Recherche du Higgs au TeVatron Run I

Défaut d'un facteur ~ 30-80 en sensibilité !

Que peut apporter le TeVatron au Run II ?

Trois raisons d'être optimiste:

1. Améliorations du collisionneur

- Hausse de la luminosité délivrée
 - L_{RunII}~ L_{RunI} x 150
- Accroissement de l'énergie des faisceaux
 - σ_{Higgs} accrue de 20%

2. Améliorations des détecteurs

- Sous-détecteurs plus performants (Leptons ID)
 - Meilleure ID des b et W
- Nouveaux détecteurs de traces & Vertex
 - Etiquetage des b
- Capacité de DAQ et de déclenchement accrues
 - Echantillons de calibration, topologies Higgs

3. Recherche du Higgs

- Outils d'analyse spécifiques
- Combinaison de canaux multiples
- Mesures de précision sur le W, top
 - Contraintes indirectes

La recherche du Higgs au TeVatron: le Run II

Arnaud Lucotte LAL Orsay

I. Upgrade du TeVatron & détecteurs

II. Recherche directe du Higgs

III. Mesures de Precision

Conclusion

Saclay 17-DEC-01

Complexe des accélérateurs à FermiLab

Le TeVatron au Run II

Nouveaux Paramètres machine au Run II

Les améliorations de FermiLab

Chaîne des protons:

Hausse de l'intensité faisceau: pour cible et pour collision

installation de l'Injecteur Principal

Chaîne des antiprotons:

Hausse de l'intensité faisceau pour collision

- Collection des antiprotons
- Refroidissement & accumulation
- Recyclage
- · Refroidissement par faisceau d'e-

 \rightarrow Taux horaire de production accru d'1 facteur 2-4

Collisionneur TeVatron:

Montée en énergie: E_{fais} = 1000 GeV

- Ajout d'aimants supraconducteurs
- Accroissement du #collisions: Run IIb
 #paquets / intensité / espace entre paquets
 Angle de croisement entre faisceaux p/p
 (132ns)
- réduction de l'émittance faisceaux (b-beam compensation)

2004

Nouveaux Paramètres machine au Run II

Paramètres machine

	Run Ib	Run Ila	Run Ila	Run IIb
рхр	6x6	36x36	140x103	140x103
Protons / paquet	2.3x10 ¹¹	2.7x10 ¹¹	2.7x10 ¹¹	2.7x10 ¹¹
Total antiprotons	3.3x10 ¹¹	1.1x10 ¹²	4.2x10 ¹²	1.1x10 ¹³
Temps/ paquets (ns)	3,500	396	132	132
Lumi x10 ³² cm ⁻² s ⁻¹	0.16	0.8	2.1	5.2
Angle croisement (µrad)	0	0	136	136
Fonction $\beta^*(m)$	0.3	0.3	0.3	0.3
CM Energy (GeV)	1,800	2,000	2,000	2,000
interactions/crossing	2.6	2.3	1.9	4.8

Agenda

Run IIa (36×36)

- Mode 396 ns
- 17pb⁻¹ / semaine

Run IIa (140×103) / 2004 ?

- Mode 132ns
- 42 pb⁻¹ / semaine
- Recycleur

Run IIb:

- 5x10³²cm⁻²s⁻¹ / 2005
- 105 pb⁻¹ / semaine

Arnaud Lucotte

15 fb⁻¹ / experience en fin 2007

L'upgrade des détecteurs

L'expérience DØ

Les atouts de DØ

Calorimétrie EM et hadronique

Performances comparables au Run I @ 5x10³¹ cm⁻²s⁻¹

Granularité, Herméticité, Uniformité

Reconstruction des traces

Nouveau Solénoide (B = 2T)

Nouveau détecteur à fibres scintillantes:

- Reconstruction des traces chargées
- E/p avec calorimètre

Nouveau détecteur de Vertex:

Reconstruction 3D de Vertex, param. d'impact

Identification des particules

Nouveaux détecteurs pieds-de-gerbe:

Identification e/γ

Nouveaux scintillateurs muons:

- Région centrale + bouchon
- Meilleurs Seuil de détection

Remplacement chambres /dérive muon

Système de déclenchement

Acceptance accrue L1/L2/L3: 10 kHz / 1 kHz / 20 Hz

- Combinaison des détecteurs au 1er niveau
- Vertex déplacés, Leptons mous

Reconstruction des Traces à DØ

Détecteur de Vertex à DØ

Caractéristiques:

Couverture :

- $|\eta| < 1.7$ (tonneaux) et 2.5 < $|\eta| < 3.0$ (disques)
- R = 2.7 à 9 cm, L = 60cm
- 6 modules centraux / 4 couches
 - Cylindres Beryllium / pistes Silicium
 - Mesures axiale & stereo (3D)
- 6 disques avant / 12 secteurs:
 - pistes Silicium r Φ

790K canaux de lecture

Détecteur Central à Fibres scintillantes (CFT)

Caractéristiques:

Couverture:

- |η| < 1.7
- R = 20 à 51 cm
- 8 super-couches:
 - Fibres scintillantes Ø=830 μm
 - 3 x 2 doublets par couche:
 → mesures axiale & stereo
 - Nombre de canaux ~77k
- Performances:

Performances des détecteurs de traces à DØ

Performances

Efficacité de reconstruction

95% sur large région

Résolution vs rapidité n

- moment : $dp_T/p_T^2 = 0.2\%$
- paramètre d'impact b: <80 μm

Reconstruction des Vertex: Vertex primaire ~15-30 μ m (r- Φ) pour tt / bb Vertex secondaire: ~ 40 μ m (r- Φ), 100 μ m (r-z)

Arnaud Lucotte

Détecteurs de Muons

Architecture

Région centrale:

Chambres Proportionnelles à Dérive (PDT):

- Gaz plus rapide (dérive + courte) Nouveux scintillateurs:
 - 630 compteurs (70 en Φ X 9 en z)

Région Bouchon:

Nouvelles PDT's:

- Meilleure Granularité (1×1cm2)
- Gaz « rapide » (dérive ~ 50ns)

Nouvelles couches de Scintillateurs

• Scintill. pixel ($\Delta \eta \times \Delta \phi = 0.1 \times 4.5^{\circ}$) / octant

Performances

Meilleure extension (η<2) Déclenchement niveau 1:

- Combiné av/ traces
- Central/Bouchon
 Identification muon
- avant le torroid (muons de faible p_T)
 Etiquetage en temps
 - Rejet cosmic

L'expérience CDF

Roll-In de CDF / Janvier 2001

Les atouts de CDF

Reconstruction des Traces

Grand Volume de Tracking dans région centrale

- Rayon de 1m
- Acceptance accrue

Nouvelle chambre à dérive Centrale:

- Reconstruction des traces chargées
- E/p avec calorimètre

Nouveau système détecteur de Silicium:

- Reconstruction autonome des traces
- Nouveau détecteur de vertex avec "couche 0"
- 3 couches intermédiaires

Identification des particules

Nouveau détecteur a muons

Couverture étendue

Nouveaux Scintillateurs muons

- Time stamp : réjection cosmic
- Seuil de déclenchement plus bas
- Détecteur "Time of Flight" (TOF)
 - Identification des kaons / pions

Calorimétrie EM et hadronique

Calorimètre central inchangé Nouveau calorimètre bouchon

Couverture étendue

Reconstruction des traces à CDF

Performance des détecteurs de Traces à CDF

Performances

Grande efficacité de reconstruction

- 2 systèmes autonomes
- efficacité > 96% jusqu'à |η|<2.0

Résolution moment;

- (p_T<3 GeV/c): dp_T/p_T² < 0.7%
- (p_T>3 GeV/c): dp_T/p_T² < 0.15%

Résolution sur paramètre d'impact:

- |η|< 1.0 par. impact < 50 μm
- |η|< 2.0 par. impact < 70 μm

Higgs Phenomenology at the TeVatron

Constraintes théoriques sur le Higgs Standard

Unitarité Boson scattering Riesselmann, hep/ph-9711456 $\sigma(V_1 V_1 \rightarrow V_1 V_1)$ diverge 800 \rightarrow Compensation via Higgs triviality 600 Unitarité implique: $M_{\rm H} \, [{\rm GeV}]$ $m_{H} \leq (2\sqrt{2\pi} / G_{F})^{\frac{1}{2}} \leq 700 \text{ GeV/c}^{2}$ 400 200 **Trivialité** Vacuum stability RGE equation $\lambda(\Lambda)$: 0 10³ 10^{6} $10^9 \ 10^{12} \ 10^{15} \ 10^{18}$ $\lambda > 1$ for $\Lambda \sim \Lambda_1$ (landau) Λ [GeV] $\lambda < 1$ valide jusqu'a $\lambda(\Lambda_{I}) \rightarrow \infty$ $m_{\rm H} < 8\pi^2 v^2 / 3 \log(\Lambda^2 / v^2)$ V(φ) Stabilité du Vide

V(φ) a un minimum absolu: ∂ V(φ) / ∂ φ > 0 ⇔ λ(Λ) > 0 ⇔ m_H(Λ) > M_{min} ν(φ) ______φ

 $m_{\rm H} > 52 \text{ GeV/c}^2 \oplus \Lambda = 1 \text{TeV}$

Contraintes expérimentales sur le Higgs Standard

Recherche Directe

Recherche indirecte

Mesures de Précision

- $\bullet \quad m_Z \ , \ m_W \ , \ m_t$
- $\sin^2 \theta_W$, $\alpha_{\sf EM}$

Prediction dans le MS:

• m_H , χ²

Higgs léger favorisé m_H < 300 GeV/c²

Production du Higgs au TeVatron

m_H<135 GeV bb ww ~ 90 - 45% H→bb Standard Model BR(H_{SM}) $H \rightarrow \tau^+ \tau^-$ ~ 8% ~ 3 - 8% H→gg 10 + τ⁺τ⁻ 77 m_h>135 GeV H→WW* 10 -2 →l⁺l⁻vv (~4.5%) 160 80 100 120 140 180 200 $\rightarrow I_{\nu}qq'$ (I = e, μ) M_{h.}[GeV]

Modes de Production

Modes de Désintégrations

Contraintes théoriques sur les Higgses MSSM

Masses a l'ordre-0

2 paramètres libres:

- $\tan\beta = v_u/v_d$
- $m_A (or m_H, m_h)$

$$m_{H\pm}^2 = m_W^2 + m_A^2$$

 $m_{H,h}^2 = \frac{1}{2} (m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2) - 4m_Z^2 m_A^2 \cos^2 2\beta})$

Masses aux ordres supérieurs

Contraintes Expérimentales sur les Higgs neutres

Recherches directes

Phenomenologie du h/H/A au TeVatron (tanβ=6)

Modes de Désintégration:

Higgs léger:

- BR(bb) > 90%
- BR $(\tau^+\tau^-) < 8\%$

Higgs lourd:

- $g_{H/Abb} \propto tan\beta$
- BR(bb) > 80%
- BR $(\tau^+\tau^-) < 8\%$
- BR(W⁺W⁻)< 12%

Modes de Production:

Higgs léger:

• σ(pp→Wh)~0.15 pb

 $\overrightarrow{}$ Analyse MS-like

Higgs lourd:

• $\sigma(p\bar{p} \rightarrow A/Hb\bar{b}) \sim 10 \text{ fb}$ $\Rightarrow 4b \text{ en état final}$

Higgs léger h: analyse MS
Higgs lourds A/H: états finaux 4 b's

Phenomenologie du h/H/A au TeVatron (tanβ=30)

<u>tanβ=30:</u> – Canaux Standard plus exploitables – Analyse états finaux a 4 b

Phénoménologie des Higgs H[±]

Modes de production

- annihilation: σ<10 fb
- associée W⁻H⁺: σ<1 fb

 $\begin{array}{|c|c|c|c|} \hline Modes \sim inaccessibles \\ car \sigma trop faible \\ \hline \end{array}$

