Top Mass and Properties at the LHC

Arnaud Lucotte (LPSC, IN2P3/CNRS, UJF, INPG)

on behalf of the ATLAS & CMS collaborations

Outline

Motivation & Context

LHC as a Top Pair Factory

- Cross-section measurement
- Mass measurement
- W polarization

LHC as a Single-top Factory

- Cross-section measurement

Conclusion

From the TeVatron to the LHC...

Top Quark @ TeVatron ... Stringent tets of QCD and the EW sector

- Top guark mass is known at ~1% level (~2 GeV)
- QCD production mechanism tested at ~12% level
- V-A couplings and W polarization known at ~20%
- CKM matrix |V_{tb}| > 0.68 @ 95% CL
- Electroweak production (single-top) evidence @ 3.4σ ...

Top Quark @ LHC : precision measurements...

Top quark @ LHC : ... a probe to new physics

Searches for new (heavy) particles Flavor/mass dependent couplings Extra bosons : W' (GUT, KK) Charged Higgs Boson H⁺ Technicolor : strong interaction @ TeV

2

From the TeVatron to the LHC...

Top Quark @ TeVatron ... Stringent tets of QCD and the EW sector

- Top quark mass is known at ~1% level (~2 GeV)
- QCD production mechanism tested at ~12% level
- V-A couplings and W polarization known at ~20%
- CKM matrix |V_{tb}| > 0.68 @ 95% CL
- Electroweak production (single-top) evidence @ 3.4 σ ...

Top Quark @ LHC : precision measurements...

Searches for new (heavy) particles Flavor/mass dependent couplings Extra bosons : W' (GUT, KK) Charged Higgs Boson H⁺ Technicolor : strong interaction @ TeV

2

LHC as a Top Pair Factory...

Top Pair Production & Decays @ LHC

Top pair production SM Total cross-section

- NLO calculations σ_{tt} = 835 pb ± 10%_{pdf} ± 6% _{u-scale}
- Production via gluon-fusion (90%) and quark anihilation
- Dependence in Top Mass : $\delta \sigma_{tt} / \sigma_{tt} \approx 5 \times \delta m_t / m_t$

Event yields @ 1 fb⁻¹ Standard Model: BR(t \rightarrow W+b) \approx 1

	(·,	"lepton+jets"
	BR	N _{evt} (1 fb ⁻¹)	
tt \rightarrow (lv)b (jj)b	30%	250,000	
tt→(lv)b(lv)b	5%	40,000	"di-lepton"
tt→(jj)b (jj)b	44%	370,000 🔍	*
			"full-hadronic"
		3	EPS 2007 / TOP @ LHC

Top Pair in the "lepton+jets" channel : comissionning analyses

Comissionning analyses with 100 pb⁻¹ Both experiments use top pair as commissioning analyses Select a leptonic top (to tag the event) L1+HLT trigger (μ ,e) ~ 80% 1 high- p_{T} lepton > 20 GeV/c at least 3 high-p_T jets > 40 GeV/c 1 high- p_{T} jets > 20 GeV/c **Reconstruct the "hadronic top":** 180 E 0.14 Hadronic Top Mass bsolute uncertainty for 1 fb 160 -- Gaussian Fit to Signal absolute uncertainty for 10 fb eff. 7.23% 0.12 $(\mu = 167.6 \pm 0.8, \sigma = 15 \pm 1)$ relative uncertainty for 1 fb⁻¹ 140 ats at 100pb⁻¹ ······ Chebyshev (6th) Fit to Background relative uncertainty for 10 fb⁻¹ 0.1 Cheb. + Gaus. 120 ŝ 0.08 100 tt (e/µ + jets) 80 tt̄ (τ + jets) 50 0.06 tt (Dilepton) 60 0.04 W + Jets 40 0.02 20 مليبيليبيليبيا 0 40 60 80 100120140160180200 400 100 350 50 150 200 250 300 Calibrated b-Jet m(jj) GeV/c²

- Determine the light Jet energy scale from W→ jj : Calibration with template histograms
 → stat error ~0.5% w/ 1 fb⁻¹
- Study of missing ET resolution
- b-tagging commissioning
 b-tag efficiency → relative accuracy of 6% w/ 1 fb⁻¹
 Rejection rates from W→ jj

