La Recherche du Higgs au TeVatron

Phénoménologie du Higgs

- Modèle Standard
- Modèle Supersymétrique Minimal
- Stratégies de recherche

Recherche directe du Higgs

- Outils d'analyse
- Canaux standard
- Canaux supersymétriques
- Prospectives

Recherche indirecte du Higgs

- Observables
- Les Mesures de précision
- Prospectives

Phénoménologie du Higgs au TeVatron

1. Higgs dans le Modèle Standard

2. Higgs dans le MSSM

Le Higgs dans le Modèle Standard

•
$$\forall = (\sqrt{2}G_F)^{1/2} \cong 246 \text{ GeV}$$

• $v \text{ est la valeur moyenne ds vide} <\Phi>_0 = 1/\sqrt{2} \begin{pmatrix} 0 \\ v \end{pmatrix}$
- Masses des bosons:
 $m_W = \frac{gV}{2}$ $m_Z = \frac{gV}{2\cos\theta_W}$
- Masse des fermions: (couplage de Yukawa)
Couplage en $g_f v/\sqrt{2}$ ff d'où: $m_f = g_f v/\sqrt{2}$
Masse du Higgs = paramètre libre du MS: $m_H = \sqrt{\lambda} v$

Echelle de brisure de symétrie électrofaible:

Le Higgs dans le Modèle Standard (MS)

(120) 1/2 24(Cold

Contraintes expérimentales:

- Vérifie ρ (= M_W/M_zcos θ_W) = 1 <
 - Si multiplet i de Higgs (Y_i, I_i) avec v_i alors:

$$\rho = \frac{\sum v_i^2 |I_i(I_i+1) - (Y_i^2/4)|}{\sum v_i^2 (Y_i^2/2)}$$

(Taxil, Gif 90)

Ordre 0 du MS !

Solutions possibles:

$$I_i(I_i+1) = 3(Y_i^2/4) \qquad \rho = 1$$

Pas de courant neutre changeant saveur (Glashow, Weinberg)

(I,Y) = (1/2,1) automatiquement OK, $\forall i$

Masse du Higgs : contraintes théoriques

Masse du Higgs Standard: contraintes expérimentales

Désintégrations du Higgs au TeVatron (MS)

Modes de désintégration

Arnaud Lucotte / GIF2001

Production du Higgs au TeVatron (MS)

Mode $p\overline{p} (\rightarrow gg) \rightarrow H_{SM}$

- $\sigma \sim 1$ pb ie: ~ 1000 evts / fb⁻¹
 - $p\bar{p} \rightarrow b\bar{b}$, $\tau\bar{\tau}$ (m_H<135GeV)
 - $p\overline{p} \rightarrow WW^* (m_H > 135 GeV)$

Mode $p\overline{p} (\rightarrow q\overline{q}' \rightarrow V^*) \rightarrow VH_{SM}$

- σ~0.2 pb ie: ~ 200 evts / fb⁻¹
 - $p\bar{p} \rightarrow V b\bar{b}$ (m_H< 135GeV)
 - $p\overline{p} \rightarrow V WW^* (m_H > 135 GeV)$

Sections efficaces

- Modes exploitables:
 - $q\bar{q} \rightarrow H_{SM}W$, $H_{SM}Z$
- Modes noyés dans QCD:
 - $q\bar{q} \rightarrow H_{SM} \rightarrow b\bar{b}, \tau\bar{\tau}$

120

0.70

0.17

0.09

0.08

140

0.45

0.09

0.06

0.06

Sections σ[pb]:

m_н [GeV/c²]

 $gg \rightarrow H_{SM}$

 $q\bar{q} \rightarrow H_{SM}W$

 $q\bar{q} \rightarrow H_{SM}Z$

 $q\overline{q} \rightarrow H_{SM}q\overline{q}$

Les fonds au Higgs (MS)

Higgs en VH \rightarrow IIbb (V=W,Z) data / théorie ~ 2 !! Production QCD bb $\sigma_{\rm bb} \approx 100 \ \mu b \ (\sim 1/1000 \ \sigma_{\rm dijet})$ pp→bX, vis=1.8 TeV, ly¹<1 fond irréductible Production W+jets dddd fond irréductible DB · Dimuona Inclusive Muon Production de bosons CDF • ZZ : $\sigma \sim 1240$ fb סר ++(25) - NLO GCD, MRSR2 • Zbb : $\sigma \sim 5290$ fb Theoretical Uncertaint 7 8 8 10 Wbb: σ ~ 8060 fb (GeV/c) avec $60 < m_{bb} < 160 \text{ GeV}$

Higgs en $H \rightarrow WW^*$

- Production di-boson
 - ZZ: σ ~ 1240 fb
 - WZ: $\sigma \sim 3600 \text{ fb}$
- Production de top:
 - paires tt: σ ~ 8000 fb
 - simple t: $\sigma \sim xxx$ fb

Phénoménologie du Higgs standard

m _H <135 GeV/c ²	
$p\overline{p} \rightarrow WH \rightarrow Ivb\overline{b}$	
$p\bar{p} \rightarrow ZH \rightarrow v\bar{v}b\bar{b}$	

Eléments clefs:

- déclenchement leptonique
- déclenchement mE_T
- étiquetage du b
- étalonnage de E_{iet}^b
- résolution sur M_{bb}

 $\begin{array}{l} m_{H} > 135 GeV/c^{2} \\ \bar{pp} \rightarrow WH \rightarrow l^{+}l^{+}l^{-}\nu\nu\nu \\ \bar{pp} \rightarrow WH \rightarrow jj \ l^{+}l^{-}\nu\nu \\ \bar{pp} \rightarrow H \rightarrow l^{+}l^{-}\nu\nu \end{array}$