Phénoménologie des Higgs H[±]

Modes de désintégration du Top

- Standard: t→W⁺b
- SUSY: $t \rightarrow H^+b$
- dépend de tanβ

BR(t→bH⁺) > BR(t→bW⁺) \forall tan β <1 et >30

Modes de désintégration du H[±]

Fonds Standards à la recherche du Higgs

Outils pour la recherche du Higgs

Strategy and Tools for Higgs Search

Low Mass Analysis

- $pp \rightarrow WH \rightarrow Ivbb$
- $pp \rightarrow ZH \rightarrow \nu\nu bb$
- $pp \rightarrow ttH \rightarrow WbWb bb$
- Triggers:
 - Lepton, mE_T
 - Displaced Vertex
- b-tagging:
 - b-tagging efficiency
 - mistag rate
- Jet Energy & Resolution:
 - M_{bb} resolution

High Mass Analysis

- $H \rightarrow WW^*$, WWW^*
- $pp \rightarrow ttH \rightarrow WbWb WW^*$
- Triggers:
 - Lepton, mE_T
- Lepton ID
- E_{T_1} , mE_T , angles resolution

Z→bb Control

Sample

Lepton trigger for Higgs Searches

Motivation & goals

- Huge QCD Background:
 - $\sigma_{\text{dijets}} \approx 43 \text{ mbarn}$
- Specific triggers:
 - Soft Lepton for b-tagging
 b→Iv+X and b→J/ψ(→ II)+X
 - High p_T leptons & mE_T H \rightarrow W*W*,Z*Z* w W \rightarrow Iv, Z \rightarrow II

New Trigger Design

- New Architecture:
 - Fast & pipelined electronics
 - Band width: L1= 10-50 kHz
 - Correlations at L1
- Lowered Thresholds:
 - [ee] $p_T(e) > 2.5 \text{ GeV/c}$
 - $[\mu\mu] p_T(\mu) > 1.5 \text{ GeV/c}$
 - $[\mu] p_T(\mu) > 4.0 \text{ GeV/c}$
- Missing E_T triggers:

missing E_T resolution ~7-10GeV

- Triggers to be tested with 1st data
- effects of mbias, pile-up, to be assessed

b trigger for Higgs Searches

b-tagging for Higgs Search

b-jet Tagging

- "Multi-tag" approach developped:
 - Soft Lepton from $b \to I\nu X$
 - High Impact parameter tracks
 - Secondary Vertices: |L_{xy} | /σ_{xy}
- b/c separation:
 - LifeTime
 - Vertex Mass
 - Kinematics, topology
- Optimization w/ Likelihood & Nnet
 - Tight / Loose taggers

Performances

Use of likelihood & NNet being tested & implemented

Mass resolution and $Z \rightarrow b\overline{b}$ sample

Jet E_T resolution

Run I data:

σ/E ~75%/√E (DØ)
 σ/E ~78%/√E (CDF)

Run II:

- More challenging (materials, mbias etc.)
- Improve energy scale
 (20 x more γ+jet)
- Use Track+Calorimeter (CDF: 30% better)

M resolution with $Z \rightarrow bb$

Run I (CDF):

- Inclusive muon sample
- Corrections for b→l
- \Rightarrow S ~50 evts / 0.1 fb⁻¹ 15% resolution in M_{bb}

Run II:

 Specific Zbb triggers: Muon: 500 evts / fb⁻¹
 Vertex: 50,000 evts / fb⁻¹

Improvements needed* to reach σ/M ~10%

2000

1500

1008

508

Résolution sur M(jj) avec Z→bb

Motivations

Sélection de Z \rightarrow bb indispensable pour H \rightarrow bb

- étiquetage des b
- résolution de Mbb

Echantillon disponible important

• déclenchement spécifique

Algorithme (CDF Run I)

Sélection:

- 1 single muon (b $\rightarrow \mu v X$)
- 2 jets étiquetés-b dos-à-dos

Dijet Invariant Mass (GeV/c2)