4

Top Mass using "lepton+jets" : Top quark reconstruction

or that maximizes $\triangle R(I,b) / minimizes \triangle R(b,W \rightarrow jj)$

→ Top Purity : 70% w/ efficiency : 1.2%

Top Mass using "lepton+jets" : systematic uncertainties

Top mass performance

Event yields : ~6,800 per 1 fb⁻¹

Mass resolution :

 $\sigma \approx 11 \text{ GeV/c}^2$ (14 before calibration)

Statistical error ~0.05 GeV with 10 fb⁻¹

			1
Main uncertainties	δm _t (GeV)	δm _t (GeV)	ŀ
light jet energy sc.(1%)	0.2	0.2	
b-jet energy scale(1%)	0.7	0.7	
Initial State Radiation	0.1	0.1	
Final State Radiation	1.0	≤ 0.5	
b-quark fragmentation	0.1	0.1	
Combinatorial backgd	0.1	0.1	
Total SYSTEMATIC	1.3	0.9	
Total STATISTICAL	0.05	0.12	

Improvements:

Use of a kinematic fit on the entire tt event

→ reconstruct hadronic / leptonic top

Use of Mass constraints (evt by evt):

 $m_{jj} = m_W \& m_{Iv} = m_W, m_{jjb} = m_{Ivb}$

→ Select lower (χ^2 ,m^{fit}) to reduce contamination from badly reconstructed b-jets (FSR)

~

Top Mass using "lepton+jets" : systematic uncertainties

 \rightarrow Build Probability from χ^2 , given the evt kinematics

EPS 2007 / TOP @ LHC

7

Top Pair in the di-lepton channel : Event Selection

Event Selection

Triggering L1+HLT Lepton trigger ε ~ 80% Two high p_T leptons Isolated, opposite signs Veto on Z-mass peak At least two high p_T jets two b-tagged jets Missing Transverse Energy

Event kinematic reconstruction

Six constraints

 $m_{Iv}=m_{W1} \text{ and } m_{Iv}=m_{W2}$ $m_{Ivb}=m_{t2} \text{ and } m_{Ivb}=m_{t2}$ $\Sigma p_T = 0$ Six unknowns Solve for m_{top} hypothesis \rightarrow Weight each solution Top mass Determination Preferred solution's weigh Window on m_{top} $N_{evt}(1fb^{-1}) = 660$ $\varepsilon_{sel} = 1.2\%$ $S/B \sim 12. / 1$

Top Pair in the di-lepton channel : Event Selection

Top Pair in the di-lepton channel : σ (tt) measurement

Systematics

Measurement dominated by systematics from the beginning.. Modeling are dominant effects:

PDF, gluon radiation, pile-up+UE,...

Experimental biases :

b-tagging and JES, should be improved with calib. data

9

Top Pair in the di-lepton channel : m_{top} measurement

Top Mass Determination Extraction of Top mass

Kinematic reconstruction as f(m_{top})

 \rightarrow fit of the "preferred" top mass

Uncertainties in 10 fb ⁻¹	δm _t
b-jet energy scale (1%)	0.6
b-quark fragmentation	0.7
ISR / FSR modelisation	0.6
Parton Distr. function	1.2
Total SYSTEMATIC	1.6
STATISTICS & method	0.3

Systematic uncertaintiesStrong dependence upon theoryParton distribution functionGluon Radiation (Λ_{QCD},Q²)b-quark fragmentationJet Energy scale~0.6 GeV per 1% miscalibration

Top Pair in the "full hadronic" channel : Event Selection

Event Pre-selection & classification

Use of Event shape variables + Jet energies

→ Neural Net

MIS	Yields @ 1 fb ⁻¹	ε (%)	S/B	S/√S+B
	trigger HLT jet + b-tag	16.8	1/300	11.1
	Event: 6 ≤ N _{jet} ≤ 8	15.5	1/225	12.4
	Neural Net	4.0	1/10	28.5
	1-b tag	3.8	1/7	32.6
	2-b tag	2.7	1/3	37.2
-				

Top Pair in the "full hadronic" channel : σ (tt) measurement

Cross-section measurements

Full hadronic events selected by a NN

\rightarrow Cut on on Neural Net

Uncertainties in 1 fb ⁻¹	Δσ/σ
Jets energy scale (3%)	11.2%
High Level Trigger	5.0%
b-tag efficiency (5%)	2.0%
Pile up (30% On-Off)	10.0%
Gluon Radiation (A _{QCD} , Q ²)	7.9%
Underlying Event	4.1%
Parton Density Functions	4.2%
b-quark fragmentation	1.9%
Background level	5.0%
Luminosity	5%
Total SYSTEMATIC	20%
Total STATISTICS	3.0%

