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1. Introduction

In the SM, the top quark is defined as theSU(2)L
(weak isospin) partner of the bottom quark.
• S = 1

2

• Q = 2
3

• Transforms as a color triplet under the SU(3)
gauge group of strong interactions.

None of these quantum numbers has been directly
measured, but a large amount of indirect evidence
support these assignments. These include preci-
sion measurements of Γ(Z → b̄b), AFB, B0-
B̄0 mixing, and FCNC decays of B mesons.

• Measurement of σ(pp̄ → tt̄) at the Teva-
tron is consistent with theoretical calculations
for a color-triplet quark.

• Run 2 of the Tevatron (2001-2008) will firmly
establish the identity of the top quark.

• The LHC (2007-) and the ILC (2015? -) will
be needed for precise determination of top
quark properties and to look for subtle hints
of new physics.
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1.1. Theoretical Perspective

The most pressing challenge in particle theory is
to explain the dynamics behind mass generation:

1. EWSB ⇒W and Z acquire mass,

2. FSB ⇒ fermion families & mass hierarchy.

Its large mass sets the top quark apart.
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Some interesting consequences of large mt

• Top and Higgs contribute to the radiative (loop)
corrections to MW ⇒precise measurements
of MW and mt together constrainMH0.

• The only fermion heavier than W± ⇒
– Extremely short life (τt ∼ 4×10−25 s).

The top quark decays before hadroniza-
tion (τhad ≈ 28×10−25 s). ⇒opportunity
to study the properties of a bare quark,
free from long-range effects of the strong
interaction, e.g. confinement.

– On-shell W production in fermion decay
⇒longitudinal component ofW exposed
⇒test of Higgs mechanism in EWSB.

• An excellent place to look for on-shell pro-
duction of particles beyond the SM that must
be heavier than other fermions (t̃, H±).

• Most likely to shed light on the mechanism
of generation of fermion masses. Interesting
to the study of any mass-dependent coupling.
Top Yukawa coupling is curiously close to 1.
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Discovery of elementary particles
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Constraint on MH from mt and MW
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Top Physics Potential
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1.2. Experimental Arena

Top production at Tev2, LHC, and ILC

Collider Tevatron LHC ILC

type pp̄ pp e+e−

Operation time 2001-2008 2007- 2015(?)-

ECM (TeV) 1.96 14.0 ∼1.0

〈L〉 (cm−2s−1) O(1032) O(1034) O(1034)
∫ Ldt (fb−1) ∼ 2 ∼300 ∼1000

σtotal (pb) ∼ 1011 ∼ 1011 O(10)

σ(b̄b) (pb) ∼ 3 · 107 ∼ 3 · 108 O(1)

σ(WX) (pb) ∼ 4 · 104 ∼ 2 · 105 O(1)

σ(tt̄)(a) (pb) 6.70+0.71
−0.88 825+58

−43 ∼ 0.8

σ(single t) (pb) 2.91 ± 0.02 315+8
−2 ∼ 0
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Cross sections at Tevatron (
√
s = 1.8 TeV)
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• Of over 1014 total collisions in Run 1, roughly
one in every 1010 producing a tt event.

• When running at maximum luminosity, about
5 tt events are produced every hour in Run 2.
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2. Production of Top Quarks

2.1. Top-antitop pair production

• At hadron colliders, top quarks are produced
most often in pairs via strong interactions.

q
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t̄

g

g

g
t
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t

t
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• Such events have been used in measuring the
rate of production (σ(pp̄ → tt̄)) and the
mass of the top quark (mt) at the Tevatron.

• Strong interaction ⇒
– More signal, but also extremely large back-

ground. Triggering is a major challenge.
– Signal smudged by initial-state radiation,

spectator interaction, multiple collisions.
– Energy and polarization of colliding par-

tons cannot be precisely controlled or de-
termined.
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• At a lepton collider, top quarks are produced
in pairs via electroweak interactions

e−

e+

γ/Z
t

t̄

• Although the cross section for this process is
much smaller, it has many desirable features.
Electroweak interaction ⇒
– Fewer events, but background-free. No

triggering necessary, all events are recorded.
– No initial-state radiation, spectator inter-

action, multiple collisions. One clean event
can be better than a hundred dirty ones.

