La recherche du Higgs au TeVatron Run II

Arnaud Lucotte

collaboration DØ

I. Introduction: Le contexte du Run II

II. Le nouveau détecteur DØ

- L'upgrade de DØ
- les détecteurs de pieds de gerbe
- le déclenchement électro-magnétique —

III. La recherche du Higgs au TeVatron

- phénoménologie au TeVatron
- la recherche directe
- la recherche indirecte

Conclusion

Le TeVatron au Run II

Chicago

DIG

Tevatron

CDF

Main Injector (new)

- Amélioration du Linac
- Installation de l'Injecteur principal (M.I): synchrotron accélérateur des p-pbar : 120-150GeV/c
- Installation du Recycleur (MI): anneau de stockage / aimants supraconducteurs refroidissement / stockage / recyclage des anti-protons

Arnaud Lucotte

Programme du Run II

Paramètres machine:

	Run Ib	Run Ila	Run Ila	Run IIb
Bunch Trains	6x6	36x36	140x108	140x108
Bunch Spacing (ns)	3,500	396	132	132
Luminosity x10 ³² cm ⁻² s ⁻¹	0.16	0.8	2.1	5.2
Intgr. Luminosity (fb ⁻¹ /exp.)	0.1	1.1	2.1	14.8
CM Energy (GeV)	1,800	2,000	2,000	2,000
interactions/crossing	2.6	2.3	1.9	4.8

Programme:

- 132ns / fin 2002
- 2x10³²cm⁻²s⁻¹/ fin 2003
- Arrêt Machine pour
- remplacement Silicium
- /fin 2003 (/deb. 2004)
- 5x10³²cm⁻²s⁻¹/2005
- 4fb⁻¹ / an jusqu'en 2007

15 fb⁻¹ / experience en fin 2007

Motivations physiques du Run II

Test de précision du Modèle Standard:

- Propriétés du quark Top Mesure de masse, BR(t \rightarrow Wb), σ (ttbar)...
- Propriétés des bosons W/Z: Mesure de Z \rightarrow bb, m_w, Γ_{w} , sin² θ_{w} importance pour contraintes sur la masse du Higgs

Physique du B

- Mesure d'oscillations du B_s détermination de $\Delta m_s / \Delta m_d$ seule machine avant le LHC
- Mesure de la violation CP dans B⁰_d-B⁰_d détermination de sin2ß
- Spectroscopie, masses, tps de vie des mésons B
- Désintégration rares du B
- Test de QCD –production de b-bbar

Recherche directe de Higgs (run II étendu)

- Higgs de basse masse $H \rightarrow bb$ (m_H<130 GeV/c²)
- Higgs de haute masse $H \rightarrow WW^*$ (m_H<180 GeV/c²) _

Recherche de nouvelle physique:

- Production squarks et gluinos: \tilde{q}, \tilde{g}
- Sensibilité à t.b _
- Production de paires de gauginos: $\chi_1^{\pm}\chi_1^{\circ}$ et $\chi_1^{\pm}\chi_2^{\circ}$

I. Le détecteur DØ au Run II

Le détecteur DØ

L'upgrade du détecteur DØ

Les détecteurs Centraux

Silicon Microstrip Tracker (SMT)

6 barrels + 12 disques

Fiber Tracker (CFT)

8 super-couches de fibres scintillantes

Solenoid

champ de 2T (supra-conducteur)

Central Preshower (CPS)

3 couches de strips/pistes + fibres scintillantes

Forward Preshower (FPS)

- Strips + fibres scintillantes

Détecteur au Silicium

Motivations:

- mesure des moments des traces proche du tube à vide
- mesure des vertex secondaires pour identification des quarks lourds

Caractéristiques:

- 790 K canaux
- Couverture : $|\eta| < 3$ _
- Supporte radiations > 1 Mrad
- Déclenchement de niveau 2: paramètre d'impact

Détecteur de Vertex

Performances

- vertex primaire ~ 15-30 μm
- paramètre d'impact ~ 50 μm

Détecteur Central à Fibres scintillantes (CFT)

Caractéristiques:

- Fibres de diamètre de 830 μm
- 8 super-couches de rayon r = 20 à 51 cm
- 2 doublets par couche: Axiales + Stereo (angle ~3°) u-z, v-z
- Couverture: $|\eta| < 1.7$
- Nombre de canaux ~77k

Test avec des muons (cosmiques)

- a) 8.5 p.e. / fibre
 - > 2.5 p.e. nécessaire pour 100% efficacité

- b) Résolution sur la position (Doublet):
 ~100 μm
- c) Efficacité reconstruction (Doublet):
 > 99.9%

p.12

Tracker à fibres scintillantes

Arnaud Lucotte

Performance des détecteurs de traces

Résolutions sur p_T et sur paramètre d'impact (SMT + CFT):

- Haute efficacité de reconstruction (95%)
- Résolutions vs rapidité η moment: dp_T/p_T² = 0.002 (Silicon+CFT) paramètre d'impact b: <80 μm

Reconstruction des Vertex:
 Vertex primaire ~15-30 μm (r-Φ) pour tt / bb
 Vertex secondaire: ~ 40 μm (r-Φ) , 100 μm (r-z)

