Top Physics at the LHC

A. Lucotte / LPSC, CNRS/IN2P3, UJF, INPG

OUTLINE

Introduction : from the TeVatron to the LHC

- I. Top quark as a tool
- II. Top pair measurements
- III. Single-top measurements
- IV. Top quark properties
- Conclusion

Top Physics Context at the TeVatron

Top Quark @ TeVatron ...Besides the discovery...Stringent tets of QCD and the EW sector– Top mass is known at ~1% level– QCD production mechanism at ~12%– V-A couplings and W polarization at ~20%– CKM matrix |Vtb| > 0.68 @ 95% CL– Electroweak production evidence @ 3.4σ

...and at the LHC

Dzero Anniversary :13-OCT 2008

Top as a Tool

Commissioning with early data:

- in situ JES determination
- b-tagging performance calibration

– Missing ET

Top as a precision test of SM

Mass, cross-section, properties analyses – Measurements in all channels – Theoretically limited very early Systematics limited analyses early

- Data driven analyses
- Use of MVA techniques mandatory
 Experience from

Top as a probe to new Physics

In production or decays :

- High mass resonance
- Anomalous couplings
- Top and charged Higgs
- Top and SUSY

crucial !

Top quark as a tool at the LHC

1) Introduction

2) Top quark as a tool
Jet energy scale determination

Rescaling
Templates

b-tagging performance

Couting method
Topological selection

3) Top quark pair measurement
4) Single-top measurement

5) Top Properties

2-3 weeks of ATLAS data...

Top as a Tool : JES determination (1)

Top as a Tool : JES determination (2)

Top as a Tool : b-tagging in ATLAS

b-tagging performance : Counting Method

b-tagging performance : Topological Selection

b-tagging performance : Topological Selection

Topological Selection

Reconstruct fully tt events Use the leptonic Top decay to estimate ε_b – Reconstruct hadronic top $W \rightarrow jj$ with j as untagged (w< cut) $t \rightarrow jjj$ with mass constraint and w>cut – Reconstruct leptonic top $W \rightarrow I_V$ with W-mass constraint $t \rightarrow I_V$ in m_t-window, **no cut on w**

B-tag efficiency measurement Use jet in the « leptonic top » decay – per jet p_T bins (20-40, 40-80,...) Background subtraction from data : – Using sideband+fit in m_{lvb} for bkgd shape – Fit simultaneously signal+control sample (m_{jjj}) Determine ε_b as function of wSystematics dominated from ~1 fb⁻¹

Backgrounds, charm contamination, JES

b-tagging performance : Topological Selection

Top quark as a test to the SM

1) Introduction

2) Top quark as a tool

3) Top quark pair measurement

- Cross-section measurement
- Mass measurement
- Sensitivity to New Physics
- 4) Single-top measurement

5) Top Properties

Top Pair Production at the LHC

Top cross-section in the lepton+jets channel

Event Selection

- L1+HLT lepton : $\epsilon \sim 80\%$
- at least 1 high p_T lepton
- at least four high p_T central jets
- large Missing ET

Simple W-mass constraint

1 comb. in W-mass windowb-tagging to purify

- (0,) 1 or 2 b-tagged jets

Cross-section extraction

No b-tagging option – Counting and likelihood fit **Systematics @ 100 pb⁻¹** – JES, ISR/FSR modeling **B-tagging to enhance purity** – $\delta\sigma/\sigma \sim 4.5\%_{stat} \pm 18\%_{syst}$ @ 100 pb⁻¹

- b-tagging, ISR/FSR, bckgd

		Counting	
Source	Electron	Muon	Default
	(%)	(%)	(%)
Statistical	10.5	8.0	2.7
Lepton ID efficiency	1.0	1.0	1.0
Lepton trigger efficiency	1.0	1.0	1.0
50% more W+jets	1.0	0.6	14.7
20% more W+jets	0.3	0.3	5.9
et Energy Scale (5%)	2.3	0.9	13.3
PDFs	2.5	2.2	2.3
SR/FSR	8.9	8.9	10.6
Shape of fit function	14.0	10.4	-
	Statistical Lepton ID efficiency Lepton trigger efficiency 50% more W+jets 20% more W+jets et Energy Scale (5%) PDFs SR/FSR Shape of fit function	Statistical10.5Lepton ID efficiency1.0Lepton trigger efficiency1.0Lo% more W+jets1.020% more W+jets0.3et Energy Scale (5%)2.3PDFs2.5SR/FSR8.9Shape of fit function14.0	Energy Scale (5%) Energy Scale (5%) SR/FSR 8.9