– Energy and polarization of colliding par-
tons can be precisely controlled: extremely
useful for precision measurements of mass,
width, coupling parameters.

– Events can be fully reconstructed.
– Unique sensitivity to some new physics

scenarios through production cross section,
kinematics, and decays.
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The final state signature of tt events

• In the SM, each top quark decays into a W
boson and a b quark.

• The final state of a tt̄ system is primarily clas-
sified by the decay modes of the twoW bosons:
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σ(pp̄→ tt) from Tevatron Run 1
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σ(pp̄→ tt) from DØ Run 2
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The uncertainty in theoretical calculations (full NLO+NLL or par-

tial NNLO+NNLL) is due primarily to the renormalization scale

(through αs(µ2
r)), the factorization scale (through fi(xi, µ2

f)), and

tt̄ kinematics.
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σ(pp̄→ tt) from CDF Run 2
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2.2. Single Top Production

• At hadron colliders, top quarks can be pro-
duced singly via weak interactions.
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• Such events occur less than half as frequently
as tt and the signal is more difficult to extri-
cate from background.
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• Rate and kinematics are direct probe ofWtb
vertex in general and |Vtb| in particular

– All cross sections are proportional to |Vtb|2.

– V −A structure of SU(2)L weak interac-
tion ⇒polarized production of top.

• Important background toWH production fol-
lowed by H → b̄b.

• Theoretical predictions:

Process Tevatron Run 2 LHC (t) LHC (t̄)

σNLOs−chan (pb) 0.447 ± 0.002 6.55 ± 0.03 4.07 ± 0.02

σNLOt−chan (pb) 0.959 ± 0.002 152.6 ± 0.6 90.0 ± 0.5

σLLassoc. (pb) 0.093 ± 0.024 31+8
−2 31+8

−2
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Cross section (pb)
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2.3. Sensitivity to New Physics

• Heavy scalar or vector bosons, both charged
and neutral, fundamental and composite, ap-
pear in all extensions of the SM. ⇒new ways
for both pair- and single-top production.
– Neutral bosons (Z ′, φ0, ηT ) alterσ(ttX).
– Charged bosons (W ′, φ±, π±

t ) alterσ(tX).
• Since these models seek to explain why the

top quark is so heavy, implications are usu-
ally stronger for top than for other fermions.

• Precision measurement of the cross sections
and comparison with SM predictions allows
us to constrain or discover such processes.

• We have found no significant deviation from
the SM so far, but large uncertainties in both
theoretical calculations and experimental mea-
surements lead to rather weak constraints on
parameters of new physics models.

• Some of these processes can hide behind the
large background at hadron colliders (Teva-
tron, LHC), but will be easily detected at a
lepton collider (ILC).
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3. Decays of Top Quarks

3.1. SM decays

• The SM predictsB(t→Wb) > 0.998.

• The rest goes to off-diagonal CKM modes,
t→Wq, where q = s, d. (more later).

• Flavor-changing neutral current (FCNC) de-
cays, t → X0q, where X0 = g, γ, Z,H,
are highly suppressed by the GIM mechanism.
Branching fractions are O(10−13) - not ac-
cessible in the foreseeable future.

• Current direct limits on FCNC decays of top
from Tevatron (CDF, Run 1):

– B(t→ cγ) +B(t→ uγ) < 0.032,

– B(t→ cZ) +B(t→ uZ) < 0.33,

• Expected from LHC: ∼2 × 10−4 for both.

• Few extensions of the SM predict FCNC t
decays at such high levels. Still, we need to
stay alert. . .
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W helicity in top decays

• In SM, t→Wb decays are described purely
by the universal V − A charged current in-
teraction.

• The W is “real” in a top decay ⇒distinctive
helicities. Decay to a positive-helicityW boson
is suppressed by a chiral factorm2

b/M
2
W . So,

the W helicity is essentially a superposition
of only the zero- and negative-helicity states.