Arnaud Lucotte

Le Calorimètre de DØ

Calorimètre

- Absorbeur : Uranium / Echantillonneur: Argon Liquide Cryostat Central : |η| < 1.0 Cryostat Avant/Arrière: 1.2 < |η| < 4.0
- Fine segmentation:
 - 5000 Tours: $\Delta \phi \times \Delta \eta = 0.1 \times 0.1$
 - Fine granularité (0.05 x 0.05) à l'extension maximale de gerbe EM Tours de déclenchement: $\Delta \phi \times \Delta \eta = 0.2 \times 0.2$

– Performances:

 $\sigma(EM) \sim 16\% / \sqrt{E}$ et $\sigma(HAD) \sim 50\% / \sqrt{E}$ Résolution position ~0.8-1.2 mm pour e- de 100 GeV

Electronique du Run II

 adaptation aux 396/132 ns entre paquets pipeline

Preshower Central (CPS)

Caractéristiques: Pré-radiateur 2X₀ (solénoide + Pb) 3 couches de pistes triangulaires traversées par fibres scint .: 1 axiale (x) + 2 stereo 20° (u,v) = 1280 x 3 canaux Lecture / secteur conjointe avec le Tracker électronique "Front End" 2000 Events 1750 Front End: **σ=**560µm **PS+traces** 1500 4.50 1250 1000 750 500 250 0 -4 -2 0 2 δx (mm) END VIEW

Performances:

- Identification des particules:
 - Position : résolution <1.4 mm (e- de 10 GeV) / 600μ m (μ -)
 - ID : étiquetage électron avec Preshower + trace
- Déclenchement:

Niveaux 1 et 2: réduction des fonds QCD par facteur 3-5

Preshower Avant-Arrière

Caractéristiques:

- Placement sur paroi externe du cryostat du Calorimètre bouchon
- Couverture : $1.5 < |\eta| < 2.5$
- 4 couches de strips triangulaires / fibres scint.:
 - 4 x stéréo 22.5° (u,v) = 14878 canaux
 - 2 couches(u,v) / Radiateur 2X₀ (Pb) / 2 couches(u,v)

Performances:

- Même résolution que pour le preshower central
- Déclenchement & ID particules:

Lecture des Fibres scintillantes

Système de lecture des fibres

- Commun au tracker + preshowers
- Signal (photon visible) guidé par fibres WLS

Photoconversion et Amplification du signal

- Cartes Analogiques "Front End"
- Photo-conversion de photons visibles (VLPC)
 - Température: T=6-13 K Amplification: 40K-60K, efficacité quantique ~80% Conversion : 15 p.e. / mip (1 mip ~ 0.8 MeV) Bruit faible: seuil 1.3 p.e. (0.5% occupation)

Faisceau test du Preshower

Objectifs:

- Test de l'électronique d'acquisition (SVX-II)
- Caractérisation des particules e / π
- Calibration du détecteur (pe's / MIP)

Banc d'essai:

- faisceaux pions, électrons (50, 70 GeV)
- 4 modules testés, chips SVX-II, VLPC +Cryogénie

Faisceau test: qques résultats

Gerbe due au passage de l'électron: data versus MC

Calibration: 1 mip = 15 ± 3 p.e.

Arnaud Lucotte

Electronique de Lecture du Preshower

Déclenchement des Preshowers

Déclenchement du signal:

- Utilisation de 2 gammes dynamiques
 Détection MIP (~0.9 MeV): traces , calibration [0.3-3] MIP
 Détection des gerbes électromagnétiques: [5, 60] MIPs
- Déclenchements et lecture:
 - L1: chips SIFT [0/1], alimente la carte trigger (FPGA)
 - → forme cluster u,v (= strips adjacent avec E>seuil Bas / Haut)
 - L2: chips SVX-II numérisent le signal
 - \rightarrow forme de gerbe, isolation, énergie, localisation 3D

Cassette 12 MCM (2 AFE Bd)

Cassette VLPC

Analog Front End (AFE) Board

Le déclenchement EM à DØ

Architecture et contraintes Membre du "Trigger Pannel" - Design du niveau 1 (global)

Déclenchement électromagnétique - Responsable du niveau 1 FPS

Déclenchement J/Ψ→ee

- Responsable du niveau 1 FPS(+CAL)
- Responsable du Niveau 2 FPS(+CAL)

Architecture & Contraintes

p.26

Déclenchement EM central L1

Calorimètre EM / HAD

L1CAL

basé sur: # tours EM (0.2x0.2) avec E> seuil (2.5, 5, 7, 10 GeV)

Arnaud Lucotte

p.28

Déclenchement global

combinaison des termes , coincidence par quadrant etc...
 ex: 1 tour EM + 1 électron (u et v) FPS

Arnaud Lucotte

Déclenchement EM Avant/Arrière

Occupation dans le Preshower:

- Interactions / croisement
 <#> = 2.1 (Poisson)
 @ 2. 10³² cm⁻²s⁻¹
- détection mip:
 T > 0.3 MIP
 occupation = 7-10%
 - détection gerbe:
 T > 5 MIPs
 occupation = 0.5-2.0%

Dijet+6mbias

Le déclenchement EM Avant/Arrière

Efficacité:

p.31

Contraintes de déclenchement

- Taux de Fond Dijet: ~7 MHz @ 10³²cm²s⁻¹
- Tolérance: ~1 kHz au niveau 1, ~100Hz niveau 2

L1: Combinaison Trace + Preshower + Calorimètre L2: reconstruction 3D, Masses invariantes etc...