Eléments clefs:

- déclenchement leptonique
- déclenchement mE_T
- identification leptonique
- résolution E_T , m E_T , angles

Phénoménologie du Higgs au TeVatron

1. Higgs dans le Modèle Standard

2. Higgs dans le MSSM

Le Higgs dans SUSY Minimal (MSSM)

Le secteur de Higgs dans le MSSM

- Secteur de Higgs:
 - 2 doublets I=1/2 et Y=1
 - Vérifie $\rho = 1$ (ordre 0)

- Pas de courant neutre changeant la saveur
- 5 états physiques:
 - 2 Higgs neutres (CP=+1): h,H avec angle de mélange α
 - 1 Higgs neutre (CP=-1): A
 - 2 Higgs chargés: H+,H-

Structure du MSSM

– 1 degré liberté MS ↔ 1 degré liberté SUSY

Particules	Partenaires SUSY	
	e.p. de jauge	e.p de masse
q = u,d,s,	$\widetilde{q}_{L^{i}}\widetilde{q}_{R}$	$\tilde{\mathbf{q}}_{1}, \tilde{\mathbf{q}}_{2}$
I = e, μ, τ	$\mathbf{\tilde{l}}_{L}, \mathbf{\tilde{l}}_{R}$	\tilde{l}_1, \tilde{l}_2
$v = v_e, v_\mu, v_\tau$	$\widetilde{ abla}$	$\widetilde{\mathbf{v}}$
W [±] , H [±]	₩±, Ĥ±	$\widetilde{\chi}$ ± _{1,2}
γ,Z,h,H,A	ĩ,Ĩ,ĥ,Ĩ,Ã	χ̃° 1,2,3,4
g	ĝ	ĝ

Masse des Higgs MSSM: contraintes théoriques

Spectre à l'arbre

- 2 paramètres libres
 - $\tan\beta = v_u/v_d$
 - m_A (ou masse d'1 Higgs neutre)

$$m_{H\pm}^{2} = m_{W}^{2} + m_{A}^{2}$$

$$m_{H,h}^2 = \frac{1}{2} (m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)} - 4m_Z^2 m_A^2 \cos^2 2\beta)$$

Spectre / ordres supérieurs

Arnaud Lucotte / GIF2001

Masse des Higgs MSSM: contraintes expérimentales

Masse des Higgs MSSM: contraintes expérimentales

Higgs chargés

- Recherche directe à LEP
 - Luminosité L = 870 pb⁻¹
 - Energie $\sqrt{s} = 200-209 \text{ GeV}$
- Canaux:
 - $e^-e^+ \rightarrow H^-H^+$
 - $H^+ \rightarrow c\bar{s}, \tau^+ v$
- Scénarios :
 - fonction des hypothèses sur ${\sf BR}({\sf H}^{\scriptscriptstyle +}{\rightarrow}\,\tau^{\scriptscriptstyle +}\nu)$

Couplages des Higgs MSSM

Couplages des Higgs neutres

- Couplages aux bosons:
 - $g_{HVV}^2 + g_{HVV}^2 = (g_{HVV})^2_{SM}$ (unitarité)
 - $g_{HVV} = sin(\beta \alpha) (g_{HVV})_{SM}$ & $g_{HVV} = cos(\beta \alpha) (g_{HVV})_{SM}$

Couplages MSSM < couplages standard !!

- Couplages aux fermions:

- $g_{huu} = [sin(\beta \alpha) + cot\beta cos(\beta \alpha)] (g_{Huu})_{SM}$
- $g_{hdd} = [sin(\beta \alpha) tan\beta cos(\beta \alpha)] (g_{Hdd})_{SM}$
- $g_{Auu} \propto \gamma^5 \operatorname{cotan} \beta$ et $g_{Add} \propto \gamma^5 \tan \beta \bigstar$

m_A> 2 m_z ("découplage"):
 h se comporte comme H_{SM}
 A,H et H[±] dégénérés et M ~ 1 TeV/c²

Recherche du Higgs au TeVatron

uu,cc,tt

bb,dd,ss,ll

Phénoménologie de h/H (tanβ=6)

Désintégration des h/H

- Higgs léger h:
 - BR(bb) > 90%
 - BR $(\tau^{+}\tau^{-})$ < 8%
- Higgs lourd H:
 - BR(bb) > 80%
 - BR(W⁺W⁻) < 12%
 - $BR(\tau^+\tau^-) < 8\%$

Production des h/H

- Higgs léger h:
 - σ(pp→bb)~1 pb inexploitable
 - σ(pp→Wh)~0.15 pb
 = analyse du MS
- Higgs lourd H:
 - σ(pp→Hbb)~10 fb
 état final bbbb

<u>tanβ=6:</u>

Higgs h: analyse standard Higgs H: analyse difficile

Arnaud Lucotte / GIF2001

Phénoménologie de h/H (tanβ=30)

Production des h/H

- Canaux standards impossibles:

- $\sigma(h \rightarrow b\overline{b}) \sim 30 \times \sigma(H_{SM} \rightarrow b\overline{b})$
- → Mais noyé par QCD
- $\sigma(Wh)/\sigma(WH_{SM}) < 0.1$
- → devient négligeable
- Seuls canaux d'analyse:
 - $\sigma(p\overline{p} \rightarrow hb\overline{b} \rightarrow b\overline{b}b\overline{b}) \sim 1-10 \text{ pb}$
 - $\sigma(p\overline{p} \rightarrow Hb\overline{b} \rightarrow b\overline{b}b\overline{b}) \sim 0.1-1pb$