• At tree level in the SM, ignoringmb, the frac-
tion of longitudinal (zero-helicity)W bosons
in the top rest frame is:

F0 =
m2
t /M

2
W

1 +m2
t /M

2
W

= 0.701 ± 0.016

(1)

• Finitemb and NLO effects ⇒∼2% change.

• The large top mass exposes the longitudinal
mode of the W ⇒precise measurement of
F0 serves as a stringent test of the SM.

• Indirect limit from b → sγ data (CLEO)
constraints F+ to a few %.
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• Angular distributions of decay products are
sensitive functions of the F ’s.

• DØ and CDF have measured the F ’s in dilep-
ton and single-lepton channels using several
strategies (F+ = 0 assumed for measure-
ments of F0):

Expt(Run) Method Result

CDF(1) pT(`) F0 = 0.91 ± 0.37 ± 0.13,

F+ < 0.28 (98% CL)

CDF(1) M2(`b) F+ < 0.24 (95% CL)

DØ(1) ME F 0 = 0.56 ± 0.31

CDF(2) cos θ∗ F0 = 0.61 ± 0.12 ± 0.04,

F+ < 0.11 (95% CL)

CDF(2) M2(`b) F+ < 0.09

DØ(2) cos θ ∗ F+ = 0.056 ± 0.080 ± 0.057

F+ < 0.23 (95% CL)

• The statistical uncertainty will be reduced by
an order of magnitude by the end of Run 2,
and to negligible levels at the LHC and the
ILC.
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3.2. Top Quark Decays Beyond the SM

• In virtually every extension to the SM, alter-
native possibilities arise to compete with the
SM modes:

– Extended Higgs sector ⇒ t→ H+b,

– SUSY ⇒ t→ t̃χ̃0
1,

– TC2 ⇒ t→ π+
t b.

• In all cases, the coupling depends on fermion
mass, or flavor, or both ⇒look in data for de-
viations in the production rates and branching
fractions from those predicted by the SM.

• Both appearance of new modes or enhance-
ment over SM-predicted values, and disap-
pearance of SM modes (to make way for new
ones that may be hidden in excessive back-
ground) have been searched for by DØ and
CDF for some of the more popular scenarios.

• Often, there are too many free parameters,
and one is forced to make “reasonable” as-
sumptions about some of them in order to pin
down the rest . . .
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Search for t→ H+b

• The Standard Model postulates one complex
scalar (Higgs) doublet. After 3 of its 4 de-
grees of freedom are expended in giving mass
to the W± and Z0 bosons, one manifests it-
self as a physical particle:H0.

• The simplest extension to the SM ⇒a two-
Higgs-doublet models (2HDM), resulting in
five physical Higgs bosons:H0, h0, A0, H±.

• The electroweak sector in a 2HDM has 2 ad-
ditional parameters: tanβ, MH+ (or MA),
where tanβ ≡ ratio of V.E.V.’s of the two
doublets.

• If MH+ < mt −mb, and tanβ is not too
close to

√

mt

mb
, then t → H+b can compete

with t→W+b .

• Such aH± is not expected to noticeably alter
the top production cross sections at any col-
lider, but decays will be affected since Higgs
coupling is proportional to mass.
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Disappearance search results from DØ Run1:

The Run 1 (Run 2 expected) limit corresponds
roughly to B(t → H+b) < 0.45(0.11) at
95% CL, except where Wb̄b dominates.
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Run 1 and preliminary Run 2 results from CDF:
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This study’s results

• No sign of a light charged Higgs as yet.

• Some assumptions that went into in these anal-
yses need closer scrutiny . . .

• . . . work in progress on several analyses.

• If MH+ > mt, σ(pp̄ → H+X) is too
small at the Tevatron, but not at the LHC.

• pp → H+H− → t̄bτ ν̄τ is probably the
most promising channel to search for a heavy
charged Higgs at the LHC.
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Supersymmetric Decays of the Top Quark

• The lightest stop, t̃1 is thought likely to be
the lightest squark, possibly lighter than top.