Top Mass in the lepton+jet channel

W boson reconstruction & re-scaling

- Light jet association $W \rightarrow jj$
- Select jet-pair such: $|m_{ij} m_W| \le 3 \sigma_W$
- Event-by-event rescaling
- Minimization of:

$$\chi^{2} = \frac{\left(M_{jj}(\alpha_{1},\alpha_{2}) - M_{W}\right)^{2}}{\Gamma_{W}^{2}} + \left(\frac{E_{j1}(1 - \alpha_{1})}{\sigma_{j1}}\right)^{2} + \left(\frac{E_{j2}(1 - \alpha_{2})}{\sigma_{j2}}\right)^{2}$$

Top quark reconstruction

Association of hadronic W and b-jet : Combination \rightarrow highest p_T^{top} or that maximizes $\Delta R(I,b)$ or minimizes $\Delta R(b,W \rightarrow jj)$ Purity : 70% w/ Efficiency : 1.2%

Top Mass in the lepton+jet channel ('ed)

Top mass performance Event yields : \sim 6,800 per 1 fb⁻¹ Mass resolution : $\sigma \approx 11.6$ GeV \rightarrow stat. error ~0.05 GeV (10 fb⁻¹) Main systematics – b and light JES – FSR modeling Events/4 GeV 005 ATLAS Preliminary ATLAŞ 1 fb⁻¹ 400 Combinatorial background hysics background 300 m_t=175±0.2GeV σ_t=11.6±0.2GeV 200 100 100 150 200 250 300 350 400 50 M_{ib} [GeV]

Main uncertainties	δm _t (GeV)	δm _t (GeV
light jet energy sc.(1%)	0.2	0.2
b-jet energy scale(1%)	0.7	0.7
Initial State Radiation	0.1	0.1
Final State Radiation	1.0	≤ 0.5
b-quark fragmentation	0.1	0.1
Combinatorial backgd	0.1	0.1
Total SYSTEMATIC	1.3	0.9
Total STATISTICAL	0.05	0.

Possible Improvements :

Use kinematic fit on the entire event \rightarrow reconstruct hadronic / leptonic top Use of Mass constraints (evt by evt): $m_{jj} = m_W \& m_{Iv} = m_W, m_{jjb} = m_{Ivb}$ \rightarrow Use (χ^2, m_t^{fit}) to reduce contamination from badly reconstructed b-jets (FSR)

Top cross-section in the dilepton channel

Top cross section in the dilepton channel

	CMS
Uncertainties in 10 fb ⁻¹	Δσ/ο
b-tag efficiency (5%)	3.8%
Jets energy scale (3%)	3.6%
Lepton reconstruction	1.6%
Missing E _T	1.1%
Pile up (30% On-Off)	3.6%
Underlying Event	4.1%
Gluon Radiation(Λ,Q ²)	2.5%
b-quark fragmentation	5.1%
Parton Density Function	5.2%
Luminosity	3%
Total SYSTEMATIC	11%
Total STATISTICS	0.9%

Top pair production as a probe to BSM physics

Top pair production as a probe to BSM physics

Top pair production as a probe to BSM physics

Single top at the LHC

1) Introduction

2) Top quark as a tool

3) Top quark pair measurement

4) Single-top measurement

- strategy at the LHC
- selection of s-, t- and Wt- channels
- Sensitivity to new physics

5) Top Properties

Single-top at the LHC : strategy

Single-top in ATLAS : strategy

Common pre-selection

Inclusive lepton trigger ~80% efficiency

- at least one isolated high p_T lepton
- at least two jets
- at least one b-tagged jet
- missing ET

All single-top analyses are

- Background dominated w/ S/B ~few %
- Systematics on background dominate !
 - \rightarrow Use of data driven techniques mandatory
 - \rightarrow Necessity to enhance purity : use of MVA !