Systematic uncertainties

Experimental biases dominate :

JES, trigger efficiency, b-tagging efficiency Modeling biases Pile-up+UE, should be tuned with data PDF, IS/FS radiations Backgrounds shape & levels

Top Pair in the "full hadronic" channel : m_{top} measurement

Systematic uncertainties

Light-jet and b-jet energy scales dominate:

Need 1% level to reach ~3 GeV/c²

Modeling effects

Dominated by gluon radiation, background

LHC as a Single-Top Factory

Single Top cross-section : Production @ LHC

Production at the LHC

All 3 contributing mechanisms in SM

Phenomenology

Cross-section uncertainties

 $\Delta\sigma/\sigma_{theo}$ ~ 4 to 6% (renorm. scale, pdf, input m_{top}) Main backgrounds @ LHC

Top pair events (was W+jets @ TeVatron)

(1) Z. Sullivan, Phys. Rev D70 (2004) 114012 (2)Campbell et al., hep-ph/0506289 14 EPS 2007 / TOP @ LHC

Single-top t-channel

Signal : $\epsilon \approx 1-2\%$ and N(1fb⁻¹) ~ 7,000 events Backgrounds : W+jets , top pair Systematics: $\Delta\sigma/\sigma = 1.3\%_{stat} \pm 11\%_{exp} \pm 6\%_{bckgd} \pm 5\%_{lumi}$ @ 10fb⁻¹

t-channel cross-section

15

@ LHC

W+t channel cross-section

s-channel cross-section

Polarization in top events

Polarization of W in top decays

V-A current
$$\frac{-ig}{2\sqrt{2}} \overline{t} \gamma^{\mu} (1-\gamma^5) V_{tb} b W_{\mu}$$

Measurement Principle

Use the lepton decays of W boson as spin analyzor → Angle between I⁺ and W⁺ direction ("top at rest" frame)

Observable:

$$\frac{1}{N}\frac{dN}{d\cos\Psi} = \frac{3}{2}\left[F_0\left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L\left(\frac{1-\cos\Psi}{2}\right)^2 + F_R\left(\frac{1+\cos\Psi}{2}\right)^2\right]$$

Polarization of W in top decays

V-A current

$$\frac{-ig}{2\sqrt{2}}\overline{t}\,\gamma^{\mu}(1-\gamma^{5})V_{tb}bW_{\mu}$$

Measurement Principle

Use the lepton decays of W boson as spin analyzor → Angle between I⁺ and W⁺ direction ("top at rest" frame)

Observable:

$$\frac{1}{N}\frac{dN}{d\cos\Psi} = \frac{3}{2}\left[F_0\left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L\left(\frac{1-\cos\Psi}{2}\right)^2 + F_R\left(\frac{1+\cos\Psi}{2}\right)^2\right]$$

Polarization of W in top decays

V-A current

$$\frac{-ig}{2\sqrt{2}}\overline{t}\,\gamma^{\mu}(1-\gamma^5)V_{tb}bW_{\mu}$$

Measurement Principle

Use the lepton decays of W boson as spin analyzor → Angle between I⁺ and W⁺ direction ("top at rest" frame)

Polarization of W in top decays

V-A current

$$\frac{-ig}{2\sqrt{2}}\overline{t}\,\gamma^{\mu}(1-\gamma^{5})V_{tb}bW_{\mu}$$

Measurement Principle

Use the lepton decays of W boson as spin analyzor → Angle between I⁺ and W⁺ direction ("top at rest" frame)

Source of uncertainty	Semile	eptonic c	hannel	a. 1		
	F_L	F_0	F_R	5	Eur. Phys. J C44 (2005)	
Generation				20		40.5.4
Q-scale	0.000	0.001	0.001	₹0.8	F L	= 10 fb ⁻¹
Structure function	0.003	0.003	0.004	Ð	le	pton+jets
ISR	0.001	0.002	0.001	R	+++++++++++++++++++++++++++++++++++++++	
FSR	0.009	0.007	0.002	0.6	+ + ++	
b-fragmentation	0.001	0.002	0.001		+	
Hadronization scheme	0.010	0.016	0.006		+ +	4
Reconstruction				0.4		À
b-tagging (5%)	0.006	0.006	0.000	1	+ – SM	+
b-jet miscalibration (3%)	0.011	0.005	0.005		+ data	F
Input top mass (2 GeV)	0.015	0.011	0.004	0.2	-	\++
Others						\
S/B scale (10%)	0.000	0.000	0.000		-	/
Pile-up (2.3 events)	0.005	0.002	0.006	0	Enalteritere	
TOTAL	0.024	0.023	0.012	· ·	1 -0.5 0	0.5 cos Ψ