<u>tan β =30:</u> – Higgs h/H: seul canal possible \rightarrow bbbb – Higgs h/H: canaux standard impossibles

Phénoménologie du Higgs A

Phénoménologie des Higgs H[±]

Modes de production

- 2 modes directs:
 - annihilation: σ <10 fb
 - associée W⁻H⁺ : σ <1 fb

Modes ~ inaccessibles car σ trop faible

Phénoménologie des Higgs H[±]

Modes de désintégration du H[±]

Phénoménologie du Higgs MSSM

Higgs neutres:	Higgs chargés:
$p\overline{p} \rightarrow WH \rightarrow lvb\overline{b}$	$pp \rightarrow tt \rightarrow H^+W^-b$
$p\overline{p} \rightarrow ZH \rightarrow v\overline{v}b\overline{b}$	$pp \rightarrow tt \rightarrow H^+H^-$
+ états bbbb	_
Eléments clefs:	Eléments clefs:
 – déclenchement leptonique 	 déclenchement leptonique
– déclenchement mE _T	– déclenchement mE _T
 – étiquetage du b 	 identification leptonique
– étalonnage de E _{jet} b	– résolution E_{T} , m E_{T} , angles
– résolution sur M _{bb}	

Recherche directe du Higgs:

Les outils d'analyse

1. Le déclenchement

- 2. L'étiquetage des b
- 3. La résolution en énergie des jets

Le déclenchement

Enjeu pour l'analyse:

Fond « dijet »

p _⊤ (GeV/c)	σ (μb)	
2-10	56,590	\longrightarrow $\sigma_{dijet} \sim 10^6 \sigma_{signal}$
10-40	580	

- Discrimination basée:
 - topologie différente: dσ_{diiet} vers grand η
 - \rightarrow recherche de jet de grand E_T
 - nature des objets physiques
 - → recherche de leptons, vertex déplacés
- Limitations due à σ_{dijet} :

Il y aura **toujours** des fonds dijets dans la sélection

- Performances d'1 algorithme:
 - efficacité de sélection du signal
 - taux de dijets sélectionnés

ε^{decl}signal (%)

taux (Hz)

Définition d'un déclenchement:

- propre à l'analyse Higgs
 - en terme de $\varepsilon(\%)$ vs taux dijet (Hz)

Déclenchement leptonique

Objectifs

- Leptons mous ~ 3-5 GeV
 - Sélection de jet b:
 b→lv+X
 b→J/ψ(→ II)+X
- Leptons durs ~ 10-100 GeV
 - Sélection W/Z: HW(→Iv), HZ(→II) H→W(→Iv)W*(→Iv)

Algorithme électron

- Niveau 1:
 - Cluster dans calorimètre EM
 - Association avec gerbe dans preshower
 - Au moins 1 trace associée / secteur

- Niveau 2:
- Cluster EM: isolation
- Association +précise: preshower/EM trace/Preshower
 - trace/Vertex

Déclenchement leptonique: exemple des électrons

Performances

- Electrons:
 - 1 e de haut p_T
 - 2 e de faible p_T

 $(B \rightarrow J/\Psi X \rightarrow ee X)$

Trigger	Fonds (Hz) L1/L2	€ _{signal} (%)
p _T (e)>10 GeV	300/50	<mark>9</mark> 1%
p _T (e,e)>2.5GeV	1000/40	15%

Déclenchement sur les Vertex déplacés

Algorithme

- Niveau 1:
 - Jets avec $E_T > 10-30$ GeV dans calorimètre HAD
 - Lepton (b→lvX) si possible
- Niveau 2
 - Extrapole trace dans VTX
 - Ré-ajuste traces : d₀, p_T
 - Calcule l'erreur : σ_{d0}
 - Calcule la Significance: $S \equiv d_0/\sigma_{d0} > S_{min}$

Déclenchement sur les Vertex déplacés

Performances attendues

- Réjection des jets provenant de VP
- Efficacité typique: ZH→ vvbb
 - Vertex+énergie manquante
 - Efficacité ~ 30%

- Echantillons Zbb de contrôle:

 \sim 25,000 Z \rightarrow bb attendus / 1 fb⁻¹

Recherche directe du Higgs:

Les outils d'analyse

- 1. Le déclenchement
- 2. L'étiquetage des b
- 3. La résolution en énergie des jets

Etiquetage du b au Run I

Méthodes traditionnelles

- Algorithme Lepton mou (CDF+DØ)
 - Lepton mou: BR($B \rightarrow evX$) = BR($B \rightarrow \mu vX$) ~10%
 - Spectre p_T / jet

- Algorithme Probabilité-Jet (CDF)
 - TP_i: Proba. que trace i vienne du VP (paramètre d'impact)
 - JETPROB:

plat (0,1) pour primaire 0 pour jets de b,c

e,μ

Etiquetage du b au Run II

Séparation b/c

- Différences entre jet b et c:
 - Temps de vie (L_{xy}/σ_{xy})
 - Masse Vertex (Mvtx)
 - Fragmentation / topologie: Fraction d'Energie chargée SumPtrel / axe du jet: Σ^{jet} p_T^{rel} SumDR / axe du jet Σ^{jet} ΔR(tr, jet) = √Δφ²+Δη²

Combinaison par méthode de vraisemblance / Réseau Neurones

Combinaison : temps de vie + cinématique

Etiquetage du b : Réseaux de Neurones

Réseaux de Neurones

- Combinaison multi-variables
 - Basée sur simulation du signal et Fonds
 - Evaluation des corrélations
- Sortie d'une variable unique § continue par jet:
 - « bottom-ness » (1 pour jet b, ~0 pour c, uds)
 - « charm-ness » (1 pour jet c, ~0 pour b,uds)
 - « Jet primaires » (1 pour jet uds, ~0 pour b,c)