Analyses Strategy

Thanks Dzero !! MVA vs CutBased selections Cross-section extraction using $\sigma = D-B/\varepsilon L$ Selection optimization:

- Cuts on MVA outputs that minimize systematics
- Use of toy MC to generate D,B as Poisson and D,B, ϵ for all sources of systematics

Dzero Anniversary :13-OCT 2008

Single-top at the LHC : t-channel

Single-top at the LHC : W+t channel

Single-top at the LHC : s-channel

Single top at the LHC as a probe to New Physics

Single top at the LHC as a probe to New Physics

Single top at the LHC as a probe to New Physics

Top pair measurement at the LHC

W polarization in top pair events

Dzero Anniversary :13-OCT 2008

W polarization in top pair events

Dzero Anniversary :13-OCT 2008

Polarization in top pair events

Event Selection

- At least 1 lepton
- At least 4 high p_T jets
- 2 b-tagged jets
- high missing E_T
- \rightarrow Purification w/ W reco

Polarization measurement

Use the lepton from W as a "spin analyzer" – Angle ψ between I⁺ (W rest frame) and the W⁺ directions (top rest frame) $\frac{1}{N} \frac{dN}{d\cos\Psi} = \frac{3}{2} \left[F_0 \left(\frac{\sin\Psi}{\sqrt{2}} \right)^2 + F_L \left(\frac{1-\cos\Psi}{2} \right)^2 + F_R \left(\frac{1+\cos\Psi}{2} \right)^2 \right]$ \rightarrow Access to F₀, F₁, F_R

Dzero Anniversary :13-OCT 2008

Polarization in top pair events

Event Selection

- At least 1 lepton
- At least 4 high p_T jets
- 2 b-tagged jets
- high missing E_{T}
- \rightarrow Purification w/ W reco

Polarization measurement

Use the lepton from W as a "spin analyzer" – Angle ψ between I⁺ (W rest frame) and the W⁺ directions (top rest frame) $\frac{1}{N}\frac{dN}{d\cos\Psi} = \frac{3}{2} \left[F_0 \left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L \left(\frac{1-\cos\Psi}{2}\right)^2 + F_R \left(\frac{1+\cos\Psi}{2}\right)^2 \right]$

 \rightarrow Access to F₀, F₁, F_R

	Source of uncertainty	Semileptonic channel		
	- 1 550 - 0 3 · · · · ·	F_L	F_0	F_R
Expected Performance	Generation			
 Luminosity of 10 fb⁻¹ 	Q-scale	0.000	0.001	0.001
Total upcortaintice $\sim 2.90/$	Structure function	0.003	0.003	0.004
	ISR	0.001	0.002	0.001
Systematics dominated analyses	FSR	0.009	0.007	0.002
h jet energy scale h tagging efficienc	<i>b</i> -fragmentation	0.001	0.002	0.001
- D-jet energy scale, D-tagging enicienc	Hadronization scheme	0.010	0.016	0.006
 Input top mass, FSR modeling 	Reconstruction		Sec. P and a	
– Pile-un+underlying event	tagging (5%)	0.006	0.006	0.000
	b-jet miscalibration (3%)	0.011	0.005	0.005
Comparison with Tevatron limits	Input top mass (2 GeV)	0.015	0.011	0.004
-1 uminosity of 1 \sim fb ⁻¹	Others			
Total upper tainties $200/(E)$ limits on E	S/B scale (10%)	0.000	0.000	0.000
-1 otal uncertainties ~22% (F ₀), limits on F _R	Pile-up (2.3 events)	0.005	0.002	0.006
	TOTAL	0.024	0.023	0.012

Top quark anomalous couplings

0.3

0.3

Rare top decays and FCNC

Rare top decays and FCNC

Tree level suppressed in SM →effects at 1-loop only Exotic models foresee FCNC – SUSY, Quark Singlet,...

Process	SM	QS	2HDM	MSSM	R∕ SUSY
$t \rightarrow uZ$	8×10^{-17}	1.1×10^{-4}	—	2×10^{-6}	3×10^{-5}
$t \rightarrow u \gamma$	$3.7 imes 10^{-16}$	$7.5 imes 10^{-9}$	—	2×10^{-6}	1×10^{-6}
$t \to ug$	$3.7 imes 10^{-14}$	$1.5 imes 10^{-7}$		8×10^{-5}	2×10^{-4}
$t \! \rightarrow \! c Z$	$1 imes 10^{-14}$	$1.1 imes 10^{-4}$	$\sim 10^{-7}$	2×10^{-6}	3×10^{-5}
$t \rightarrow c\gamma$	$4.6 imes 10^{-14}$	$7.5 imes 10^{-9}$	$\sim 10^{-6}$	2×10^{-6}	$1 imes 10^{-6}$
$t \rightarrow cg$	$4.6 imes10^{-12}$	$1.5 imes10^{-7}$	$\sim 10^{-4}$	8×10^{-5}	2×10^{-4}

