October 18, 2004

Pythia_i: An interface between Pythia and Athena
release 8.0.0 and later

Ian Hinchliffe (I_Hinchliffe@lbl.gov), G. Stavropoulos (George.Stavropoulos@cern.ch)
October 18, 2004

This package runs Pythia from within Athena, puts the events into the transient store in HepMC
format. See the documentation on GenModule for general information. The note refers only to
Pythia specific material. The External/Pythia package is used to set up the paths to the Pythia
library which is now pointing to the release maintained by Genser. This works with pythia6.xxx
only. The current version is 6.221.

A version of 6.221 with the LHAPDF structure function package is also available. To use this
one replace “Pythia_i” by “PythialLha_i” and the algorthm name “Pythia” by “Pythialha”.

The module is activated from the jobOptions service.

See the examples in Pythia_i/share/jobOptions.pythia.py , Pythia_i/share/jobOptions.pythiatest.py
and Pythia_i/share/jobOptions.pythia_lhapdf.py

The pythia parameters are set from the job options service. The default makes ¢t events
with a top mass of 175 GeV. The default jobOptions.pythia.py file will have been copied to your
TestRelease area when you set up athena under CMT. Note that all parameters passed to
Pythia are in the units specified in the Pythia manual. In particular, energies and
masses are in GeV, not the standard atlas units of MeV. The following is needed if you
wish to run Pythia

theAppDLLs += ["Pythia_i"]
theAppTopAlg = ["Pythia"]

The parameters are passed via the following line in the jobOptions.py file.

Pythia.PythiaCommand = ["common_block_name variable index value",
"common_block_namel variablel indexl valuel"]

Each quoted string sets one parameter. You can have as many as you like seperated by commas.
common_block_name must be one of the following common block names and must be in lower
case.
pydatr
pydatl
pydat2
pydat3
pypars
pymssm
pysubs
pyint2

pyinit

pystat

The pyinit deals with parameters associated with the job setup, while the pystat one deals with the
setting of the print level of the PYSTAT routine (called at the end of the run). An error message
is returned if the common block is not one of these. The job continues to run but the behaviour
may not be what you expect. variable must be the variable name that you are adjusting. Valid
names are as follows (lower case is required)

for pydatr — mrpy and rrpy

for pydatl — mstu paru mstj and parj. Do not change mstu(11) (see below)

for pydat2 — kchg pmas parf and vckm

for pydat3 — mdcy mdme brat and kfdp

for pymssm — imss and rmss

for pypars — mstp parp msti and pari

for pysubs — msel msub kfin and ckin

for pyint2 — iset kfpr coef and icol

The following do not correspond to a common block but the parsing is similar

pyinit access variable that are either passed in the call to PYINIT or to variables that control the
listing. The choices are pyinit — pbar (changes one of the incoming particles to pbar), user (changes
the process selection to user code for connection to external processes, a string then specifies the
specific procees, see discussion of external processes below), FIXT which switches to fixed target
operation, win (changes the center of mass energy, units are GeV) output (controls redirection of
output) pylisti (gives the number to be passed to pylist on the setup) pylistf (gives the number to
be passed to pylist on the dumped events) dumpr (is two integers specifying the range of events
to be written out). Settings in the pyinit groups should come before others. This is
essential if you are using an external process such as comphep or AcerMC

pystat sets the print level of the PYSTAT routine (called at the end of the run).

Again an error message is returned if the common block is not one of these. The job continues
to run but the behaviour may not be what you expect.

The remainder of the values in the ” ” specify the indices (if any) of the variable and the value
that you are setting it to. The range of the indices is as described in the Pythia manual (Do
not try to be clever and offset them). You must specify the indices and value completely. The
number of quantities that you must provide depends on the variable. The order is ”(first_index)
(second_index) value”; if there is no corresponding index, omit it. There is currently minimal error
checking here so you will get junk or a core dump if you make a mistake. The variable and common
block names are parsed and checked. A message is sent to the Athena LOG if an error is detected
but the job does not abort.

Examples should make it clear

"pysubs msel 13” will turn on Z/gamma-+jet production

"pysubs ckin 3 18.” will set the minimum pp to 18 GeV

"pypars mstp 43 2” wiil turn off the photon and Z/photon interference.

"pyinit win 1800.” changes the center of mass energy to 1800 GeV

Note that the entries are seperated by a single space and that reals must have a decimal point.
"pyinit pylisti 12”7 dumps all the particle and decay data (see pythia manual) after initialization.
"pyinit output junk.dat” causes all the pythia output to dump into a file junk.dat (it resets
mstu(11))

”pyinit pylistf 1 7 dumps the complete event record for the specified events

”pyinit dumpr 3 12 7 causes events 6 through 12 to be written out

“pystat 35 7” sets the PYSTAT print levels. Pystat is called as many times as integers after pystat.
In the example, pystat will be called with prin-level 3 followed by a call with print-level 5 and then
by a call with print-level 7. The default is to call pystat once with print-level 1.

