Prospects for single-top cross-section measurements in ATLAS

A. Lucotte , F. Chevallier

IN2P3/LPSC Grenoble

Outline

- Introduction
 - Context
 - Production @ LHC
- Single-top analysis :
 - Relevant Variables
 - Pre-selection
 - s-channel
 - t-channel
 - W+t channel
- Why the s-channel is so interesting?
- Perspectives & Conclusion

Single Top cross-section : production & motivations

Single-top production

Standard Model : 3 mechanisms

• Two of them can be seen at theTeVatron (W*,Wg)

→ Still, none of them has yet been observed...

Motivations

- Properties of the Wtb vertex :
 - Determination of $\sigma(pp \rightarrow tX)$, $\Gamma(t \rightarrow Wb)$
 - Direct determination of |V_{tb}|
 - Top polarization
- Precision measurements
 → probe to new physics
 - Anomalous couplings
 - FCNC
 - Extra gauge-bosons W' (GUT, KK)
 - Extra Higgs boson (2HDM)
- Single-top is one of the main background to ...
 - ... Higgs physics...

t-channel,Wt

s-channel

Single Top cross-section : Reach @ TeVatron

Measurements @ TeVatron

- 2 main contributing mechanisms in SM:
 - $\sigma^{SM}(W-g) \sim 1.98 \pm 0.30 \text{ pb} / \sigma^{SM}(W^*) \sim 0.88 \pm 0.14 \text{ pb}$
- Present analyses
 - Low S/B and S/ \sqrt{B} stat. limited so far
 - Main Backgrounds : WQQ , W+jets (and ttbar)
 - \rightarrow W+jets normalized to data

- Systematics (DØ)
 - Jet E-scale (~8%), b-tag, trigger modeling (~5%)
 - Jet fragmentation modeling (5%), Luminosity (~ 6.5%)
 - Backgrounds (Uncertainty Wbb,ttb normalization (18%))
- Expectations @ Run II (2 fb⁻¹)
 - 5σ-discovery ? X-sections known at ~ 25%

A. Lucotte / LPSC

Single Top cross-section : Production @ LHC

Cross-sections @ LHC

All 3 contributing mechanisms in SM:

W* (s-channel)

- Computation at NLO available for W* and W-g :
 - Increase of $\sigma(W^*)$ by ~30 %
 - Affect p_T(jet) distribution, H_T etc...

• Parton Distribution Function (PDF) :

CTEQ5M1 vs CTEQ6M

hep-ph/0408049

		Uncertainties				
Channel	σ(pb)	PDF	μ-scale (μ/2-2 μ)	∆ m_{top} (4.3GeV)		
W-g	246.6 ± 8.7	4%	3%	1%		
W+t	60 ± ??	10%	?	1%		
W*	10.6 ± 0.7	4%	2%	3%		

- Theoretical uncertainties:
 - Quark-gluon luminosity --choice of the (b) PDF
 - Renormalization scale µ
 - Δm_{top} (175 to 178 GeV $\rightarrow \sigma$ (W*) down by 6%)

A. Lucotte / LPSC

Single Top : decay modes & background @ LHC

Cross-sections

Channel	σ x BR(pb)
W-g	54.2
W+t	17.8
W *	2.2
ttbar	246
Wbb	66.7
W+jets	3,850

A. Lucotte / LPSC

Single Top : decay modes & background @ LHC

Single-top @ LHC :

Discrimimant Variables & Pre-Selection

A. Lucotte / LPSC

Discriminant Variables : N(jet)

Characteristics

- Number of jets with p_T >15 GeV/c
 - W* channel : exactly 2 jets in 40% evts
 - Wbb, W+jets : ≥ 2 jets in less than 25% evts
 - o ttbar : ≥ 4 jets in more than 75% evts
 - W+t channel : ≥ 3 jets in more than 70% evts
 - Wg channel : one (b-)jet is outside acceptance

- Discriminating power:
 - N(jet) ≥ 2 will reduce WQQ, Wjets
 - N(jet) ≤ 4 will reduce ttbar
 - N(jet) = 2 will favor W*
 - N(jet) = 3 will favor W+t

Discriminant Variables : N(b-tag)

Characteristics

- Number of b-tags with p_T > 30 GeV/c
 - $\epsilon_{\rm b} = 60\%$ in $|\eta| < 2.5$
- Among ≥ 1-btag sample :
 - W* & ttbar : ~ 30% events with 2 b-tags
 - Wg channel : ~18% (2 b-tags)
 - W+t channel : < 5% (no 2nd b)
 - WQQ channel : < 9% with 2 b-tags

- Discriminating power :
 - N(b-tag) = 1 exactly for W+t analysis
 - N(b-tag) = 2 exactly for W* analysis while reducing WQQ,Wjets,W+t,Wg

A. Lucotte / LPSC

Discriminant Variables : b-jet

Characteristics

- High p_T b-tagged jets
 - Top events : harder spectrum
 - WQQ events : softer b-jets
- b-jet Topology
 - W* & Wg & ttbar : ∆R(b,b) ~ 1.0 1.5
 - WQQ events