Courtesy of Regina Demina / FNAL

Etiquetage du b: Résumé au Run II

Algorithmes au Run II

Bénéficient:

- Reconstruction de vertex + performantes:
 - acceptance en z accrue jusqu'à ±30 cm (CDF+DØ)
 - acceptance en η jusqu'à |η| ~ 2.0
- Reconstruction de traces améliorées:
 - deux systèmes autonomes, large acceptance (CDF)
 - nouveau détecteur de traces (DØ)

Performances attendues

- Etudes sur simulations simplifiée:
 - étiquetage sévère: Vertex $\varepsilon \sim 50\% + 2 \times \text{lepton } \varepsilon \sim 8\%$ (CDF)
 - étiquetage « soft »: ε~60% (pureté moindre)

Efficacité vs réjection:

Recherche directe du Higgs:

Les outils d'analyse

- 1. Le déclenchement
- 2. L'étiquetage des b
- 3. La résolution en énergie des jets

Etalonnage de l'énergie des jets

Motivations

- Erreurs dans la mesure de E_{jet}:
 - $E_{jet}(particules) \neq E_{jet}(parton)$
- Sources d'erreurs:
 - échelle d'énergie du calo
 - définition d'1 jet: parton vs particules

Procédure

3 étapes :

- Stabilité et uniformité du calo
 - pulser (source lumière)
 - flux d'énergie symétrique en azimuth
 - muon
- Echelle d'énergie absolue
 - trace/énergie: E/p
 - résonances $\pi^0 \rightarrow \gamma\gamma$, J/ $\Psi \rightarrow ee$, Z $\rightarrow ee$
- Lien entre Echelle Hadronique et Electromagnétique
 - modèles de fragmentation contraints par faisceau-test sur hadrons isolés
 - événements γ+jet

Etalonnage de l'énergie des jets

Algorithme (DØ+CDF)

Effets pris en compte:

- Biais du calorimètre E_{off}
 - Bruit électronique+fission Ur
 - Interactions multiples (~1 GeV / bin η , ϕ)
 - Quarks spectateurs (~0.6 GeV)
- Réponse du calorimètre R_{iet}:
 - E_{mes}/E_{vrai}
 Calibration avec γ+jets
- Modèles hadronisation S_{cone}:
 - Perte en-dehors du cone

Uncorrected jet energy [GeV]

E _T (GeV)	Facteur correctif
20	1.08 ± 0.030
100	1.15 ± 0.017
450	1.12 ± 0.025

Facteur Correctif

Résolution des Jets

Algorithmes et performances (DØ)

- Utilise les événements 2-jets / data
 - Mesure l'asymétrie:

$$A = \frac{E_{T}(j1) - E_{T}(j2)}{E_{T}(j1) + E_{T}(j2)}$$

- Résolution:

•
$$\sigma_{\rm ET}/E_{\rm T} = \sqrt{2}\sigma_{\rm A}$$

E _T (GeV)	σ _{ετ} /Ε _τ
25	0.155
50	0.105
100	0.075
450	0.035

Résolution sur M(jj)

Motivations

- Reconstruction de M_{bb}=m_H
- Les problèmes:
 - radiations gluon ISR
 - radiations gluon FSR
 - étiquetage des jets (combinatoire)
- → dépendance aux algorithmes de jets

Performances

Montrent l'importance du:

- étiquetage des jets b
- interactions multiples
- choix des algorithmes de jets

Data	σ _M /Μ
ISR+FSR+Mbias	21 %
ISR+FSR+Mbias+btag	18 %
ISR+FSR+b-tag	15 %

Besoin de corrections de E_{jet}: – spécifiques aux jets b – pour les faibles valeurs E_t^b~25GeV

Résolution sur M(jj) avec $Z \rightarrow bb$

Motivations

- Sélection de Z \rightarrow bb indispensable pour H \rightarrow bb
 - étiquetage des b
 - résolution de Mbb
- Echantillon disponible important
 - déclenchement spécifique

Algorithme (CDF Run I)

Sélection:

All Conceins

Corrections aidaid Correction

and Missing E_ Corrections

2501

200

1500

1008

- 1 single muon ($b \rightarrow \mu v X$)
- 2 jets étiquetés-b dos-à-dos
- **Coupures Cinématiques**

Recherche du Higgs au TeVatron

Résolution des jets avec Z→bb

Recherche directe du Higgs: Le Higgs Standard

Higgs de masse < 135 GeV/c² HW→bblv HZ→bbvv HZ→bbl⁻l⁺

Higgs de masse > 135 GeV/c² $H \rightarrow WW^*$ $WH \rightarrow WWW^*$

Arnaud Lucotte

Cours de GIF 2001

Le canal WH→lvbb (1)

Caractéristiques

- Topologie Signal
 - 1 lepton dur
 - Energie manquante mE_T
 - 2 jets de b
- Sections efficaces

m _H [GeV/c ²]	σ×BR [pb]
100	0.085
110	0.062
120	0.045
130	0.034

Sélection

- Pré-sélection:
 - Lepton E_T , énergie mE_T
 - 2 jets b étiquetés
 - Veto 3ème jet
- Variables discriminantes:
 - Lepton: E_T^{\dagger} et η^{\dagger} et mE_T
 - Energie des b: E_T^b
 - Masse M_{bb} (= $m_H \pm 2\sigma_m$)
 - Energie totale jets H_T
 - Sphéricité

Fonds	σ×BR [pb]
pp→Wbb	3.500
$pp \rightarrow tbq$	0.800
$pp \rightarrow WZ$	0.165
$pp \rightarrow tt$??