"pydat2 pmas 4000011 1 1000.” will set the mass of particle with KF code 4000011 to 1000 GeV.
WARNING: Someone has to give the KF and NOT the KC code. The KF code is
converted (via a call to PYCOMP) to the KC code internally in Pythia.cxx

The jobOptions.tex file that has this example is contained in Pythia_i/share/jobOptions.pythia.py
Default Parameters

The Pythia libarary built by Stan Thompson has the parameters as set by the Pythia authors.
The ATLAS settings are set inside Pythia.cxx. The default initialization corresponds to pp collsions
at 14 TeV, PYLIST is called as PYLIST(11) after initialization. The current set of defaults is the
ones in the Pythia release 6.203 with the following exceptions.

e In common block PYPARS: MSTP(2)=1; MSPT(33)=0; MSTP(128)=2; MSPT(82)=4; PARP(82)=1.
e In common block PYDAT1: MSTJ(11)=3; MSTJ(27)=1; PARJ(55)=-0.006

e In common block PYDAT2: PMASS(6,1)=175.

e In common block PYDATR: MRPY(1)=19780503

e In common block PYSUBS: MSEL=6

If you select MSPT(81)=0 then you will get the following warning:

YOU HAVE SWITCHED OFF MULTIPLE INTERACTIONS, mstp(81) = 0

THE DEFAULT ATLAS MULTIPLE INTERACTIONS SCENARIO, mstp(82) = 4
CHANGED TO mstp(82) = 1, BECAUSE PYTHIA IS LOOPING WHEN
mstp(81) = 0 and mstp(82) > 2

Random Numbers

Pythia.cxx is using the AtRndmGenSve Athena Service to provide to Pythia (via the pyr
function, found in Pythia_i/src/pyr.F) the necessary random numbers. This service is using the
RanecuEngine of CLHEP, and is based on the “stream” logic, each stream being able to provide
an idependent sequence of random numbers. Pythia.cxx is using two streams: PYTHIA INIT and
PYTHIA. The first stream is used to provide random numbers for the initialization phase of Pythia
and the second one for the event generation. The user can set the initial seeds of each stream via
the following option in the jobOption file.

AtRndmGenSvc.Seeds = [‘PYTHIA_INIT 2345533 9922199’ , ¢‘PYTHIA 5498921 659091°°]

The above sets the seeds of the PYTHIA INIT stream to 2345533 and 9922199 and of the
PYTHIA one to 5498921 and 659091. If the user will not set the seeds of a stream then the
AtRndmGenSve will use default values.

The seeds of the Random number service are saved for each event in the HepMC Event record
and they are printed on screen by DumpMC. In this way an event can be reproduced easily. The
user has to rerun the job by simply seting the seeds of the PYTHIA stream (the seeds of the
PYTHIA_INIT stream should stay the same) to the seeds of that event.

Additionaly the AtRndmGenSve is dumping into a file (AtRndmGenSvce.out) the seeds of all
the streams at the end of the job. This file can be read back by the service if the user set the option

AtRndmGenSvc.ReadFromFile = true

(default = false). In this case the file AtRndmGenSvc.out is read and the streams saved in this file
are created with seeds as in this file. The name of the file to be read can be set by the user via the
option

AtRndmGenSvc.FileToRead = MyFileName

The above file is also written out when a job crashes. This last option (when job crashing)
is currently not working, waiting for a modification in Athena.
The Pythia_i/share/jobOptions.pythia.py contains the above options.

User modifications

Two types of user modifications are common

e If you are trying to replace an existing routine that is in the Pythia library this is straightfor-
ward. Assume that you are trying to replace test.f that exists in Pythia. Check out Pythia i
under CMT, (use cmt co -r Pythia_i-xx-xx-xx Generators/Pythia_i where xx-xx-xx is the ver-
sion in the release that you are running against), put your version of test.f into the /src area
of the checked out code. Then in the /cmt area edit the requirements file and add test..f into
the list of files that get complied. Note that each generator has its own library. You must
therefore put your file in the right place. For Pythia, here is the example.

e If you want to access “External Process”. This is done in Pythia by setting “USER” (see
section 9.9 of the 6.2 Pythia manual). External procesess usually read a file containting
events. At present four externals are available. The first is CompHep, the second is AcerMC,
the third is Alpgen and the fourth is a dummy that users can adapt to their needs by following
the CompHep example.

”pyinit user comphep”

sets the USER state in the call to PYINIT and then loads the comphep example. This will
run without modification. If the user wants to process another type of compHep event, the
following procedure must be followed. Modify the file inparmCompHep.dat that you will find
in your run area. You specify the name or your event file here. No Athena recompilation is
needed.

To hadronize Alpgen generated events with Pythia, you need to link the file with the un-
weighted events produced by Alpgen to the file alpgen.unw_events. Then you only need to
run athena with the jobOptions file jobOptions.AlpgenPythia.py by typing in the prompt
athena jobOptions. Alpgen Pythia.py

It is possible to hadronize the same events using Herwig (look at the Herwig documentation)

To hadronize AcerMC generated events with Pythia, you only need to run athena with the
jobOptions file jobOptions.AcerMCPythia.py by typing in the prompt

athena jobOptions. AcerM CPythia.py
It is possible to hadronize the same events using Herwig (look at the Herwig documentation)

To add your own external, create your own inituser.f and useuser.f, put these filenames into
the cmt/requirements so that they are built into libPythia_i.so and then rebuild the Pythia i

package (cmt make) and then set
”pyinit user user”

