + 1.1 (syst)

SYSTEMATICS UNCERTAINTY VALUE, %
Jet energy calibration +6.6 -8.5
Jet identification +2.2 -3.2
Muon identification +4.5 44
Electron identification +3.7 -29
Trigger +3.7 -5.8
Other +9.0 45
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CONCLUSION

* The most crucial part for the analysis is the data quality,

objects identifications, b-tagging, jet energy scale, in some
cases MC simulation (hadronization).

* Despite many efforts the “pure” MC is not sufficient to
determine ID and trigger efficiencies, background
contribution. Need to use appropriate correction or data
based methods

* More than 1 fb! available for analysis. In all final states the
cross-section measurement will be limited by systematics.
With current analysis ~10% error is reachable
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BACKUP
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DS MLM Matching Scheme

* generate parton-level configuration for a given multiplicity
bin withcuts p_>p. _and R>R _

* perform parton showering using HERWIG or PYTHIA

* process showered event before hadronization with jet
algorithm (UA1, though kT and Run 2 cone yield similar
results)

* match partons and parton-shower jetsin n—o:

- a jet can only be matched to a single parton
- exclusive: every parton matched to a jet with N =N

parton

— inclusive: all partons matched to jets
- good to LL precision
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NN KINEMATIC DISTRIBUTIONS
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