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‘ What is what?
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‘ Approximations to QCD

Fixed order matrix elements: Truncated expansion in a; =

Full intfereference and helicity structure to given order.

= Matrix Elements correct for ‘hard jets
= Parton Showers correct for 'soft’ ones.
= The question remains what is hard and what sof1?

= To what extent is it realistic to construct/tune
showers and match them to hard radiation?

Interference terms neglected + simplified helicity structure +
ambiguous phase space > large uncertainties away from
singular regions.



MC generators for shower (LSR/FSR) ano%
multiple interactions/underlying event

At ATLAS we are using two primary MC generators for
showering description:

= Pythia (currently v. 6.403 with patches)
NEW model for UE and TSR/FSR

= Herwig ( currently v. 6.510 with patches)
Jimmy (v. 4.2) used for UE description

In addition, Sherpa has been validated and is used for a
selection of processes.

The MC base will of course expand:
= Pythia 8
= HERWIG++

= Ariadne
= ?277?



Pythia 6.3+ : pr-ordered showers

Merged with X + 1 jet Matrix Elements (by reweighting) for:
h/~/Z/W production, and for most EW, top, and MSSM decays!

Exclusive kinematics constructed /
¥ q—qg <

inside dipoles based on Q° and z,
assuming yet unbranched partons
on-shell

2 =
Dl evol =
2(1—2)(Q* — md

lterative application of Sudakov factors...
= One combined sequence p | max > P11 > P12 > --- > Plmin

NB: Choice of p | m.x NON-trivial and very important for hard jet tail
<> wimpy vs power showers...




Common validation procedures at ATLAS @
]

There are in general two approaches:

= We take into account the experience and results at the
Tevatron (tunings) and/or we try to tune/check the
generators using available Tevatron information ourselves.

=  We compare the results of different MC generators in
the quantities where they should match (to a certain
precision) either at the generator level or by performing
full analysis studies.

We intend to make use of CEDAR/JETWER when it comes
online.

= Need contributions from TeVatron experiments!



\UE tunings: Jimmy CSC tuning

JIMMY4.1 & HERWIG6.507

LHAPDF Default
PDF set number: 10042 elau
JMUEO=1 QCD 2—2 (secondary >  JMUEO=1
scattering p; limited by PTJIM)
PIINEOEANEYAICNCVJiZa ™ nimum p; for secondary > PTJIM=3.0
scatterings '
JMRAD(73)=1.8 inverse proton-radius » JMRAD(73)=0.71
' squared
probability of a soft *  PRSOF=1.0

underlying event




UE tunings: Jimmy validation using CDF data @
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UE tunings: Jimmy validation using CDF data
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UE measurement: MAX/MIN analysis

unclerlying event in Hard Ir ter;muon; at
Tevrlrror ppoar collider, ©

aboration, PRD 70, O//DO/ /OO")

= Two cones in n—¢ space are defined:
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PTJIM energy dependence

PTJIM=2.8

* same PTJIM obtained
from comparisons to 1.8
TeV data!

*This underestimates the
data.

PTJIM=2.1

= 2.8 x (0.63 / 1.8)0-27

* introducing energy dependent
factor we get a better agreement.
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< Nchg > - transverse region

UE tunings: Pythia vs. Jimmy
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Consistency check for CSC tuning: top-quark production D
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ISR/FSR showering studies

The new pT-ordered ISR/FSR/UE introduced in Pythia 6.3:
The most striking difference from the 'old’ results is the

Also quite harder than HERWIG/Jimmy..
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Drell Yan processes

The relevant observable for the ISR effect was
observed to be the P of the dilepton system

= Measures the recoil of the Z due to ISR

In the given studies the lepton FSR ( ) was turned off to get
the ideal picture.

The comparison was made between and
Drell-Yan.
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The P+ of the dilepton system

It appears that the new Pythia showering
actually gives a

This seems surprising:

= MC@NLO should in principle —
get at least the first ISR A
gluon harder than Pythia?

— Pythia - new

= Actually, not entirely true: o

The MC@NLO 'extra jet’
part is - same
as Pythia's 0.06
in the Drell-Yan case.