• This opens the possibility of t→ t̃χ̃0
1, which

can end in either bq1q̄2χ̃0
1χ̃

0
1, or cχ̃0

1χ̃
0
1, de-

pending on the superparticle masses and cou-
plings.

• Since the branching fraction cannot be too
large, it is best to look for events where pre-
cisely one of the top decays in the new way.

• The final state objects are the same, but an-
gular and momentum spectra are different.

• Unfortunately, often the new signatures face
worse background than SM.

• Early results show nothing unusual, but they’re
pretty weak. Our main goal at this time is
to understand the issues and set up the pro-
cedure. Stringent results will have to await
high-volume (LHC) and/or ultra-clean (ILC)
data.
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4. Top quark properties

4.1. Mass

General procedure

• Event selection and background estimation is
similar to those for σ(tt) measurement, but
any associated bias on mt must be carefully
accounted for.

• Examine stronglymt-dependent variables (re-
constructedmt, if available, is a natural choice).

• Using simulated signal templates for different
values of mt, determine which one best fits
the excess of data over background.

• Combinatorial ambiguities, compounded by
extra jets from initial- and final state radia-
tion, or occassional loss of a jet, pose difficulties.

• Weighing each candidate and each interpreta-
tion of it differently, depending on how well
it fits signal and background hypotheses, af-
fords the best measurement, but the proce-
dure is quite complex.
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Latest mt results from DØ
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Latest mt results from CDF

)2Top Quark Mass (GeV/c
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(L=1030 pb

All hadronic: Ideogram*

 4.7± 4.9 ±177.1 )
-1

(L= 310 pb

All hadronic: Template*
 4.8± 2.2 ±174.0 )

-1
(L=1020 pb

 jj→+W reco
top

Lepton+Jets: M*

 2.2± 1.7 ±173.4 )
-1

(L= 680 pb

Lepton+Jets: Matrix Element*
 2.0± 1.6 ±170.9 )

-1
(L= 940 pb

xyLepton+Jets: L*

 5.6±  13.9
15.7 ±183.9 )

-1
(L= 695 pb

Lepton+Jets: DLM  3.2±   2.4
 2.6 ±173.2 )

-1
(L= 318 pb

Dilepton: DLM*

 3.2±   6.7
 7.3 ±166.6 )

-1
(L= 340 pb

ν of φDilepton:  4.0±   9.0
 8.9 ±169.7 )

-1
(L= 340 pb

)t(tzDilepton: P  4.0±   7.2
 7.7 ±169.5 )

-1
(L= 340 pb

 weightingνDilepton:  3.7±   6.5
 6.9 ±170.7 )

-1
(L= 360 pb

Dilepton: Combined  3.7± 5.2 ±167.9 )
-1

(L= 360 pb

Dilepton: Matrix Element*

 3.9± 3.9 ±164.5 )
-1

(L=1030 pb

Dilepton: Matrix Element b-tag*

 3.8± 4.6 ±167.3 )
-1

(L= 955 pb

Run 1 All-hadronic  5.7±10.0 ±186.0 (Run 1 only)

Run 1 Lepton+Jets  5.3± 5.1 ±176.1 (Run 1 only)

Run 1 Dilepton  4.9±10.3 ±167.4 (Run 1 only)

CDF (*Preliminary)

9 Oct 2006 31



Dhiman Chakraborty The Top Quark

Combined mt results from Tevatron

Best Independent Measurements
of the Mass of the Top Quark   (*=Preliminary)

   

CDF-I   dilepton 167.4 ± 11.4

DØ-I     dilepton 168.4 ± 12.8

CDF-II  dilepton* 164.5 ±   5.5

DØ-II    dilepton* 178.1 ±  8.3

CDF-I   lepton+jets 176.1 ±   7.3

DØ-I     lepton+jets 180.1 ±   5.3

CDF-II  lepton+jets* 170.9 ±   2.5

DØ-II    lepton+jets* 170.3 ±   4.5

CDF-I   alljets 186.0 ± 11.5

χ2
/ dof = 10.6/10

Tevatron Run-I/II* 171.4 ±  2.1

150 170 190

Top Quark Mass [GeV]

CDF-II  alljets* 174.0 ±  5.2

CDF-II  b decay length* 183.9 ± 15.8

9 Oct 2006 32



Dhiman Chakraborty The Top Quark

Present and future of top mass measurement

• Measuring mt, together with MW , is vitally
important in order to constrainMH .