Systematic úncertainties

Systematics are dominant b-jet energy scale, b-tagging efficiency Input top mass, FSR modeling Pile-up+underlying event

20

Sensitivity to anomalous couplings

Sensitivity to anomalous couplings

In models beyond the SM

New particles affecting the Wtb couplings

Model Independent approach

$$L = \frac{g}{\sqrt{2}} W_{\mu} b \gamma^{\mu} (f_1^L P_L + f_1^R P_R) t - \frac{g}{\sqrt{2}\Lambda} \partial_{\nu} W_{\mu} b \sigma^{\mu\nu} (f_2^L P_L + f_2^R P_R) t + hc.$$

→ four couplings : f_1^L , f_1^R , f_2^L et f_2^R (in the MS: $f_1^L = V_{tb} \cong 1$, $f_1^R = f_2^L = f_2^R = 0$)

Results

Sensitivity to anomalous couplings

Sensitivity to anomalous couplings

In models beyond the SM

New particles affecting the Wtb couplings

Model Independent approach

$$L = \frac{g}{\sqrt{2}} W_{\mu} b \gamma^{\mu} (f_1^L P_L + f_1^R P_R) t - \frac{g}{\sqrt{2}\Lambda} \partial_{\nu} W_{\mu} b \sigma^{\mu\nu} (f_2^L P_L + f_2^R P_R) t + hc.$$

→ four couplings : f_1^L , f_1^R , f_2^L et f_2^R (in the MS: $f_1^L = V_{tb} \approx 1$, $f_1^R = f_2^L = f_2^R = 0$)

Results

Sensitivity to anomalous couplings

	f_1^R	f_2^L	f_2^R
$t\bar{t}$, LHC (10 fb ⁻¹)	0.30	0.13	0.04
(Stat.+ Syst.)			
$t\bar{t}$, Tevatron (2 fb ⁻¹)	0.5	0.3	0.3
(Stat. only)			
single top, LHC (100 fb ⁻¹)	0.06	0.07	0.13
(Stat.+ 5% Syst.)			
$b \rightarrow s\gamma, sl^+l^-, B$ -factories	0.004	0.005	0.4
(indirect)			

Conclusion & perspectives

LHC as a "top pair factory"
More than 300k recorded events a year :
Use top pair for commissionning analyses
Measurements will be early systematics limited
Top mass measurements:
TeVatron results will be difficult to match
Although an uncertainty of ~1 GeV/c ² seems achievable
provided 1% level calibration of (b)-jet energy scale
and the optimization of m _t determination technique
Cross-section measurements:
Errors should match soon the theoretical uncertainties
Should provide a test of QCD at ~6% level
W polarization measurements
Precision at ~1-2% level
Top spin correlation asymmetry to ~4%
High sensitivity to anomalous couplings
LHC as "single-top" factory
More than 80k recorded events a year
Systematics limited measurements ~ 10%
Cross-section measurements
Should lead to V _{tb} at ~5% level
Will be sensitivie to anomalous couplings, FCNC
Will probe to new extra boson W', H [±] (2HDM)
→ Will need to use data to model ttbar/W+jet background

22

Thanks to...

Many thanks to :

Pamela Ferrari, Jorgen D'hondt, Anne-Isabelle Etienvre, Jerome Schwindling, Javier Cuevas, Akira Shibata

Top Mass measurement : motivations at the LHC

Precision measurements in the EW sector

LHC prospects

Consistency checks with direct m_H measurements... s-top \rightarrow MSSM (1-loop): $m_h^2 = m_Z^2 + 3G_F m_t^4 ln M_t^2$ mass

hep-ph/0303092

Top Mass measurement : motivations at the LHC

Precision measurements in the EW sector Boson masses relation:

LHC prospects

Consistency checks with direct m_{tr} measurements Determination of the underlying framework requires : $\rightarrow \Delta m_{W} \approx 15 \text{ MeV/c}^2 \text{ vs } \Delta m_{t} \approx 1 \text{ GeV/c}^2$