Le canal WH→lvbb (2)

Paramètres clef

- Détecteur:
 - Résolution sur M_{bb}
 σ_M/M ~ 15→9%
 Gain de 1σ
 - Efficacité étiquetage b
- Analyse NN:
 - Gain S/√B de ~30%
 - Bonne connaissance des fonds (MC)
- Théorie
 - Section efficace σ(Wbb)

Performances attendues

- Significance pour 1 fb⁻¹
 - Résolution $\sigma_M/M \sim 10\%$
 - Fonds dominants: Wbb et tt

	m _H GeV∕c²	110	120	130
	Signal	5.0	3.7	2.2
Classique	εxBR	2.3%	2.3%	1.9%
	S/√B	0.72	0.53	0.35
Neurones	S/√B	1.1	0.87	0.55

Le canal $ZH \rightarrow v\bar{v}b\bar{b}$ (1)

Caractéristiques

- Topologie Signal:
 - Energie manquante mE_T
 - 2 jets de b

– Sections efficaces:

m _H [GeV/c²]	σ×BR [pb]
100	0.030
110	0.022
120	0.016
130	0.013

Sélection

- Pré-sélection:
 - Energie mE_T
 - 2 jets b étiquetés
 - Veto 3ème jet
- Variables discriminantes:
 - Energies E_T^b et mE_T
 - Masse M_{bb} (= $m_H \pm 2\sigma_m$)
 - Energie totale jets H_T
 - Sphéricité , Centralité
 - $\Delta \Phi(mE_T, jet) > 0.5$

Fonds	σ×BR [pb]
pp →Zbb	0.700
$pp \rightarrow tbq$	0.800
$pp \rightarrow ZZ$	0.074
$pp \rightarrow tt$	0.080

Le canal ZH $\rightarrow v\bar{v}b\bar{b}$ (2)

Performances attendues

- Résultats pour 1 fb⁻¹
 - Résolution $\sigma_M/M \sim 10\%$
 - Fonds dominants: Zbb, QCD bb

ZH	m _H GeV∕c²	110	120	130
	Signal	2.7	1.7	0.9
Classique	εxBR	2.1%	1.7%	1.2%
	S∕√B	0.84	0.59	0.38
Neurones	S/√B	0.90	0.73	0.53

S ~ 2 evts / fb⁻¹ S/B ~ 15% distribution de M_{H}

Le canal $ZH \rightarrow IIbb$ (1)

Caractéristiques

- Topologie:
 - Energie manquante mE_T
 - 2 jets de b

- Sections efficaces:

m _H [GeV/c ²]	σ×BR [pb]
100	0.015
110	0.011
120	0.008
130	0.006

Sélection

- Pré-sélection:
 - 2 leptons haut p_T
 - 2 jets b étiquetés
 - Veto 3ème jet
- Variables discriminantes:
 - Energie des b: E_T^b
 - Energie des leptons: E_T^I
 - Masse M(II)
 - Masse M(bb)
 - Energie totale des jets H_T
 - Ecart lepton,b : ΔR(l,b)

Fonds	σ×BR [pb]
pp →Zbb	0.350
$pp \rightarrow tbq$	0.800
pp → ZZ	0.026
pp → tt	0.350

Le canal ZH→I+I-bb (2)

Paramètres clef

- Détecteur:
 - Résolution sur M_{bb}
 - Efficacité étiquetage b
 - Résolution M(II)
- Analyse NN:
 - Gain S/√B de ~30%
 - Etudes fonds sur data

b-tagged jet-jet mass (CeV)

Performances attendues

- Significance pour 1 fb⁻¹
 - σ_м/M ~ 10%
 - Fonds dominants: ZZ, Zbb

m_H = 120 GeV

S ~ 0.4-0.9 / fb ⁻¹		
S/B ~ 30-45%		
distribution de $\rm M_{\rm H}$		

ZH	m _H GeV∕c²	110	120	130
Classique	Signal	0.9	0.6	0.4
	S∕√B	0.5	0.4	0.3
Neurones	S∕√B	0.6	0.5	0.4

Le canal $H \rightarrow W^*W^* \rightarrow I^+I^-\nu\overline{\nu}$ (1)

Caractéristiques

- Topologie Signal:
 - 2 leptons durs
 - énergie manquante mE_T
- Sections efficaces:

m _H [GeV/c²]	σ×BR [fb]
150	4.4*
160	5.2*
170	4.8*
180	3.6*

Sélection

- Pré-sélection:
 - 2 leptons haut p_T, mE_T
 - veto de jet de haut p_T
- Variables discriminates
 - Masse invariante m(II)
 - Corrélations entre leptons:
 Φ(II) , θ(II) (H = spin-0!)
 - Paire leptons:
 p_τ(II) , cos θ(II-mE_τ)
 - Masse des clusters: $M_c = \sqrt{p_T^2(II) + m^2(II)} + mE_T$

Fonds	σ×BR [fb]
pp →WW	130*
pp → ZZ	2.4*
$pp \rightarrow WZ$	4.4*
$pp \rightarrow W+jet$	18*
pp → tt	13*

Le canal $H \rightarrow W^*W^* \rightarrow I^+I^-\nu\overline{\nu}$ (2)

Sélection

Utilisation de Fonction de Vraisemblance:

- Choix de variables discriminantes ~ indépendantes
 - densités de probabilité:

$v_i(x_i)$

- Probabilité individuelle d'être S ou B:
 - pour chaque variable v_i (/bin)

$$p_{v_i}^S(x_i) = \frac{v_i^S(x_i)}{\sum_{j=S,B} v_i^j(x_i)}$$

- Fonction de Vraisemblance:
 - Produit des probabiblités

 $\mathcal{L}(\vec{x}) = \frac{\prod_{i=1}^{n} p_{i}^{S}(x_{i})}{\sum_{j=S,B} \prod_{i=1}^{n} p_{i}^{j}(x_{i})}$

hypothèse d'indépendance des variables

Absolument à voir:

P. Lutz / cours GIF 1988

Recherche du Higgs au TeVatron

Le canal $H \rightarrow W^*W^* \rightarrow I^+I^-\nu\overline{\nu}$ (3)

Le canal $H \rightarrow W^* W^* \rightarrow I^+ I^- v \overline{v}$ (4)

Performances

- Reconstruction de Masse des "clusters":
 - $M_{c} = \sqrt{p_{T}^{2}(II) + m^{2}(II)} + mE_{T}$

- Résultats pour 1 fb⁻¹
 - Fonds dominants:
 WW, W+faux électrons, tt

S ~ 1-3 / fb⁻¹ S/B ~ 10-45% Pas de distribution m_H

	m _H GeV∕c²	150	160	170	180
	Signal	2.8	1.5	1.1	1.0
likelihood	S/B(%)	10%	34%	45%	25%
	S∕√B	0.5	0.7	0.7	0.5

Recherche directe du Higgs: Les Higgs SUSY

Higgs neutres $\Phi = h, H, A$

 $p\bar{p} \rightarrow \Phi b\bar{b} \rightarrow b\bar{b}b\bar{b}$

Higgs Chargés H^{\pm} p $\overline{p} \rightarrow t\overline{t}$ avec $t \rightarrow H^{+}b$

Higgs SUSY: pp̄ →bb̄φ →bb̄bb̄

Caractéristiques

- Topologie Signal Φ =h,H,A
 - 4 jets de b
 - 2 jets provenant de Φ

Sections efficaces:

Higgs SUSY: pp̄ →bb̄φ →bb̄bb̄

Performances

- Paramètre-clef: l'étiquetage des b
- Analyses dans le plan (m Φ ,tan β)

Résultats attendus pour 1 fb⁻¹

	m _H GeV∕c²	100	120	150	200
tanβ=1	Signal	0.012	0.005		
	S/√B	0.0013	0.0006		
tanβ=40	Signal	41.0	19.1	7.0	1.1
	S/√B	4.5	2.2	1.1	0.3

Higgs Chargés: pp→tt avec t→H+b

Méthode

- Selection paires $p\overline{p} \rightarrow t\overline{t}$:
 - Efficacité grande pour: tt→W+bW-b
 - Efficacité réduite pour: tt→H+bW+b, H+bH-b
- Comparaison de σ_{mes} avec σ_{theo}
 - Fonction de (m_H , tan β)

Si accord σ_{mes} vs $\sigma_{theorique}$ \Rightarrow exclusion des régions de BR(t \rightarrow H⁺b) élevée

Sélection

- Deux analyses: tt→W+bW+b
 - WW $\rightarrow \overline{I}\nu I\nu$
 - WW \rightarrow Iv jj
- Variables discriminantes:
 - ≥ 1 lepton haut p_T
 - énergie manquante mE_T
 - énergie des jets E_T
 - Aplanarité
 - Energie totale hadronique H_T

Fonds à $tt \rightarrow W^+bW^+b$

 $t\overline{t} \rightarrow H^+H^-b\overline{b}$ $\rightarrow cs cs$ $\rightarrow \tau v \tau v$ $\rightarrow Wbb Wbb$ $\rightarrow Wbb \tau v$ $\rightarrow Wbb cs$ $\rightarrow \tau v cs$ $t\overline{t} \rightarrow W^+H^-b\overline{b}$ $\rightarrow cs$ $\rightarrow \tau^-v$ $\rightarrow W^-bb$

Higgs Chargés: pp→tt avec t→H+b

Higgs Chargés: pp→tt avec t→H+b

Paramètres clefs Efficacité / désintégrations Higgs: 20 CDF plus petite (ex cs: pas de 18 DØ lepton de haut p_{T} etc..) 16 Berger et al. Laenen et al. combinée pour tous canaux Cross Section (pb) Catani et al. en f(m_{μ} , tan β) Bonciani et al. Étiquetage des b Connaissance de: • $\sigma_{theo}(tt \rightarrow WbWb) <$ ΠΠ 150 140 160 170 190 200 180 Top Quark Mass (GeV/c2) Performances $BR(t \rightarrow bH^+)>0.5$ Paires tt attendues /exp/1fb⁻¹ 150 A(H⁺) GeV/c² Run I exclusion ~1,900 tt \rightarrow WbWb \rightarrow blvbjj **Run II exclusion** 140 ~200 tt \rightarrow WbWb \rightarrow blybly H⁺→W⁺bb 120 Dans le MS 100 $H^+ \rightarrow \tau^+$ Résultats pour 2 fb⁻¹: LEP H+→CS

Arnaud Lucotte / GIF2001

ton 8

10

tanβ

Les perspectives...

Résultats

Luminosité requise pour exclusion / découverte

- résolution M(bb) améliorée de 30% vs Run I
- efficacité d'étiquetage +50% vs Run I
- bonne connaissance des fonds irréductibles

...et de bonnes raisons d'y croire

inspiré de P. Janot / Blois 99

Luminosité effective L_{eff} sur le Higgs ...