Efficacité:

- E_T^{CAL} ~ 2.75-3.0 GeV
- E_{PS} ~ 2.0-3.0 MIP

Fond dijets:

Taux controlé par:

Centrale

Matching /quadrant

: 200-500 Hz

Seuils $E_{PS}(E_T^{CAL})$

 $B_d \rightarrow J/\psi + X \rightarrow e^-e^+ + X$

L1 trigger efficiency vs pr"*

Le déclenchement J/ $\Psi \rightarrow e^-e^+$ (L2)

Efficacité:

- Dépend du seuil L1 CAL E_T
- Dépend du seuil E_{PS} PreShower
- Sensible à fenêtre en Masse

Centrale : $\varepsilon \sim 20-25\%$ Avant/arrière: $\varepsilon \sim 2-8\%$

Fonds di-jets:

- Taux controlé par:
 - Fenêtre en Masse
 - isolation EM
 - Fine Coincidence Tours vs PS
- Taux réductible:
 - Utilisation vertex: >2 traces de haut parametre d'impact: S_B = B/σ_B>3

Centrale/Avant-arrière: 50-100 Hz

p.34

Violation CP dans B_d^0 / B_d^0 avec $B_d^0 \rightarrow J/\Psi(ee) K_s(\pi+\pi-)$

Projection pour $\delta sin 2\beta$

Analyse avec temps intégré:

$$\delta {\rm sin} 2\beta = \frac{1}{{\rm D}_{\rm mix} {\rm D}_{\rm fond}} \times \frac{1}{\sqrt{\epsilon_{\rm tag} {\rm D}_{\rm tag}^2}} \times \frac{1}{\sqrt{{\rm N}_{\rm reco}}}$$

- efficacité reconstruction des traces: 95%

-
$$D_{mix} = 0.47$$
 , $D_{fond} = \sqrt{S(S+B)} \sim 0.7$

- $\epsilon_{Tag} D_{tag}^2 \sim 0.067$

Mode	J/Ψ→μ-μ +	Ј/Ѱ→е-е+
Luminosité	1 fb ⁻¹	1 fb ⁻¹
Efficacité decl.(%)	20%	15%
Evts reconstruits	4,500	3,500
Sensibilité δsin2β	0.12	0.14

- Projection pour un an de données:

DØ	CDF	BaBar
1fb ⁻¹	1fb ⁻¹	30 fb ⁻¹
8K	9K	1.1K
0.11	0.09	0.10

Résumé: l'upgrade de DØ

Détecteurs de Traces

- Silicon + détecteur à fibres scintillantes
 - Paramètre d'impact, vertex
 - Moments, permet le E/p avec le calorimètre

Détecteurs de pied de gerbe:

- Capacité d'identification d'électron/photon accrue
 - Région centrale et bouchon
- Limite la dégradation sur la résolution de E_{mesurée} cal
- Déclenchement au niveau 1/2:
 - Réjection x3-5 p/r calorimètre seul
 - Déclenchement leptons mous et $J/\Psi(ee)$

Calorimètre

- Performances comparables à celles du Run I 5x10³² (15% moins bon)
- Electronique nouvelle

Chambres à muons

- Seuils p_T plus petits pour le déclenchement:
 - Single muon $p_T > 7 \text{ GeV/c}$,
 - Di-muon $p_T > 2 \text{ GeV/c}$

Déclenchement

- Largeur bande passante accrue: 7 MHz en entrée
 - $L1 \rightarrow 8 \text{ kHz}$
 - $L2 \rightarrow 1 \text{ kHz}$
 - $L3 \rightarrow 50$ Hz sur bande
- Déclenchement leptons mous et $J/\Psi(ee/\mu\mu)$
- Déclenchement pour les b

La Recherche du Higgs au TeVatron

Phénoménologie du Higgs

- Modes de Production au TeVatron
- Outils nécessaires

La recherche directe du Higgs

Membre du "Higgs Working Group"

- Détection du higgs léger
- Détection du Higgs lourd
 H-> W*W* -> lvjj

- Le Higgs supersymétrique

La recherche indirecte du Higgs

- Paramètres d'entrée à la masse du Higgs
- Mesure de la masse du Top
- Mesure de la masse du W

Phénoménologie du Higgs standard au TeVatron

Production du Higgs (SM)

- Fusion de gluon: $gg \rightarrow H$
 - σ~1 pb 1000 events / fb⁻¹
 - la désintégration dominante $H \rightarrow bb$ est noyée dans fonds QCD pp $\rightarrow bb$
- Production associée pp \rightarrow WH, ZH
 - ~0.2 pb 200 events / fb⁻¹
 - les désintégrations leptoniques de W/Z facilitent la sélection

	Processus	σ(pb -1)
	$gg \to H$	0.7
SIGNAL	$pp\toWH$	0.16
m _H =120	$pp \to ZH$	0.10
	$pp\toWZ$	3.2
	$pp\toWbb$	11.0
FONDS	$pp \rightarrow ttbar$	7.5
	$pp \rightarrow tb+tq+tbq$	3.4
	QCD pp \rightarrow qq	O(10 ⁶)