Event Selection in top pairs

Assume one of the tops decays in SM – tt \rightarrow blv qX where X= γ ,Z \rightarrow II,g Procedure:

- Common preselection
- Specific selections (γ , 3I, ...)
- Apply mass constraint χ^2 to reco t^{fcnc}tSM
- Form specific Likelihood functions

Rare top decays and FCNC

Rare top decays and FCNC

Tree level suppressed in SM →effects at 1-loop only Exotic models foresee FCNC – SUSY, Quark Singlet,...

Process	SM	QS	2HDM	MSSM	R∕ SUSY
$t \rightarrow uZ$	8×10^{-17}	$1.1 imes 10^{-4}$	—	2×10^{-6}	3×10^{-5}
$t \to u \gamma$	$3.7 imes 10^{-16}$	$7.5 imes 10^{-9}$	—	2×10^{-6}	$1 imes 10^{-6}$
$t \to ug$	$3.7 imes 10^{-14}$	$1.5 imes 10^{-7}$	—	8×10^{-5}	2×10^{-4}
$t {\rightarrow} cZ$	$1 imes 10^{-14}$	$1.1 imes 10^{-4}$	$\sim 10^{-7}$	2×10^{-6}	3×10^{-5}
$t \rightarrow c\gamma$	$4.6 imes10^{-14}$	$7.5 imes 10^{-9}$	$\sim 10^{-6}$	2×10^{-6}	$1 imes 10^{-6}$
$t \to cg$	$4.6 imes10^{-12}$	$1.5 imes 10^{-7}$	$\sim 10^{-4}$	8×10^{-5}	2×10^{-4}

Event Selection in top pairs

Assume one of the tops decays in SM – tt \rightarrow blv qX where X= γ ,Z \rightarrow II,g Procedure:

- Common preselection
- Specific selections (γ , 3I, ...)
- Apply mass constraint χ^2 to reco $t^{\text{fcnc}}t^{\text{SM}}$
- Form specific Likelihood functions

Top pair resonance searches

Event Selection

Selection of « I+jets » events Combinatorial background only matters Reconstruct fully tt events

- leptonic and hadronic tops
- tt system

Reconstruction efficiency :

- -5 to 1% for M_Z, in [700,1500] GeV
- 40 to 100 GeV resolution
- Purity of Z' sample ~80%

Z' searches

Sensitivity to generic resonances -5σ discovery potential vs lumi Systematics + stat. Limited:

Reconstruction efficiency	8.3 %
Background contribution	3.1 %
tt mass resolution	2 to 11 %
Luminosity	2.5 %
Jet energy scale	-

Dzero Anniversary :13-OCT 2008

Top pair resonance searches

Event Selection

Selection of « I+jets » events Combinatorial background only matters Reconstruct fully tt events

- leptonic and hadronic tops
- tt system

Reconstruction efficiency :

- 5 to 1% for $M_{Z^{\prime}}$ in [700,1500] GeV
- 40 to 100 GeV resolution
- Purity of Z' sample ~80%

Performance on H/A→tt

Sensitivity to generic resonances -5σ discovery potential vs lumi Sensitivity to MSSM Higgs

 -5σ discovery potential in (m,tan β)

Conclusion

Looking forward to seing exciting times...

Expect more than 300k recorded events a year

- Use top pair for commissionning analyses
- New area of precision measurements
 systematics limited
 - systematics limited
 - matching (at least) theoretical prediction

Sensitivity to several sources of new physics

Top mass measurements

- TeVatron results will be difficult to match
- Error of ~1 GeV is achievable
- ➔ Consistency check of the SM or MSSM
- **Top cross-section measurements**
- Should match early theoretical uncertainties
- Should provide a test of QCD at ~5% level
- Sensitivity to heavy resonance, MSSM H±...

Single top measurements

- Difficult because of tt production
- Precision measts on t- and Wt-
- →Sensitivity to anomalous couplings, Higgs and FCNC

Top properties

Precision at ~1-2% level

- Top spin correlation asymmetry to ~4%
- \rightarrow sensitivity to anomalous couplings