: b-jets closer to each other

- Discriminating power
 - Higher-p_T & well separated b-jets favor W*/ttb/Wg
 - Softer and closer b-jets favor WQQ selection

Discriminant Variables : b-jet

Characteristics

- High p_T b-tagged jets
 - Top events : harder spectrum
 - WQQ events : softer b-jets
- b-jet Topology
 - W* & Wg & ttbar : ∆R(b,b) ~ 1.0 1.5
 - WQQ events

: b-jets closer to each other

- Discriminating power
 - Higher-p_T & well separated b-jets favor W*/ttb/Wg
 - Softer and closer b-jets favor WQQ selection

Characteristics

- Sum of all objects E_T in the event
 - $H_T = \Sigma p_T(jet) + p_T(l) + mE_T$ or $P_T = \Sigma p_T(jet)$
- Samples
 - W* & Wg & W+t : H_T more discriminant than P_T
 - WQQ, W+jets : H_T and P_T lower than top events
 - ttbar events : $H_T \sim 350 \text{ GeV/c}$ & $P_T \sim 230 \text{ GeV/c}$

- Discriminating power
 - Single-top : H_T more discriminant vs WQQ than P_T \rightarrow use of leptonic and m E_T information is relevant
 - ttbar events : high values of HT /PT favor ttbar

Characteristics

- Sum of all objects E_T in the event
 - $H_T = \Sigma p_T(jet) + p_T(l) + mE_T$ or $P_T = \Sigma p_T(jet)$
- Samples
 - W* & Wg & W+t : H_T more discriminant than P_T
 - WQQ, W+jets : H_T and P_T lower than top events
 - ttbar events : $H_{\tau} \sim 350 \text{ GeV/c}$ & $P_{\tau} \sim 230 \text{ GeV/c}$

- Discriminating power
 - Single-top : H_T more discriminant vs WQQ than P_T \rightarrow use of leptonic and mE_T information is relevant
 - ttbar events : high values of HT /PT favor ttbar

Discriminant Variable : M_{lvb}

Characteristics

- Determination of M(Ivb)
 - Interpret $p_T(v)$ as missing E_T
 - Compute $p_I(v)$ using the W-mass constraint
 - \rightarrow 2-fold ambiguity (use real part if solution is complex)
 - Compute M(Ivb) combinations

 \rightarrow Take p_L(v) and b-jet : closest value to m_{top}

Discriminating power Reduce non-top events WZ, WQQ, W+jets

A. Lucotte / LPSC

Single-top : Pre-Selection

Strategy

- Common selection for all 3 single-top samples :
 - 1 High pT Lepton + mET
 - \rightarrow reduce non-W events
 - At least two high-p_T jets
 - → reduce W+jets events

- Main results :
 - Single-top ~22-26%
 - ttbar ~ 38%
 - WQQ ~ 1.5% , W+njets < 1/1000

A. Lucotte / LPSC

S-channel : strategy

Sequential analysis

- Selection criteria
 - Number of jets : N(jet) = 2
 - Presence of two high p_T jets
 - Presence of two central, high-p_T b-tagged jets
 → Wg usually have 1 b-jet escaping the acceptance

- Reconstruct M_{lvb} within $m_{top} \pm 25 \text{ GeV/c}^2$
- Window in H_T

Sequential Analysis

Selection efficiency

	уу*	Wg	W+t	tt	WQQ	W+jets
Pre-Selection ε(%)	26.2	23.7	22.4	38.3	1.46	0.05
Selection ε(%)	1.73	0.105	0.002	0.035	0.059	0.0001
N ^{event} (30 fb ⁻¹) ± MC stat.	1,141 ±7	1,680 ± 48	10 ± 3	2,580 ± 150	1,148 ± 38	170 ± 85

• N(jet) = 2

 \rightarrow reduces tt by a factor ~ 20 vs W*

• 2 high- p_T b-jets \rightarrow reduces WQQ by ~2 and Wg by ~8

• M_{lvb} and $H_T \rightarrow$ reduce non-top by ~2

Distributions with 30 fb⁻¹

S-channel : future improvements

Improved Analyses

- Classify the analyses
 - According to Nb of b-tagged jets
- Use of more refined techniques
 - Likelihoods defined against ttbar and WQQ \rightarrow L_{ttb} and L_{WQQ} ("a la DØ")
 - Neural Net

- Discriminant Variables
 - Event global shapes are useful
 - Angular correlations (lepton-b, b-b ..)
 - Total Invariant mass, energy sum etc...
 - In all cases N(jet) appears to be a "relevant" parameter

S-channel : systematics

Systematics

- Experimental systematics
 Main sources that degrades the expected precision by
 - Input Top mass : ~ 0.5%
 - b-tagging efficiency & mistag rates : ~ 0.7%
 - (b)-jet Energy scale : ~ 2% (p_T , H_T , m_t cuts)
 - Absolute $\sigma(W^*)$: luminosity $\Delta L/L \sim \pm 5\%$