Phénoménologie du **Higgs standard au TeVatron**

Etats finaux:

Stratégie de détection:

m _H <130-140 GeV		m _H >130-	-140 GeV
Signal	Fonds	Signal	Fonds
$W\overline{H} \to Ivbb$	Wbb, WZ, tq	$gg \rightarrow H \rightarrow W^*W^*$	Drell-Yann, WW,
$ZH \to \nu\nu bb$	QCD bb, Zbb,ZZ,tt	$WH \rightarrow WW^*W^*$	WZ,ZZ,tt,tW
$ZH \rightarrow IIbb$	Zbb, ZZ, ttbar		

Eléments clef:

étiquetage du b résolution sur M(b,b) résolution sur mET connaissance des fonds

déclenchement leptons résolution sur mET connaissance des fonds

Phénoménologie du Higgs SUSY au TeVatron

Production du Higgs (SUSY)

- Production associée:
 - $\sigma(qq \rightarrow Vh) = sin^2(\beta \alpha) \sigma(qq \rightarrow VH_{SM})$
 - $\sigma(qq \rightarrow VH) = \cos^2(\beta \alpha) \ \sigma(qq \rightarrow VH_{SM})$ ou tan $\beta = v_2/v_1$, α = angle de mélange de h et H

- Higgs chargés:
 - production à partir du quark Top (si cinématiquement possible): $pp \rightarrow t$ -tbar $\rightarrow H$ +bH-b

Arnaud Lucotte

Phénoménologie du Higgs SUSY au TeVatron

Le secteur des Higgs neutres

- Etats finaux Vh/VH:
 - Applique les recherches VH standard
 - dans le canal $H \rightarrow bb$
 - Interprete dans (m_A,tan β)
- Etats finaux bbh/ Hbb /Abb:
 - Couplages hbb / Hbb / Abb $\propto tan^2\beta$
 - \rightarrow accroissement de $\sigma(hbb)$
 - à haut tan²β
 - Recherche de pp \rightarrow bb $\phi \rightarrow$ bbbb

- connaissance des fonds QCD bbbb,bbjj, Wbb, Zbb

Le déclenchement leptonique pour la recherche du Higgs

Algorithmes de déclenchement

- Leptons mous:
 - sélection de b
 - $b \rightarrow Iv + X \& b \rightarrow J/\psi (\rightarrow II) + X ...$
- Leptons de haut p_T
 - canaux WH, $H \rightarrow W^*W^*$ $W \rightarrow I_V, Z \rightarrow II$
- Energie manquante E_T
 - canaux WH, ZH, H \rightarrow W*W* W \rightarrow Iv, Z \rightarrow vv

Performances

- Nouveaux déclenchements leptoniques:
 - redéfinition des Niveaux 1 et 2
 - Utilisant les corrélations entre detecteurs
 - Utilisant les topologies :

 (ee) p_T(e) > 2.5 GeV/c
 (μμ) p_T(μ) > 1.5 GeV/c
 (μ) p_T(μ) > 4.0 GeV/c
- Déclenchement sur mET:
 - résolution de 7-10 GeV

- Lepton $p_T(I)>10 \text{ GeV } \epsilon \sim 98\%$

- Seuils abaissés / nouveau design

Arnaud Lucotte

Déclenchement de jets de b

Algorithme de Vertex déplacés

- hadron b vole sur qques ~mm
 - \rightarrow traces de haut paramètre d'impact d₀
- Niveau de déclenchement L2:
 - basé sur re-ajustement des traces centrales
- système de déclenchement:
 - basé sur nb de traces avec:

$$S = d_0 / \sigma_{d0} > 3$$

Performances

- Echantillons de ZH→vvbb:
 efficacité ε ~ 20%
- Echantillons de Z→bb
 efficacité ε ~ 20% vs taux ~20 Hz

p.43

Etiquetage du b pour la recherche du Higgs

Méthodes d'étiquetage du b

- Approche "Multi-étiquetage"
 - Lepton mou provenant de b \rightarrow lv X

Etiquetage du b pour la recherche du Higgs

Méthodes d'étiquetage du b

- Approche avec Likelihood / Neural Net
 - étudiée à l' ISN
 - Combine temps de vol & cinématique
 - Output 3 variables continues: P("jet-b") P("jet-c") P("jet-uds")

Performances attendues

- Progrès en cours
 - \Rightarrow Double étiquetage amélioré
 - de +60% p/r CDF Run I
- Test des études de faisabilité
- du "Higgs Working Group at TeVatron"
 - $\epsilon \sim 65\%$ (vertex+lepton mou)
 - 1 étiquetage "lache"
 - 1 étiquetage "contraignant"
 - ⇒ algorithmes avec simulation complète en cours d'implémentation

p.45

Calibration des jets de b pour la recherche du Higgs

Méthode "à la CDF"