= The observed difference 0.04
therefore strictly ISR
related! 0.02

0.08

1 1 1 1 1 1 1 1 1 |
20 40 60 80 100
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P+ of the dilepton system

The situation becomes quite worrying if one superimposes the Drell-Yan
with the

= Seems to agree
quite well with

MC@NLO!

— MC@NLO
. One WOUId ThUS - Pyﬂ-"a - new
assume that the - Pythia - old
hew showering is 04

‘problematic’ ...

= Of course there
is a however..
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P+ of the dilepton system

The present ‘old’ Pythia defaults are quite close to

for UE settings.

20
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P+ of the dilepton system
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P+ of the dilepton system

The new AW tuning was ported to the ATLAS Pythia setup.The result is rather
surprising, namely the AW-tuned ‘old’ Pythia showering seems fo agree quite well
with the
= This would thus

indicate that the

new Pythia model

WOI"kS fine! —_ MC@NLO
= What it boils down = I
to is that il — Pythia- old, AW tune

0.1

= Sadly similar tests
do not exist at CDF..
Need more infol! 0.06

0.08

0.04

0.02
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da/dprz (pb/GeV)

‘Py’rhia 6.3+ : pr-ordered showers

30 T T T

—
= —:‘ Tune A —— 2 99 — H+ X at LHC, m_ =125 GeV, PYTHIA 6.325,0 = 45.2 pb (Grazzini)
Rap ———

S hal’p |S __________ o " Grazzini et al, MRST2001
25 Low FSR L &._ Pythia 6.325 Default I S R
E%E EESHE T \%\ Al e Pythia 6.402 IMODEL = 0 LHC
© 1 ;-I _" CLEN Pythia 6.402 IMODEL = 1 . !
20 T . I e ima Pythia 6.402 IMODEL = 2 nggS pT
I S R 0.8 Pythia 6.402 IMODEL = 3
15F Tevatron, 1 0.6

Drell-Yan p;

0.4

) r
. &%#IL ook g Li-u"-i 72,:--.'_:" -? ot _-_‘. ey T

oFa ol L L e L L L

[
'
e
L
s
H

0 10 20 30 40 50 60 70 80 90

— S F
E & \
3 Fo*
® ALEPH data 92+93 ‘E
- PYTHIA 6.3 pt-ord T 10 E \ @ ALEPH data 92+93 3
Sample tunes available as new 3pt AN PYTHA G o :
= PYTHIAS1 mass-ord. = % e PYTHIA 6.1 mass-ord.

subroutine: PYTUNE(ITUNE) T ] Lo

http://www.thep.lu.se/~torbjorn/py FSR oL

thia/main75.f 5 = ALEPH, :
: . Aplanarity and

(incl. detailed comments on each tune) “*@y\t—of—plajne P,

- 0
R E
B | g
P P B B T R P
0.1 0.15 02 0.25 0 0s




‘ Tt~ processes

Again the MC@NLO and Pythia (old
and new showering) are compared,
both initial states (qq~ and gg) are
taken into account.

The ISR-sensitive observable we
looked at is the pT of the t1~
system - motivated by the Drell-Yan
but hard to reconstruct.

The first look gives again a
somewhat surprising

result: The new Pythia showers are
substantially harder.

We will need the data to tune and
(in-)validate the different models..
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—— MC@NLO

—— Pythia - new
—— Pythia - old

—— Pythia - AW tune
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50

e ey |
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' To Quantify Further:

= Compare MadGraph for ttbar , with O, 1, and 2 explicit additional jets
to:
= 5 different shower approximations (Pythia):

= 'Wimpy Q?-ordered’ (PHASE SPACE LIMIT < Q;)

=1
= 'Power Q?-ordered’ (PHASE SPACE LIMIT = s) 91% PARP(67)
= 'Tune A’ (Q2%-ordered) (PHASE SPACE LIMIT ~ Q;) ~4

= 'Wimpy p-ordered’ (PHASE SPACE LIMIT = Q)
= ‘Power p-ordered’ (PHASE SPACE LIMIT = s) A}New in 6.3

NB: Renormalisation scale in p;-ordred showers also varied, between p,/2 and 3p,

| Rainwater, Plehn & PS : hep-ph/0510144 + hep-ph/0511306 |
24



ttbar + jets @ Tevatron %

Process characterized by:

» Threshold production (mass large compared to s)

+ A 50-GeV jet is reasonably hard, in comparison
with hard scale ~ top mass

SCALES [GeV] > RATIOS

s = (2000)2 Q2/s = (0.1)2
Q%hara ~ (175)7 1/4 <p;/ Q<2
50 < Py < 250
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SCALES [GeV]
s = (2000)2
Q2Hard - (175)2

jets @ Tevatron

RATIOS
Q2,/s = (0.1)?
1/4<p;/Q,<2

50 < Py jor < 250 |
E - \ Py, (PP—ti) E - \ Pr; (PPt
— ‘I D = \ - - 1 ﬂ = ‘\ -
g N\ No K-factor epzsocev | g 3 NLO K-factor e zsocev
- ‘1‘ mjes, ARz04 1 A\ nj<5, AR>0.4 ]
-é,i Yo Mo K-factors -&i b Keyia=1-35
€ I b
- - L
L -3
3 NN E 10 4
Tewatron e, W Tewvatron %
— Susy-MadGraph % N Y — Susy-MadGraph Y
= Pythia: pf (power) % NN = Pythia: pZ [power) *
----- pEiwimpy) N Y =mmn pi (wimpy)
— ClvlE [powear) b — OE (powar)
_____ QP (wimpy) \ - “———— Q@ (wimpy)
o7 (una A) \ % < @ (una A) \
i | i i i i |l i i i T L i i ‘.I.-:- 1 ke i 1 ﬂ i | i i i i L i i i i i
Q 50 100 150 200 250 0 50 100 150 200 250

Hard tails:
* Power Showers (solid green & blue) surprisingly good (naively expect

collinear approximation to be worse!)

 Wimpy Showers (dashed) drop rapidly around top mass.

Soft peak: logs large @ ~ mtop/6 ~ 30 GeV - fixed order still good for
50 GeV jets (did not look explicitly below 50 GeV yet)
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ttbar + jets @ LHC

Process characterized by:

* Mass scale is small compared to s

+ A 50-GeV jet is still hard, in comparison with
hard scale ~ top mass, but is now soft compared

Q2Hard - (175+---)2
50 < Py e < 450

with s.
SCALES [GeV] RATIOS:
s = (14000)2 Q2. /s = (0.02)?

1/5<p;/Q, <25
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SCALES [GeV]
s = (14000)2
Q% g ~ (175+...)2

jets @ LHC
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* Wimpy Showers

«Soft peak: logs
__ dominated here)

not threshold
jets.

hiexpress.com  1-800-HOLIDAY

28



‘ pr of hard system

(Equivalent to pr, for Drell-Yan)

ttbar + 1 jet @ LHC
p; of (ttbar) system

~— 10
% Pr(th) (pp—tl)
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% N I8, ARpQ4
£ [ ~ N Kmh‘-'h
Eg 1
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10
10 SPTPEPEPE BT AP TSP BN PRFTPIN,S SRR s, SRS (T S
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SHERPA studies @
Quite some effort on the ATLAS part to validate the SHERPA ﬁ
code and incorporate it into the ATLAS ATHENA framework,

= We think using SHERPA is of essence because of the CKKW
matching

= useful to compare to ALPGEN MLM matching and PS models
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‘ Sherpa UE

| n Charged Tracks (P, > 500 MeV) |
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‘ Impact of different models

= Recently a study of top mass reconstruction using 1~ events by Jerome

Schwindling was done using:

= MC@NLO (Herwig+Jimmy)

=  AcerMC (Pythia - new model)
= Full detector simulation

AcerMC versus MC@NLO

We do cannot know
offhand which answer
is correct!
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Summary/Conclusions @

i

A lot of effort has been spent (but by no means wasted!) on
incorporating different MC tools and models intfo the ATLAS
software framework and validating them.

= The validation and use of new tools/versions that appear on
the HEP 'marketplace’ will of course continue.

Some issues still need work!

= e.g. Tuning MC tools using Tevatron (and other)
experience/results. Collaboration is of the essence!

= We won't know what the right answer is until we get our own
data to work on..

All in all we believe to be in a good shape waiting for the first
physics datal
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