Top Mass in the "lepton+jets" channel : Event Selection

Event Selection

Select a leptonic top (to tag the event) L1+HLT trigger (μ ,e) ~ 80% 1 high-p_T lepton (trigger) high missing Energy at least 4 high-p_T jets at least 1 high-p_T b-tagged jet

Reconstruct the "hadronic top"

Classify events / b-tags → 2 samples : 2 b-tag (1 btag) W-boson reconstruction from jj → in-situ light jet re-calibration Top quark reconstruction from jjb

Top Mass using "lepton+jets" : b-tagged jet

Top Mass using "lepton+jets" : b-tagged jet

Top Mass using "lepton+jets" : light jet in situ re-scaling

5

Top Mass using "lepton+jets" : Light jet calibration w/ templates

Light jet calibration with template method Smear quark 4-momentum:

Consider only pairs with 150 < mjjb < 200 GeV Energy & angle resolution, energy correlation Fitting procedure

Generate a set of template histograms w/ α and β Fit each template histogram to m_{ii} in the data \rightarrow best χ^2

Performance

Improve top mass resolution : 14 → 11.4 GeV/c² reduce statistical error : 0.5% with 1 fb⁻¹ reduce dependence in JES : 0.6% miscalibration

Top Mass in the "di-lepton" channel (ATLAS)

Procedure

- (1) Selection & yield @ 10 fb⁻¹
 - 2 high-p_T leptons
 - high missing Energy
 - 2 high-p_T jets
 - → 80,000 evts & S/B ~ 10
- (2) Reconstruct fully tt event :
 - Assess neutrino's momenta
 - \rightarrow 6 eqs ($\Sigma p_T = 0, M_{iv} = m_w, M_{ivb} = m_t$)
 - $\rightarrow \epsilon \sim 97\%$ w/ Purity $\approx 73\%$

(3) Top mass determination :

- Evt/evt: $m_t \rightarrow$ solve system \rightarrow weight
 - (using kinematics & topology)
- All evts: mean weight per m_t
 - \rightarrow m_t^{fit} = m_t w/ highest <weight>

Performance with 10 fb⁻¹

Mass resolution :

- σ ≈ 13 GeV/c²

- **Systematics :**
 - Choice of PDF
 - b-jet energy-scale

V. Simak et al.	õm [;]
b-jet energy scale (1%)	0.6
b-quark fragmentation	0.7
ISR / FSR modelisation	0.6
Parton Distr. function	1.2
Total SYSTEMATIC	1.6
bodiem & EOITEITATE	0.3

Top mass in the "di-lepton" channel (ATLAS)

Performance with 10 fb⁻¹

Mass resolution :

 $-\sigma \approx 13 \text{ GeV/c}^2$

- **Systematics :**
 - Choice of PDF
 - b-jet energy-scale

V. Simak et al.	δm _t
b-jet energy scale (1%)	0.6
b-quark fragmentation	0.7
ISR / FSR modelisation	0.6
Parton Distr. function	1.2
Total SYSTEMATIC	1.6
STATISTICS & method	0.3

Top pair production : cross-section measurement

Cross-section measurement

Strategy :

 Same pre-selection as for m_t measurements

Performance :

- Uncertainty δσ^{stat} ~negl.
- Systematics dominated : 1 m
 machine : ΔL/L ~ 5%
 b-tagging ε & mistag rates
 ISR/FSR, pdf, Jet energy scale

	Atlas F	Preliminary
	N _{event} @ 10 ³³	∆σ/σ ^{stat}
1 month	70,000	0.4%
1 year	300,000	0.2%

Interpretations

Single Top cross-section : Production @ LHC

Production at the LHC All 3 contributing mechanisms in SM

t-channel : $\sigma \sim 250 \text{ pb}$ - dominant source of single top - N(1 fb⁻¹) ~ 80,000 in W $\rightarrow e/\mu, \nu$

s-channel : $\sigma \sim 10 \text{ pb}$ - smallest source of single top - N(1 fb⁻¹) ~ 3,000 in W $\rightarrow e/\mu \nu$

Wt-channel : σ ~ 60 pb - source of single top - N(1 fb⁻¹) ~ 18,000 in W→ e/μ ν

Motivations

Direct determination of $|V_{tb}|$, top width Test of V-A, top polarization (100% polarized) Sensitivity to anomalous couplings, FCNC Sensitivity to extra W' (GUT, KK modes) Sensitivity to H[±] bosons (2HDM) ...and one of the main backgrounds to Higgs searches