- Sélection de Z→bb (CDF run I):
 - Evénements avec 1 b $\rightarrow \mu v X$
 - 2 jets étiquetés-b dos- à-dos
 - **Coupures Cinématiques**
- Analyse **très** délicate
 - $S/B \sim 1 / 10^6$ avant coupure
 - S/B ~ 1 / 30 après sélection
 - S ~ 50 evts / 0.1 fb⁻¹
- Résolution sur $M_{bb} = M_Z$

Utilise simulation $\Delta P = (p^{jet} - p^b)$

- corrige P(jet-b) avec p^{μ}
- corrige P(jet-b) avec mET
- corrige P(jet-b) pour fraction de chargés

 $\Delta M_{bb}/M_{bb} \sim 15\%$

 \Rightarrow Analyse simulée sur H \rightarrow bb

Performances au run II

- Echantillon de ~1000 evts / 2fb⁻¹
 - Canal muon : $Z \rightarrow bb (b \rightarrow lvX)$
- Design de Déclenchement spécifiques:
 - attend 50000 evts / 2fb⁻¹ / expe.

p.46

Recherche directe du Higgs au TeVatron

Le canal WH→lvbb

Selection:

"Canal le plus efficace"

- Fonds dominants :
 - Wbb, tt, single top, WZ
- paramètres-clef:
 - Etiquetage du b
 - $\epsilon_{\rm b}$ vs réjection
 - Résolution M(bb)
- Variables discriminantes:
 - Lepton p_T,
 - energie manquante ∉_T
 - 2 jets de b, M(bb)
 - Analyse "Neural Net" améliore S/√B de ~30%

Résulats attendus:

m _H (GeV)	110	120	130
σ _{WH} (pb)	0.22	0.16	0.12
ε _{WH} ×BR (%)	~2.3	~2.3	~2.0
S/√B (1 fb ⁻¹)	0.72	0.53	0.35

p.48

Le canal ZH→vvbb

Analyse:

$\sigma \times BR(ZH \rightarrow \nu\nu bb) \sim \sigma \times BR(WH \rightarrow I\nu bb)$

- Sélection:
 - 2 jets-b étiquetés
 - \Rightarrow M(bb)
 - Veto de 3rd Jet (rej. tt)
 - Energie manquante ∉_T
 - $\Rightarrow \not\models_{T}>35GeV$ (rej. QCD)
 - $\Rightarrow \Delta \Phi(\not \in_T, jet) > 0.5$ (rej. QCD)
 - Energie hadronique
 - \Rightarrow H_T<175GeV
- Fonds dominants:
 - QCD bb **data?**
 - Wbb, Zbb/cc,ttbar,t

Résultats attendus:

- QCD ~50% total fonds

m _H (GeV)	110	120	130
BR xo _{zH} (pb)	0.022	0.010	0.013
S/√B (1 fb⁻¹)	0.84	0.71	0.56

m_H = 120 GeV

Le canal ZH→l+l⁻bb

Analyse:

$\sigma \times BR(ZH \rightarrow IIbb) \sim 1/3 \sigma \times BR(WH \rightarrow Ivbb)$

- Sélection:
 - 2 leptons de haut p_T
 - \Rightarrow M(II)=M₇±15GeV
 - 2 jets de b étiquetés
 - \Rightarrow M(bb)
 - Energie hadronique
 - \Rightarrow H_T<175GeV
- Fonds dominants: Zbb, ttbar, tb

Résultats attendus:

- Complémentaire de ZH→vvbb
- Approche NN gagne 30%

m _H (GeV)	110	120	130
BR x σ _{zH} (pb)	0.022	0.016	0.013
S/√B (1 fb⁻¹)	0.54	0.48	0.42

Le canal $H \rightarrow W^*W^* \rightarrow I^+ I^-\nu\nu$

Analyse:

Cluster Mass (GeV)

S/B ~ 10-45%

p.51

Le Canal H→W*W* →lvjj

Analyse

- Sections efficaces signal vs fonds principaux:

	Processus	σ(pb ⁻¹)
m _H =160	H→W*W* →lvjj	0.08
	$pp\toWZ$	3.2
	$pp \rightarrow ttbar$	7.5
FONDS	$pp \rightarrow tb+tq+tbq$	3.4
	$pp \rightarrow \text{W+jets}$	O(10 ⁶)

- Variables discriminantes:

W+jets: ... mE_T , p_T (jet), M(jj) ...

WW+WZ... Masse cluster, corrélation spin (non utilisée)

t-tbar..... 3rd jet veto, énergie totale

Le Canal H→W*W* →lvjj

Bruits de fond principaux

Backgrounds	W+jets	WW → lvjj	$WZ \rightarrow l\nu jj$	$t\bar{t} ightarrow l u jjbar{b}$
Pre-selection (%)	$1.36 \pm 0.04\%$	$17.8 \pm 0.4\%$	$15.0 \pm 0.6\%$	$9.7{\pm}0.3\%$
Full Selection (%)	$0.30{\pm}0.02\%$	$5.5{\pm}0.2\%$	$3.7{\pm}0.3\%$	$0.8{\pm}0.1\%$