• Top mass has now been determined to 1.2%.
• It is still limited by statistics. Some of the

systematics will improve with statistics.
• Matrix-element method will further reduce the

statistical uncertainty.
• Combining different channels and results from

DØ and CDF will help too.
• By the end of Run 2, we hope to bring the

total uncertainty to less than 1.5 GeV.
• More precise but rarer final states (b→ ψ →
`+`−) will be accessible to the LHC experi-
ments. These combined with end-point fits
(another luxury afforded by huge statistics)
could allow for∼1 GeV precision inmt from
experiment. Note: δσ(tt)

σ(tt)
≈ 5δmt

mt
at LHC.

• Theoretical uncertainties, owing to incomplete-
ness of radiative corrections, are ∼1.5 GeV.
These are very difficult to reduce.
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• At the ILC, threshold scans, full event recon-
struction, and cleaner events, precise theoret-
ical calculation of many sensitive variables
⇒measurement of mt within O(100) MeV.

Expected precision of mt, MW measurements:

Collider Tevatron LHC ILC

type pp̄ pp e+e−

δmt (GeV) < 1.5 < 1 0.1

δMW (MeV) 26 9 1

Integrated Luminosity (fb-1)
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t (
G
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)

Statistical uncertainty
JES systematic uncertainty (from MW only)
Remaining systematic uncertanties
Total uncertainty
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History of top mass measurements
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4.2. Spin

• Decay before hadronization⇒spin at produc-
tion reflected on angular distribution of decay
products.

– No other quark decays quickly enough.

• At Tevatron and LHC, the colliding particles
are unpolarized, so the spin of each top con-
sidered separately is random, but the spins of
the top and the antitop in a given event are
correlated.

• At the ILC, with polarized beams, the spin of
each top quark, as well as the correlation, can
be studied.

• The charged lepton and down-type quarks are
most sensitive, but it is difficult to uniquely
identify the latter⇒only the dilepton and single-
lepton channels are useful.

• A good test for Wtb coupling. A significant
departure from the SM prediction could point
to new physics.
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Differential decay rate of top quark:

1

Γ

dΓ

d(cos θi)
=

1 + αi cos θi

2
(2)

particle (i) αi for mt = 175 GeV

e+ or d 1

ν or u -0.31

W+ 0.41

b -0.41

• For tt→ l+l−X events at the Tevatron, one
studies the double-differential cross section:

1

σ

d2σ

d(cos θ+)d(cos θ−)
=

1 + κ cos θ+ cos θ−

4
.

(3)

• All spin-correlation information is in κ.
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• Within large statistical uncertainties, current
measurements (from Run 1) are consistent with
the SM predictions. The method has been
established, vastly improved results are ex-
pected soon.
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4.3. Charge

• Some theorists contend that the observed “top”
could be an exotic quark withQ = −4

3
.

• The only way to check this at hadron colli-
ders is to compare the observed rate and kine-
matics of tt̄γ events with SM predictions.

• Either way, the rate is too low for a definitive
test at the Tevatron.

• At the LHC, the issue can be resolved with
4-6 months of data (∼10 fb−1).

• At the ILC, σ(tt) is extremely sensitive to
Qt. The debate can be settled with less than
1 hour of data.
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4.4. Gauge couplings

• It is important to measure the top quark’s coup-
ling to the SM gauge bosons: g,W±, Z, and
γ, lest anomalous couplings, which may or
may not involve new particles, go undetected.
Search for CP violation in the top sector is
normally addressed in this language.