Single Top cross-section : Production @ LHC

Production at the LHC

All 3 contributing mechanisms in SM

 σ = 246.6±10 pb (NLO) (1) - dominant source of single top - N(1 fb⁻¹) ~ 80,000 in W \rightarrow e/µ,v

 σ = 10.65±0.65 pb (NLO) (1) - smallest source of single top - N(1 fb⁻¹) ~ 3,000 in W \rightarrow e/µ v

σ = 62.10±0.03 pb (NLO) (2) - source of single top - N(1 fb⁻¹) ~ 18,000 in W→ e/μ v

Cross-section & uncertainties

Channel (nh)		Uncertainties			
Ghannei	O(bp)	PDF	µ-scale	Δm_{top}	
W-g	246.6 ± 8.7	4%	3%	1%	
W+t	60 ± 15	10%	?	1%	
W *	10.6 ± 0.7	4%	2%	3%	
	(1) Z. Sullivan, Phys. Rev D70 (2004) 114012 (2)Campbell et al., hep-ph/0506289EPS 2007 / TO				

Single Top : Event Selection

Procedure

(1) Select and tag event

- 1 high-p_T lepton
- high missing Energy
- at least 2 high-p_T jets
- at least 1 high-p_T b-tagged jet

(2) Discriminate vs non-top background

- Reconstruct a Top mass M_{lvb}
- Use event shape & high H_T or M_{TOT}

(3) Discriminate vs top backgrounds

- Number of b-jets
- Event topology

	σ x BR (pb)	
Wg →(lv)b qb	54.2	
Wt \rightarrow (jj) (lv)b	17.8	
$W^{\star} ightarrow (Iv)b b$	2.2	
W+jets → Iv+jets	3,850	Main backgrounds :
W+QQ→ lv+QQ	66.7	– ttbar : ~ 1/100 , Δ theo~10%
WZ →lv+jets	3.4	– W+jets : ~ 1/2000, ∆theo~ ??
WW \rightarrow Iv + jets	17.1	→ Use of DATA !
$tt \rightarrow (lv)b (lv)b$	38.2	
tt \rightarrow (lv)b (jj)b	242.8	

Single-top : summary

Measurements

Single-top analyses are delicate

Mostly because of the top pair background !

Single-top analyses require specific tools

loose b-tag, MVA ...

→ measurements will be systematics limited (bckgd +exp)

Strategies for early data in progress...

Understand backgrounds with data Trigger turn on's B-tagging weight and pdf's → MC shape & normalization Use likelihood's combination "a la Dzero" Devoted to specific backgrounds

s-channel with 30 fb⁻¹ : Why is it so interesting ?

Charged Higgs & single-top Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- Use same analysis as developed for the s-channel \rightarrow efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

s-channel with 30 fb⁻¹: Why is it so interesting ?

Charged Higgs & single-top Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- Use same analysis as developed for the s-channel \rightarrow efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

s-channel with 30 fb⁻¹ : Why is it so interesting ?

Charged Higgs & single-top Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- − Use same analysis as developed for the s-channel → efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

Mesure de polarisation du boson W : méthode

Selection & correction Reconstruction & selection distort distributions

→ Correction function evaluate on an independent sample

Top Quark Mass measurement : Top Quark reconstruction

Top Quark reconstruction Association of hadronic W and b-jet :

Combination leading to the highest p_T^{top} or that maximizes ∆R(I,b) / minimizes ∆R(b,W→jj)
 → right (jjb) combination in ~ 80% cases

Single Top cross-section : Production @ LHC

Production at the LHC

All 3 contributing mechanisms in SM

Theoretical prediction

NLO/NLL available for W* and W-g only

 \rightarrow affect significantely σ as well as p_T(jet), H_T etc...

Channel	σ(pb)	Uncerta hep-ph/0408049			
		PDF	µ-scale	Δm_{top}	
W-g	246.6 ± 8.7	4%	3%	1%	
W+t	60 ± 15	10%	?	1%	
W *	10.6 ± 0.7	4%	2%	3%	

Theoretical uncertainties:

Quark-gluon luminosity --choice of the (b) PDF Renormalization scale μ Δm_{top} (175 to 178 GeV $\rightarrow \sigma$ (W*) down by 6%)