Efficacité pour le signal

${ m M_h}~(GeV/c^2)$	120	140	160	180
Initial # events	3,000	3,000	10,000	3,000
Reconstruction	1,730	1,924	6,440	2,015
Lepton (p_T , η , ΔR)	1,455	1,758	6,162	1,955
Jets: (p _T and $\eta, \Delta R$)	371	613	2,726	906
Missing Energy cut	248	510	2,557	831
Jet Veto Cut	230	443	2,074	674
Pre-selection (%)	$8.3{\pm}0.5\%$	$14.8{\pm}0.6\%$	$20.7{\pm}0.4\%$	$22.5{\pm}0.8\%$
40 < M(j,j) < 110	98	234	1,522	488
$140^{0} < \Phi(j,j)$	98	234	1,520	487
$40 < M_{\rm C} < M_{\rm h} + 10 { m ~GeV}$	82	184	1,365	336
Full Selection (%)	$2.7{\pm}0.3\%$	$6.1 {\pm} 0.4\%$	$13.6{\pm}0.3\%$	$11.2{\pm}0.6\%$

Le Canal H \rightarrow W*W* \rightarrow Ivjj

Analyse avec fonction de vraisemblance

Définition de la fonction:

9 variables ~ indépendantes:

$$\implies p_{\mathbf{v}_i}^S(\mathbf{x}_i) = \frac{\mathbf{v}_i^S(\mathbf{x}_i)}{\sum_{j=S,B} \mathbf{v}_i^j(\mathbf{x}_i)} \quad \implies \quad \mathcal{L}(\vec{\mathbf{x}}) = \frac{\prod_{i=1}^n \mathbf{p}_i^S(\mathbf{x}_i)}{\sum_{j=S,B} \prod_{i=1}^n \mathbf{p}_i^j(\mathbf{x}_i)}$$

Résultats attendus au Run II

 M _h	120 GeV	140 GeV	180 GeV
Signal (fb)	$0.12{\pm}0.01$	$0.30{\pm}0.03$	$0.39{\pm}0.04$
Background (fb)	$1.96{\pm}0.20$	$1.80{\pm}0.20$	$3.18{\pm}0.32$

Arnaud Lucotte

Higgs SUSY: pp \rightarrow bb $\phi \rightarrow$ bbbb

Analyse:

canal important pour tan $\beta >> 1$

- Sélection pour $\varphi = h, H, A$
 - Déclenchement multi-jets $\Rightarrow \Sigma E_T > 125 \text{ GeV}$
 - 4 jets de b
 ⇒ 3 jets b-étiquetés
 - Coupures $E_T(j) = f(m_h)$
 - Topologie des jets b: $\Rightarrow \Delta \Phi(bb) > 109^{\circ} \text{ (rej. g} \rightarrow bb)$
- Fonds dominants:
 - QCD (bb/cc)
 - Z/W+jet-jet, t-tbar

Résultats attendus

- combinaison des canaux
- analyses dans le plan (${\sf m}_{\sf H},{\sf tan}eta$)
- dépend des simulations QCD !

p.55

Higgs SUSY: $t^+ \rightarrow H^+b$

Analyse:

Recherche de t \rightarrow bH[±] pour m_{H±} < m_t - m_b,

- Sélection de paires t-tbar
 - $BR(t \rightarrow bH^{\pm}) \sim BR(t \rightarrow Wb)$ (MS)
 - pour grand et petit $tan\beta$
- Désintégrations du H[±]:
 - $H^{\pm} \rightarrow \tau \nu$, cs
 - $\bullet \quad H^{\pm} \to t^{*}b \to Wbb$
- Statistique ttbar / experience (2 fb⁻¹):
 - \sim 3,800 tt \rightarrow WbWb \rightarrow blvbjj
 - ~200 tt \rightarrow WbWb \rightarrow blvblv

Recherche directe

- Extension de l'analyse CDF run I
 - $H^{\pm} \rightarrow \tau v$ in t-tbar
 - \Rightarrow Accès aux grands tan β
 - $H^{\pm} \rightarrow cs$?
 - \Rightarrow Accessible si m_{H±}>m_W

Recherche indirecte

- Efficacité de sélection t-tbar
 - petite pour $H^{\pm} \rightarrow \tau \nu$, cs !
- \rightarrow Mesure du déficit de σ (t-tbar)

p.56

Recherche directe: résumé

• <u>m_H < 130-140 GeV</u>

- Le canal $H \rightarrow$ bb est *difficile* au TeVatron et recquiert:
 - des outils spécifiques a la détection du b , calibration des jets
- Grande sensibilité au Higgs non standard si $tan\beta >>1$

• <u>m_H > 130-140 GeV</u>

- Le canal $H \rightarrow W^*W^*$ est *plus facile* au TeVatron et requiert:
 - déclenchement, résolution énergie manquante ...