	Moyen	Effet / L _{eff}	Effet cumulé
Collisionneur	 Luminosité L = 15 fb⁻¹ 2 expériences Energie √s = 2 TeV 	× 150 × 2 × 1.2	x 360
Détecteurs	 Acceptance géométrique Efficacité déclenchement Efficacité b-tag Résolution sur M(jj) 	× 1.3 × 1.5 × 1.4 × 1.3	× 3.5
Analyse	– Réseaux NN	× 1.3	× 1.3
TOTAL			× 1640

...Gain de sensibilité d'1 facteur 1640 !

....What about $m_H = 115 \text{ GeV}$?

If Higgs is indeed here:

MORIOND QCD 2001

- Signal Evidence requires
 - ~5 fb⁻¹ with 3 standard evidence (2004-5)

Expected number of events

per experiment with 15 fb⁻¹ (2007)

Mode	Signal	Background	S/√B
lybb	92	450	4.3
vvbb	90	880	3.0
llbb	10	44	1.5

- If we do see something, we need to measure:
 - its Mass
 - Its production cross-section
 - Can we see $H \rightarrow \tau \tau$ (BR ~ 8%)?
 - Can we see $H \rightarrow W^*W^*$ (BR ~ 5%)?

If Higgs is not here:

- we can exclude a $m_{H} = 115$ GeV Higgs
 - at 95% CL with 2 fb⁻¹ (2003)

Contraintes indirectes sur le Higgs

Le Higgs et les observables du SM

- Paramètres du Modèle Standard
- Lien entre m_H et m_t , m_W , $sin^2\theta_W^{eff}$

Les contraintes sur m_H

- Mesures de m_t
- Mesures de m_w
- Bilan

Paramètres fondamentaux dans le MS

Les paramètres fondamentaux du MS

- Choix des paramètres les mieux connus expérimentalement
- Prédictions à partir de:

Paramètre	Désignation	
G _μ α(Ο) Μ _z	Constante de Fermi Constante structure fine Masse du boson Z	Ordre 0 de la théorie
m _f m _H	Masses des fermions (x6) Masse du Higgs	Corrections radiatives

Les corrections radiatives

Formalisme des "couplages effectifs" (LEP+SLC)

$$\alpha_{em}(s)$$
, $\rho(\equiv m_W^2/m_Z^2 \cos^2\theta_W)$, $\sin^2\theta_W^{eff}(g_V, g_A)$

Définition	Dépendance en m _t et m _H
ρ ≈ 1 + Δρ = 1 + α/π m _t ² /m _z ² - α/4π ln(m _H ² /m _W ²)	$W \bigoplus_{\overline{b}}^{t} W \xrightarrow{Z} \bigoplus_{\overline{b}}^{t} Z$ $H \qquad U$ $W \bigoplus_{\overline{b}}^{t} W \xrightarrow{Z} \bigoplus_{\overline{b}}^{t} Z$
$\sin^2\theta_W^{\text{eff}} \equiv \frac{1}{4} (1 - g_V^{\ \ }/g_A^{\ \ })$	$g_{A}^{I} = -1/2 \sqrt{1-\Delta \rho}$ $g_{V}^{I} = g_{A}^{I}(1-4 \sin^2 \theta_{W}^{eff})$

Observables du MS: lineshape

Observables au pôle du Z

Observable	Role
Mz	input
Γ_{Z}	Δρ
$\sigma^0{}_{had}$	$N_{\nu}\Gamma_{in\nu}/\Gamma_{l}$
$\Gamma_{ m had}$ / $\Gamma_{ m lep}$	$sin^2 \theta_W^{eff}$
A^{OI}_{FB}	$sin^2 \theta_W^{ef}$

Contraintes sur m_H dans le MS

Arnaud Lucotte / GIF2001

Recherche du Higgs au TeVatron

Observables du MS: $sin^2\theta_W^{eff}$

Observables au pôle du Z

Observables du MS: m_w

Détermination de m_w

- Indirecte (MS):
 - Ajustement données LEP I+SLD+vN+m_t

$$m_{W} = 80.373 \pm 0.023 \text{ GeV/c}^{2}$$

– Directe:

- Mesure LEP II
- Mesure TeVatron

$$m_w = 80.450 \pm 0.033 \text{ GeV/c}^2$$

Le Quark Top au TeVatron

Production de paires de quarks Top

anihilation de quarks ⊕ fusion de gluons

Section efficace de production:

- $\sigma_{tt} = 5.5 \text{ pb} / 1.8 \text{ TeV}$
- $\sigma_{tt} = 7.5 \text{ pb} / 2.0 \text{ TeV}$

Désintégrations du Top

- Classification états finaux:

 $bjj+blv \Rightarrow "jets+leptons"$ $blv+blv \Rightarrow "di-leptons"$ $bjj+bjj \Rightarrow "all-jets"$

Processus	Canal	1 fb ⁻¹ /exp.
tt+X	di-lepton	100
	I+≥4jets	900
	I+≥4jets/b-tag	700
	I+≥4jets/bb-tag	300
t+X		170

Le Quark Top au TeVatron

Masse du Top: "lepton+jets"

Détermination de m_t (hep-ex/9801025)

- Ajustement likelihood $L(m_t) = D/1 + D$ dans le plan (m_t, D)
- 91 événements (7 b-tags)

$m_t = 173 \pm 5.6(stat) \pm 5.4(syst) \text{ GeV/c}^2$

Systématiques	Δm_t (GeV/c ²)
Echelle d'energie Jet	4.0
Fond W+jets	2.5
tt QCD radiation	1.9
Bruit & int. multiples	1.3
MC statistique	0.9
Fit Likelihood	1.0
TOTAL	5.5