Coupures Cinématiques

- Optimisation de S/B:
 - Minimise p(jet-b)^{mes}-p(b)^{MC}
 - Utilisant p_{μ}^{mes} , mE_T fraction chargée
- Analyse **très** délicate:
 - S/B ~ 1 / 10^6 avant coupure
 - S/B ~ 1 / 30 après sélection

Résolution des jets avec Z→bb

déclenchement single muon S ~ 500 evts / fb⁻¹ déclenchement 2jet+vertex S ~50000 evts / fb⁻¹ Photon + Jet Pr Balancing in CDF Data R 24 Energie flow pour E_{jet}: Typical CDF Jet Resolution using Calorimetry only Energy Resolution New CDF Jet Algorithm Using Tracking, inclusion de p (traces) Calorimetry and Shower Max Detectors mesure de gerbe EM à σ/E = 109 %/√E l'extension maximale ("shower Max") 14 12 Central Calorimeter σ/E = 78 %/√E **CDF Preliminary** 10 20 25 30 35 50 55 FM Show Photon Pr (GeV) EM3 renoid Technique de énergieflow améliore σ/M de 30% EMYTA

Central Fiber Tracker

Performances attendues

Echantillon de $7 \rightarrow bb$

Recherche Directe du Higgs

Le cannal WH→lvbb

Caractéristiques

Pre-sélection:

- Lepton de grand p_T, mE_T
- 2 jets taggés-b

Variables discriminantes:

- Lepton: E_T^{I} et η^{I} et m E_T
- Energie E_t^{b} , M_{bb} (= $m_H \pm 2\sigma_m$)
- Energy totale Jets H_T
- Sphericité

Fonds dominants:

Wbb, tt, single top, WZ

Performances attendues

Paramètres-clef:

- Efficacité b-tag & mistag
- Détermination de Wbb
- Résolution M(bb) (σ_M/M ~10%)

Le Cannal ZH→vvbb

Caractéristiques

Pre-sélection:

High mE_T + 2 jets b-taggés

Variables discriminantes:

- E_T^b et mE_T
- $M_{bb} (= m_H \pm 2\sigma_m)$
- Total jet energie H_T
- Sphericité , Centralité
- $\Delta \Phi(\mathsf{mE}_{\mathsf{T}},\mathsf{jet}) > 0.5$

Fonds dominants:

• QCD bb, Zbb, tt

From Data only !!

Performances attendues

Paramètres-clef:

- b-tagging & σ_M/M resolution (~10%)
- Reliable estimates for QCD bb+mE_T & Zbb

1 fb ⁻¹	m _H GeV	110	120	130		
	Signal	2.7	1.7	0.9		
Cuts	ε x BR	2.1%	1.7%	1.2%	I,	
	S/√B	0.84	0.59	0.38		
NNet	S/√B	0.90	0.73	0.53		

Le canal ZH→l⁺l⁻bb

Caractéristiques

Pre-sélection:

- 2 high p_T lepton
- 2 jets b-taggés

Variables discriminantes:

- Energies E^b_t, E^I_T
- M(II) & M(bb)
- Energie totale Jets H_T
- ∆R(l,b)

Fonds dominants:

• ZZ, Zbb, Wbb

 $m_{\rm H} = 120 \, {\rm GeV}$

Performances attendues

Paramètres-clef:

- b-tag et résolution σ_M/M (~10%)
- Determination précise de Zbb

1 fb ⁻¹	m _H GeV	110	120	130
Cuts	Signal	0.9	0.6	0.4
	S/√B	0.5	0.4	0.3
NNet	S/√B	0.6	0.5	0.4

Le canal $H \rightarrow W^*W^* \rightarrow I^+ I^- \nu \bar{\nu}$

Caractéristiques

Variables discriminantes:

- 2 high p_{T} lepton, high $\not\!\!\!E_{T}$
- Spin correlation h→WW* $\Phi(II), \theta(II)$
- $M_T(IIE_T), p_T(II) (vs \tau^+\tau)$
- Cluster Mass: (vs WW)

Fonds dominants:

- $W^+W^- \rightarrow |^+|^- \sqrt{\nu}$
- W+fake, $\overline{tt} \rightarrow l^+ l^- v \overline{v} \overline{b} \overline{b}$

Performances attendues

Paramètres-clef:

- Mesure de WW,W+jets
- Experience de comptage !