• Dans tous les cas, recquiert:

- La détermination théorique précise des *fonds* & signaux attendus
 - k-facteur variant de 1.5 a 3 !!
 ex: fonds σ(Wbb), σ(Zbb) comme Signal σ(gg->H)
 - connaissance des fonctions de densité partonique (pdf)

Arnaud Lucotte

Recherche Indirecte du Higgs

Liens entre le Higgs et mt ,mW

Le Modèle Standard

- décrit les phénomènes jusqu'à Λ = O(100 GeV)
- prédit *toutes* les observables à partir de:

Paramètre	Nom	influe sur
G _μ α(0) M _Z	constante de Fermi constante structure fine Masse du boson Z	Ordre 0 de la théorie
m _f (m _t) m _H	masses des fermions (*top*) masse du Higgs	Ordres supérieurs

– et de paramètres dérivés: $sin^2 \theta_W^{eff}$ (lié aux couplages Zff : g_V et g_A)

Extraction de contraintes sur m_H

- Paramètres les plus sensibles :
 - masse du W: m_w
 - masse du quark Top : m_t
 - sin²θ_W^{eff}

Contraintes sur m_H provenant de m_W et m_t

Containtes provenant de m_w et m_t

La masse du W s'écrit en f(m_t, m_H)

 $m_W \rightarrow m_W + \Delta m_W$

$$\Delta m_W \propto m_t^2 / m_W^2$$

 $\Delta m_W \propto ln(m_H^2/m_W^2)$

 $- \Rightarrow$ Mesures de m_t et m_w contraignent m_H

Mesures existantes avant le Run II

- Contraintes indirectes LEP (contour)
- Mesures directes LEP2+TeVatron run I

Conclusions:

- m_H > 114 GeV
- m_H léger favorisé
 si:
- compatibilité des mesures entre elles pour m_W et sin²θ_W^{eff} est avérée !!

(Davier, LAL-SUSY 2001)

Production du Quark Top au TeVatron

Production de paires de quarks Top

anihilation de quarks ⊕ fusion de gluons

Section efficace de production:

	E _{CM} =1.8 TeV	E _{CM} =2.0 TeV
σ(tt)	5.5 pb	7.5 pb
Etat initial qq	90%	85%
Etat initial gg	10%	15%

Un événement t-tbar

Etiquetage du b par "lepton mou"

- Etiquetage- μ avec $\epsilon_b^{\mu} \sim 10\%$ / jet
- Etiquetage avec e (algo complexe) : PS+Calorimetre+CFT
 - \Rightarrow ttbar (b-lepton) $\varepsilon_{b}^{l} \sim 20\%$

Détermination de la Masse: [Abott et al., hep-ex/9801025]

- Ajustement likelihood $L(m_t) = D / 1+D$ dans le plan (m_t, D)
 - 91 événements (7 b-tags)

Incertitudes principales:

- Echelle d'énergie
- Combinatoire + gluon
 - 12 (pas btag)
 - 6 (1 b-tag)

 $m_t = 173 \pm 5.6(stat) \pm 5.4(syst) \text{ GeV/c}^2$

Systématiques	Erreur
échelle d'energie Jet	4.0 GeV
Fond W+jets	2.5 GeV
tt QCD radiation	1.9 GeV
Bruit & int. multiple	1.3 GeV
MC statistique	0.9 GeV
Fit Likelihood	1.0 GeV
TOTAL	5.5 GeV

Masse du Top au Run II

Perspectives au Run II

- Capacite de sélections accrues:
 - Calibration des jets pT utilisant les data:
 Z+jets , γ+jets, W→jet jet, Z →bb
 - Contraintes simulations par data
 - Meilleure identification des e/µ
 - Meilleure systématique avec double-étiquetage du b
- Erreurs systématiques probablement réduites: (/ expe.)

Incertitudes	Run I	Run II (2 fb ⁻¹)
Statistitiques	5.6 GeV	1.3 GeV
Energie Jet	4.0 GeV	2.2 GeV
Generateur Fond	2.5 GeV	0.7 GeV
Generateur Signal	1.9 GeV	0.4 GeV
Fit Likelihood	1.1 GeV	0.3 GeV
Total syst.	5.5 GeV	2.3 GeV
TOTAL	7.8 GeV	2.7 GeV

Production des bosons W/Z au TeVatron

Production des bosons

- Graphes (Z):

- − Sections efficaces élevées: $\sigma(pp \rightarrow W+X) \sim 7 \text{ nb}$ $\sigma(pp \rightarrow Z+X) \sim 0.2 \text{ nb}$
- Modes utilisés au Run II: W \rightarrow ev, $\mu\nu$ (~11%)
 - $Z \rightarrow ee,\, \mu\mu$ ($\sim 3\%$) $Z \rightarrow bb$ (~15%)

Ζ

Years of Collider Runs (SPS, Tevatron and LEP II)

- Statistique attendue (2 fb⁻¹ / exp.):

W/Z + X	$W \rightarrow e \nu$	1.6×10^{6}
	$Z \rightarrow ee$	160×10^{3}
$W\gamma, Z\gamma$		1000
WW, WZ, ZZ	≥ 2 leptons	150

Arnaud Lucotte

Masse du boson W au Run I

Mesures à partir de la Masse transverse

Définition:

```
M_T^W = \sqrt{2} P_T^e P_T^v (1 - Cos \Delta \phi)
```

Résultats DØ:

m_w = 80.48±0.09 GeV/c²

Masse du boson W au Run II

Perspectives au Run II

- Réduction des incertitudes
- Statistiques:
 - Diminue à <20 MeV (mais limité par # int./croisement)
- Résolution & réponse du détecteur:
 - Taille des échantillons de calibration (Z,J/Ψ,Y)
- Modèle de production Monte Carlo:
 - Contrainte des fonctions de structure partoniques (pdf)
 - Contrainte sur la production de W,Z visible (spectre p_T^{W/Z})
- Autres options pour la mesure de m_w
 - Masse a partir du spectre en p_T de l'électron (sensible à p_T^W)
 - mesure du rapport M_T^W / M_T^Z
 (utilise LEP, sensible à l'acceptance du neutrino)

Contraintes indirectes sur m_H

Run II

Résultats attendus

- Mesures des masses m_t,m_w au TeVatron
 - → vérification de la cohérence des résultats sur m_w
 - → contraintes sur m_H 80.6 — LEP1, SLD, vN [

Conclusions

Le TeVatron Run II semble, en premier lieu, adapté aux mesures de précision (m_w , m_t , etc..) à la physique du B (Bs) et SUSY...