Recherche du Higgs au TeVatron

Masse du Top: "di-leptons"

Sélection des événements

- 2 leptons isolés + Energie manquante
- Ajustement Cinématique:
 - 24 variables, 4 libres (2v)
 - 3 contraintes : (-1C)
 M(Iv) = MW , M(I'v')=MW
 M(blv) = M(bl'v')

- \Rightarrow solution en supposant connue m_t
- Fonction de Vraisemblance: $P(mt | \{o_i\}) \propto P(\{o_i\} | mt)$
 - de la cinématique & espace des phases de tt
 - des variables cinématiques {o_i} (MC)
 - des fonction de résolution du détecteurs
 - de l'assignation des jets
 - ... consommateur de temps CPU !
- Modélisation simplifiée:
 Variables des neutrinos (vWT)
 ⇒ poids W fonction de mt
 Pondération Element
 de Matrice (MWT)
- Data vs MC(signal+fonds)

Masse du Top: "di-leptons"

Détermination de m_t (Abott et al., hep-ex/980829)

- Ajustement likelihood –In L(m_t)
- 6 evts (2 ee, 3 eμ, 1 μμ)

Systématique	∆m _t (GeV/c²)
Echelle d'énergie Jet	2.4
Générateur Fond	1.8
Générateur Signal	1.1
Bruit & int. multiples	1.3
Fit Likelihood	1.1
MC statistique	0.3
TOTAL	3.6

Masse du Top au Run II

Perspectives au Run II

- Capacité de sélections accrues:
 - Calibration des jets p_T utilisant les data:
 - Z+jets , γ +jets, W \rightarrow jet jet, Z \rightarrow bb
 - Contraintes simulations par data
 - Meilleure identification des e/μ
 - Meilleure systématique avec double-étiquetage du b

Incertitudes	Run I	Run II (2 fb ⁻¹)
Energie Jet	4.0 GeV	2.2 GeV
Générateur Fond	2.5 GeV	0.7 GeV
Générateur Signal	1.9 GeV	0.4 GeV
Ajust. Likelihood	1.1 GeV	0.3 GeV
Systématiques	5.5 GeV	2.3 GeV
Statistitiques	5.6 GeV	1.3 GeV
TOTAL	7.8 GeV	2.7 GeV _{LEP}

Recherche du Higgs au TeVatron

Production des bosons W/Z

Production des bosons

Graphes d'anihiliation/échange:

Processus	Run I	Run II /1 fb ⁻¹
$pp \rightarrow W(\rightarrow lv) + X$	70×10 ³	1.6×10 ⁶
$pp \rightarrow Z(\rightarrow II) + X$?	0.16×10 ⁶
pp →WW,WZ,ZZ (≥2I)	?	150
Masse du boson W au Run I

Recherche du Higgs au TeVatron

Masse du boson W au Run II

Perspectives au Run II

- Statistiques:
 - Diminue à <20 MeV (limité par # int./croisement)
- Résolution & réponse du détecteur:
 - Taille des échantillons de calibration $(Z, J/\Psi, Y)$
- Modèle de production Monte Carlo:
 - Contrainte des fonctions de structure partoniques (pdf)
 - Contrainte sur la production de W,Z visible (spectre p_T^{W/Z})
- Autres options pour la mesure de m_w
 - Masse a partir du spectre en pT de l'électron (sensible à p_T^W)
 - mesure du rapport M_T^w / M_T^z (utilise LEP, sensible à l'acceptance du neutrino)

Contraintes indirectes sur m_H

Projection sur m_H

Mesures des masses m_t , m_w au TeVatron (15fb⁻¹)

 $\Delta m_{W} = 15 \text{ MeV/c}^{2}$ $\Delta m_{t} = 1.5 \text{ GeV/c}^{2}$

- Vérification de la cohérence des résultats sur m_w
 - Cohérence SLC/LEP des mesures de sin²θ_W^{eff}
 - Cohérences des mesures quarks lourds / lepton

Conclusion Générale

Le Run II du TeVatron etait *initialement* destiné:

- aux mesures de précision
- à la Physique du B
- à la recherche de signes de SUSY

Néanmoins....

... un Run haute luminosité est prometteur pr le Higgs

- Le collisionneur a été profondément remanié:
 - Luminosité prévue de 15 fb⁻¹ / expérience / 2007
 - Energie de collision à 2 TeV
- Les 2 détecteurs ont été significativement amélioréees:
 - · Meilleurs tracking , Vertexing
 - Meilleures capacités d'identification
 - Capacités de déclenchement accrues
- Des outils spécifiques aux Higgs sont développés:
 - Energie flow / résolution sur M(jj)
 - Etiquetage du b
 - Réseaux de neurones / likelihood

...surtout si celui-ci est autour de 115 GeV/c² !!!

...What about $m_H = 115 \text{ GeV/c}^2$?

MORIOND QCD 2001

If Higgs is indeed here:

- Signal Evidence requires
 - ~5 fb⁻¹ with 3 standard evidence (2004-5)

Expected number of events

• per experiment with 15 fb⁻¹ (2007)

Mode	Signal	Background	S/√B
lybb	92	450	4.3
vvbb	90	880	3.0
libb	10	44	1.5

- If we do see something, we need to measure:
 - its Mass
 - Its production cross-section
 - Can we see $H \rightarrow \tau \tau$ (BR ~ 8%)?
 - Can we see $H \rightarrow W^*W^*$ (BR ~ 5%)?

• If Higgs is not here:

- we can exclude a $m_{H} = 115$ GeV Higgs
 - at 95% CL with 2 fb⁻¹ (2003)