1 fb ⁻¹	150	160	170	180
Signal	2.8	1.5	1.1	1.0
S/B(%)	10%	34%	45%	25%
S/√B	0.5	0.7	0.7	0.5

M_c Mass

Arnaud Lucotte

Le canal: $pp \rightarrow tt H \rightarrow WbWb bb$

Caractéristiques

Variables discriminantes:

- \geq 1 lepton haut p_T +mE_T
- 4 high E_T jets + 2 jets
 → reconstruit tt
- 3 b-tags (vs tt+jets)
- Mbb une fois tt reco !

Fonds dominants:

Backgrounds	σ×BR [fb]
tt+jj (∆Rjj>0.4)	1030
tt+bb	27
tt+Z(bb)	1.5
W(lv)Z(bb)+jj	10.4

Performances attendues

Paramètres-clef:

- btagging & mistag: $\varepsilon_b \sim 60\% \varepsilon_c \sim 25\% \varepsilon_{uds} \sim 0.5\%$
- Efficacité d'identification des pduits de désint. des top
- Ajouter le canal H→WW* ?
- Reliable NLO calculations

See S. Dittmaier, L. Reina

MSSM Higgs: pp̄ →bb̄φ →bb̄bb̄ (φ = h,H,A)

Caractéristiques

Variables discriminantes:

- 4 b-jets: (≥ 3 b-tags)
- E_T(j) cuts as f(m_o)
- Topologie & ΔΦ(bb)

Fonds dominants

• QCD (bb/cc), Z/Wjj, tt

Fonds	σ×BR [pb]
qq,gg →bbbb	2.40
$pp \rightarrow Zbb$	0.49
$pp \rightarrow W(jj)bb$	2.11
pp \rightarrow bbjj	1610.8

Expected Performance

Paramètres-clef:

- b-tag
- Résolution σ_M/M
- Fonds 4-jets

Sensibilité à M_A
 125GeV avec 2fb⁻¹
 Constraintes dans
 le plan (m_A,tanβ)

Arnaud Lucotte

Higgs SUSY: $t^+ \rightarrow H^+b$

Analyse:

Sélection de paires t-tbar

- BR(t \rightarrow bH[±])~ BR(t \rightarrow Wb) (MS)
- pour grand et petit tanβ

Désintégrations du H[±]:

- $H^{\pm} \rightarrow \tau \nu$, cs
- $H^{\pm} \rightarrow t^*b \rightarrow Wbb$

Statistique ttbar / experience (2 fb⁻¹):

• $\sim 3,800 \text{ tt} \rightarrow \text{WbWb} \rightarrow \text{blvbjj}$ $\sim 200 \text{ tt} \rightarrow \text{WbWb} \rightarrow \text{blvblv}$

Extension de l'analyse CDF run I

- $H^{\pm} \rightarrow \tau \nu$ in t-tbar
- \Rightarrow Accès aux grands tan β
- $H^{\pm} \rightarrow cs$?
- \Rightarrow Accessible si m_{H±}>m_W

Recherche indirecte

Efficacité de sélection t-tbar

- petite pour $H^{\pm} \rightarrow \tau \nu$, cs !
- \rightarrow Mesure du déficit de σ (t-tbar)

S ~ dépend de tan β BR(t \rightarrow bH[±])~0.5-0.9 (tan β >>1) Exclusion importante au run II

D. Chakraborty/DØ

Higgs Chargés: pp→tt avec t→H⁺b

Conclusion & Perspectives

Neutral (SM) Higgs

Needed luminosity to get 95% exclusion / discovery:

- Assuming 10% M_{bb} resolution, NNet analysis for H \rightarrow bb
- Bands represent 30% effect in M_{bb}, ε_b, backgds

New Channel: ttH

 looks promising : ~15% reduction in luminosity threshold for discovery at 120 GeV