• Couplings to g andW± are fairly well tested
already at the Tevatron, and will continue to
be refined through studies of pair- and single-
top production, kinematics, spin correlations,
W helicity, etc.

• Couplings to Z and γ are harder to study
at hadron colliders, but will be possible with
sufficient statistics at the LHC.

• The ILC will offer high-precision tests of all
of top quark’s gauge couplings, especially the
electroweak.
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4.5. Lifetime and Vtb

• The CKM matrix element Vtb is intimately
related to the top quark lifetime. At LO,

Γ(t→Wb) =
GF

8π
√

2
m3
t |Vtb|2

(

1−3
M4

W

m4
t

+2
M6

W

m6
t

)

= 1.56GeV

(4)

where Γ = h̄
τ

is the width, and τ the life-
time, of the top quark.

• At NLO, Γt = 1.42 GeV.

• Indirect measurements assuming 3 generations
of quarks lead to 0.9990 < |Vtb| < 0.9993.

• Direct tests without the 3-generation assump-
tion has been carried out at the Tevatron, by
measuring

R ≡ B(t→ bW )

B(t→ qW )
=

|Vtb|2
|Vtb|2 + |Vts|2 + |Vtd|2

(5)
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• Run 2 results

CDF DØ

R 0.94+0.21
−0.19

+0.17
−0.13 1.03+0.19

−0.17

Rmin (95% CL) 0.61 0.61

|Vtb|min (95% CL) 0.78

• We expectR to be measured within 5% at the
Tevatron, and within 3% at the LHC, which
translates, assuming SM gauge couplings, to
12% and 5%, respectively, on |Vtb|.

• At the ILC, direct measurement of Γ(t) from
threshold scans should have a precision of
O(1%).
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4.6. Yukawa couplings

• Yukawa couplings relate the matter content
of the SM to the source of mass generation,
the Higgs sector.

• When the Higgs field acquires a vacuum ex-
pectation value v, the top quark is endowed
with a massmt = Yt v√

2
. Since v = 246 GeV

and mt ≈ 174 GeV, Yt = 1, a theoreti-
cally interesting value, leading to speculation
that new physics studies of the top quark may
open a door to new physics.

• The ttH coupling can be accessed through

– gg → H (through a top-quark loop),

– gg → tH ,

– gg → ttH .

• Unfortunately, the first suffers from overwhelm-
ing background, and the cross sections are
too low for the other two at the Tevatron.
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• Even at LHC, strong cancellations will limit
the reach to light Higgs only (which, how-
ever, is strongly favored by the current mea-
surements of mt andMW ).

• Measurements of Higgs branching fractions
based on large samples may prove more fruit-
ful.

• Strong constraints can be put on models where
Yt � 1.

• Unless MH is too large, precision measure-
ments at the ILC of Higgs production and de-
cay properties will yield the best results on
Yt.
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Summary and Outlook

• Using 0.5 - 1 fb−1 of data collected at the
Fermilab Tevatron, both DØ and CDF have
studied several aspects of top physics inclu-
ding measurements of its pair-production cross
section and mass, several tests of the SMWtb
coupling, and some searches for physics be-
yond the SM.

• The mass of top quark has been determined
within 1.2%, the most precise of all quarks.

• Within large statistical uncertainties, single
top production, top-antitop spin correlation,
andW helicity measurements agree well with
the SM predictions.

• A search for charged Higgs bosons reveals no
signal, and rules out a large part of previously
unexplored parameter space.

• Results from searches for flavor-changing neu-
tral currents in decays of the top quark are
consistent with the SM.

• MZ ′→tt̄ < 680 GeV excluded at 95 % CL.
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We look forward with great expectations

to the completion of Run 2 of the Teva-

tron, the LHC (2007-), and eventually

the ILC (2015?-). Together, these en-

terprises will help us gain a better un-

derstanding of the workings of Nature.

“In physics, one discovery often leads

to others. Top opens a new world – the

domain of a very heavy fermion – in

which the strange and wonderful may

greet us.”
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