...cependant...

- les mesures indirectes semblent favoriser un Higgs léger
- les mesures directes de LEP-2 \rightarrow possibilité de signal m_H~115GeV/c²

...le TeVatron peut alors apporter des réponses:

- grâce à l'amélioration du collisionneur
 - accroissement de la luminosité (inst.) \rightarrow 15 fb⁻¹ d'ici 2007
- grâce à des améliorations significatives des 2 détecteurs
 - nouveaux détecteurs de traces (vertex du b)
 - nouveaux détecteurs pied-de gerbe (identification des leptons)
 - amélioration des capacités d'identification des muons
 - électronique + rapide et déclenchement pour large bande passante

La recherche du Higgs au TeVatron:

- Recherche directe sur la gamme 115<m_H< 180 GeV: Exclusion à 95% d'un Higgs avec 4 fb⁻¹/exp. (2003)
 - m_H < 125 GeV et 155< m_H < 175 GeV
 - Evidence à 3σ avec 20 fb⁻¹ / exp.
 - m_H < 180 GeV
- Recherche indirecte:
 - mesures de précision sur m_t, m_w
 - mesures des asymétries A_{FB}(Z) au TeVatron => sin²θ_W^{eff}

Arnaud Lucotte

....What about $m_H = 115 \text{ GeV}$?

• If Higgs is indeed here:

- Signal Evidence requires
 - ~5 fb⁻¹ with 3σ evidence (2004-5)
- Expected number of events
 - per experiment with 15 fb⁻¹ (2007)

Mode	Signal	Background	S/√B
lybb	92	450	4.3
vvbb	90	880	3.0
llbb	10	44	1.5

- If we do see something, we need to measure:
 - its Mass
 - Its production cross-section
 - Can we see $H \rightarrow \tau \tau$ (BR ~ 8%)?
 - Can we see H→W*W* (BR ~ 5%) ?

• If Higgs is not here:

- we can exclude a m_H = 115 GeV Higgs
 - at 95% CL with 2 fb⁻¹ (2003)

MORIOND 2001

1st collision	Programme: Run IIa		
Date	Goal	Comments	
Feb 28	Establish interlocks	No access for DØ	
March 1	Tevatron cold; ready for beam	No access for DØ	
Mar. 1-Apr 1	Proton only studies	No access for DØ (but there has been plenty of access)	
~Apr 2-5	1x8 store(s)	Central orbit	

April 6-April 20	Establish 36x36	Helical Orbit No access for DØ
April 21-27	36x36 stores	
April 28-May 12	2 week shutdown	Access to detector
Or more likely (Goal: keep shutdown in April):		
April 6-April 20	2 week shutdown	Access to detector
April 21-27	Establish 36x36	Helical Orbit No access for DØ
April 28-May 12	36x36 stores	

Longer range outlook:

May 13 →	Stores with possible	With at least one 2
August	interruptions	week shutdown
September 2001	One month shutdown	Access to detector

Principes du Visible Light Photo-Converter

Solid State Photo-Muliplier (SSPM)

VLPC Operational Principles

- Photon is converted in the intrinsic region, creating an electron-hole pair.
- Hole drifts into the drift region, where it knocks an electron out from an atom.
- Electron accelerates back through gain region, knocking electrons from atoms as it goes.
- Spacer region and substrate are for mechanical support and field shaping.
- Thus each photon generates a pulse of many electrons. Gains of ×20,000 – 60,000 are

Un peu d'histoire...

HiSTE Improvement History

HiSTE I	 VLPC concept demonstrated Visible light quantum efficiency ~85% Noisy, couldn't resolve individual photons Further infrared suppression required
HiSTE II	 Infrared suppression adequate Visible light quantum efficiency ~40% Narrow operating range (temperature and voltage bias)
HiSTE III	 Good infrared suppression Visible light quantum efficiency ~50% Improved operating range Bias Current a little high
HiSTE IV	 Visible light quantum efficiency ~60% Good infrared suppression Bias current 10× higher than HISTE III Uniformity improvement needed
HiSTE V	 Visible light quantum efficiency ~80% Meets all specifications except for poor performance at high rates.

Performances

- Solid state photon detectors
- Operate at a few degrees Kelvin (~ -450° F)
- Bias voltage 6-8 Volts
- Detects single photons
- Can work in a high rate environment
- Quantum efficiency for visible light ~80%
- High gain ~50 000 electrons per converted photon
- Low gain dispersion
- Highly suppressed infrared sensitivity

Quantum Efficiency Greatly Exceeding PMT's