MSSM Higgses

Accessible with 4 b's final states and Charged Higgs

Still a lot of work ahead of us. Progress needed:

- on M_{bb} resolution (energy flow)
- on b-tagging & trigger
- on theoretical calculation (bckgd)
- ...But data are flowing in...and could bring suprises

If Higgs is indeed here:

- Signal Evidence requires
 - $\sim 5 \text{ fb}^{-1}$ with 3 standard evidence (2004-5)

Expected number of events

• per experiment with 15 fb⁻¹ (2007)

		J.Wor	mersley. / DØ
Mode	Signal	Background	S/√B
lybb	92	450	4.3
vvbb	90	880	3.0
llbb	10	44	1.5

- If we do see something, we need to measure:
 - its Mass
 - Its production cross-section
 - Can we see $H \rightarrow \tau \tau$ (BR ~ 8%)?
 - Can we see H→W*W* (BR ~ 5%)?

If Higgs is not here:

- we can exclude a m_H = 115 GeV Higgs
 - at 95% CL with 2 fb⁻¹ (2003)

Recherche Indirecte du Higgs

Paramètres fondamentaux dans le MS

Les paramètres fondamentaux du MS

Choix des paramètres les mieux connus expérimentalement Prédictions à partir de:

Paramètre	Désignation	
G _μ α(0) M _z	Constante de Fermi Constante structure fine Masse du boson Z	Ordre 0 de la théorie
т _f т _н	Masses des fermions (x6) Masse du Higgs	Corrections radiatives

Les corrections radiatives

Formalisme des "couplages effectifs" (LEP+SLC)

 $\alpha_{em}(s)$, $\rho(\equiv m_W^2/m_Z^2 \cos^2\theta_W)$, $\sin^2\theta_W^{eff}(g_V,g_A)$

Définition	Dépendance en m _t et m _H
ρ	$W \bigoplus_{\overline{b}}^{t} W Z \bigoplus_{\overline{c}}^{t} Z$ $H \qquad \qquad$
$\sin^2\theta_W^{eff} \equiv \frac{1}{4}(1-g_V^{I}/g_A^{I})$	$g_A^{I} = -1/2 \sqrt{1-\Delta\rho}$ $g_V^{I} = g_A^{I}(1-4 \sin^2\theta_W^{eff})$

Contraintes sur m_H provenant de m_w et m_t

Containtes provenant de m_w et m_t

La masse du W s'écrit en f(m_t, m_H)

 $m_W \rightarrow m_W + \Delta m_W$

 $\Delta m_W \propto m_t^{\ 2}/m_W^{\ 2}$

 $\Delta m_W \propto ln(m_H^2/m_W^2)$

 \Rightarrow Mesures de m_t et m_W contraignent m_H

Mesures existantes avant le Run II

Contraintes indirectes LEP (contour) Mesures directes LEP2+TeVatron run I

sin²θ_w^{eff} est avérée !!

Production du Quark Top au TeVatron

Production de paires de quarks Top

anihilation de quarks ⊕ fusion de gluons

Section efficace de production:

	E _{CM} =1.8 TeV	E _{CM} =2.0 TeV
σ(tt)	5.5 pb	7.5 pb
Etat initial qq	90%	85%
Etat initial gg	10%	15%

21%

Un événement t-tbar (Run I)

Etiquetage du b par "lepton mou"

- Etiquetage- μ avec $\epsilon_b^{\mu} \sim 10\%$ / jet
- Etiquetage avec e : PS+Calorimetre+CFT
 - \Rightarrow ttbar (b-lepton) $\varepsilon_{b}^{l} \sim 20\%$

Détermination de la Masse: [Abott et al., hep-ex/9801025]

Ajustement likelihood $L(m_t) = D / 1+D$ dans le plan (m_t, D)

91 événements (7 b-tags)

Incertitudes principales:

Echelle d'énergie

Combinatoire + gluon

- 12 (pas btag)
- 6 (1 b-tag)

 $m_{t} \texttt{= 173 \pm 5.6(stat) \pm 5.4(syst) ~GeV/c^{2}}$

Systématiques	Erreur
échelle d'energie Jet	4.0 GeV
Fond W+jets	2.5 GeV
tt QCD radiation	1.9 GeV
Bruit & int. multiple	1.3 GeV
MC statistique	0.9 GeV
Fit Likelihood	1.0 GeV
TOTAL	5.5 GeV

Masse du Top au Run II

Perspectives au Run II

Capacite de sélections accrues:

- Calibration des jets pT utilisant les data:
 Z+jets, γ+jets, W→jet jet, Z →bb
- · Contraintes simulations par data
- Meilleure identification des e/µ
- Meilleure systématique avec double-étiquetage du b

Prévisions des erreurs systématiques:

Incertitudes	Run I	Run II (2 fb ⁻¹)
Statistitiques	5.6 GeV	1.3 GeV
Energie Jet	4.0 GeV	2.2 GeV
Generateur Fond	2.5 GeV	0.7 GeV
Generateur Signal	1.9 GeV	0.4 GeV
Fit Likelihood	1.1 GeV	0.3 GeV
Total syst.	5.5 GeV	2.3 GeV
TOTAL	7.8 GeV	2.7 GeV

Production des bosons W/Z au TeVatron

Production des bosons

Graphes (Z):

Sections efficaces élevées: $\sigma(pp \rightarrow W+X) \sim 7 \text{ nb}$ $\sigma(pp \rightarrow Z+X) \sim 0.2 \text{ nb}$

Modes utilisés au Run II: W \rightarrow ev, $\mu\nu$ (~11%)

> $Z \rightarrow ee, \, \mu\mu$ (~ 3%) $Z \rightarrow bb$ (~15%)

Years of Collider Runs (SPS, Tevatron and LEP II)

Stat	W/Z + X	$W \rightarrow e \nu$	1.6×10^{6}
		$Z \rightarrow ee$	160×10^3
	$W\gamma, Z\gamma$		1000
	WW, WZ, ZZ	≥ 2 leptons	150

Masse du boson W au Run I

Masse du boson W au Run II

Perspectives au Run II

Réduction des incertitudes Statistiques:

• Diminue à <20 MeV (mais limité par # int./croisement) Résolution & réponse du détecteur:

- Taille des échantillons de calibration $(Z, J/\Psi, Y)$
- Modèle de production Monte Carlo:
 - Contrainte des fonctions de structure partoniques (pdf)
 - Contrainte sur la production de W,Z visible (spectre p_T^{W/Z})

Autres options pour la mesure de m_W

- Masse a partir du spectre en p_T de l'électron (sensible à p_T^W)
- mesure du rapport M_T^W / M_T^Z

(utilise LEP, sensible à l'acceptance du neutrino)

Contraintes indirectes sur m_H

Conclusions

Le TeVatron Run II semble, en premier lieu, adapté aux mesures de précision (m_W , m_t , etc..) à la physique du B (Bs) et SUSY...

...cependant...

les mesures indirectes semblent favoriser un Higgs léger les mesures directes de LEP-2 \rightarrow possibilité de signal m_H~115GeV/c²

...le TeVatron peut alors apporter des réponses:

grâce à l'amélioration du collisionneur

- accroissement de la luminosité (inst.) \rightarrow 15 fb⁻¹ d'ici 2007
- grâce à des améliorations significatives des 2 détecteurs
 - nouveaux détecteurs de traces (vertex du b)
 - nouveaux détecteurs pied-de gerbe (identification des leptons)
 - · amélioration des capacités d'identification des muons
 - électronique + rapide et déclenchement pour large bande passante

La recherche du Higgs au TeVatron:

Recherche directe sur la gamme $115 < m_{H} < 180$ GeV:

Exclusion à 95% d'un Higgs avec 4 fb⁻¹ /exp. (2003)

• m_H < 125 GeV et 155< m_H < 175 GeV

Evidence à 3σ avec 20 fb⁻¹ / exp.

• m_H < 180 GeV

Recherche indirecte:

- mesures de précision sur m_t, m_w
- mesures des asymétries A_{FB}(Z) au TeVatron => sin²θ_W^{eff}