- Theoretical uncertainty
 - Affects p_T distributions (hence P_T,H_T,m_t, ...)
 - Affects cross-sections : $(\Delta \sigma / \sigma)_{ttb} = 12\% (NLO) (\Delta \sigma / \sigma)_{Wg} = 3.5\% (NLO)$ $(\Delta \sigma / \sigma)_{WQQ} = 30\% ? (\Delta \sigma / \sigma)_{Wjets} = 50\% ?$ $\rightarrow \sigma_{backgd}$ predictions : ~0.8%

A. Lucotte / LPSC

Wg channel : strategy

Sequential analysis

- Selection criteria
 - Number of jets : N(jet) = 2
 - Presence of a high-p_T b-tagged jets (p_T>40GeV/c)
 Wg evts have 1 b-jet escaping the acceptance
 → requires **only** 1 b-tagged jet
 - Presence of a high-p_T forward jet
 - → 1 jet with $|\eta|$ >2.5 and $p_T \ge 50 \text{GeV/c}$

- Reconstruct M_{lvb} within ±25 GeV/c²
- Window in H_T

Sequential Analysis

• Selection efficiency

	W *	٧Vçj	W+t	tt	WQQ	W+jets
Pre-Selection (%)	26.2	23.7	22.4	38.3	1.46	0.05
Selection ε(%)	0.22	0.44	0.023	0.007	0.006	0.0013
N ^{event} (30 fb ⁻¹) ± MC stat.	150 ± 6	7,080 ± 160	125 ± 13	500 ± 150	130 ±40	1,500 ± 750

• N(jet) = 2 \rightarrow reduces tt by ~6 vs Wg

• 1 high- p_T fwd jet \rightarrow reduce tt (by ~5), Wt(~10), Wjj(~2)

• Great uncertainty on WQQ / W+jets backgrounds

Distributions with 30 fb⁻¹

W+t channel : strategy

Analysis Strategy

- Selection of a specific topology
 - Number of high-p_T jets Njet) = 3
 - Presence of a high-p_T b-tagged jets
 → Only **one** b-jet in W+t events
 - Presence of a W-boson mass peak
 - \rightarrow requires 60 < M(j,j) < 90 GeV/c²

- Reconstruct M_{lvb} within ±25 GeV/c²
- Window in H_T or Invariant Mass

Sequential Analysis

0

• Selection efficiency

	W *	Wg	γλ-ኑ.	tt	WQQ	W+jets
Pre-Selection ε(%)	26.2	23.7	22.4	38.3	1.46	0.05
Selection ε(%)	0.16	0.25	88.0	0.35	0.004	0.0003
N ^{event} (30 fb ⁻¹) ± MC stat.	105 ± 5	4,050 ± 80	4,720 ± 80	26,300 ± 400	90 ± 20	xxx ± 85

- N(jet) = 3 → reduces Wjj & WQQ ~3.5 wrt W+t
 - $M(jj) \sim M_W \rightarrow reduces WQQ/jets by ~3 wrt W+t$

→ Good knowledge of tt background is mandatory

Distributions with 30 fb⁻¹

Why measuring the s-channel precisely ?

an example :

the search for a heavy charged Higgs

A. Lucotte / LPSC

S-channel with 30 fb⁻¹ : sensitivity to a Higgs H[±]

Charged Higgs and single-top

- Production mode in 2 HDM
 - 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
 - Mass spectrum predicted
 - Decay mode : depends on $m_{H\pm}$ and tan β

 \rightarrow tb final state rate can be modified by an extra boson H+

A. Lucotte / LPSC

S-channel with 30 fb⁻¹ : sensitivity to a Higgs H[±]

S-channel with 30 fb⁻¹ : sensitivity to a Higgs H[±]

S-channel with 30 fb⁻¹: sensitivity to a Higgs H[±]

Conclusion

Single-top Measurements

- Precision measurement possible @ LHC
 - S-channel is more difficult than any other channels tt pair and WQQ, Wjets major backgrounds Wg is also a significant background
 - \rightarrow Stat. precision is about ~7 % in 30 fb⁻¹
 - \rightarrow Can be significantly improved with Likelihood, NN
 - W-g channel

Higher signal cross-section

Contamination by tt pair & W+jets required

- \rightarrow Stat. precision ~ 1-2%
- W+t channel

top-pair is the major backgd

Wg is also a significant background

→ Stat. precision ~ few %

- Sources of systematics
 - JES should be a dominant source of error
 - b-tagging knowledge (model.) is crucial
 - Limitation in background knowledge
 - \rightarrow Absolute need for NLO generators (W+t, W*, Wg, tt)
 - → Use of data (ttbar, WQQ, W+jets)
 - Improved analysis required : likelihood & NN

A. Lucotte / LPSC

Perspectives

Single-top Measurements

- Single-top analyses :
 - Performed with LO generator
 → NEED to switch to NLO (for S and B)
 - Performed with Fast Simulation
 - \rightarrow Need to use FullSim

TeVatron Contribution...

- Knowledge of main backgrounds
 - Use of tt, Wbb and W+jets from the data
 - ightarrow Validation of NLO (tt, single-top) generators at low \sqrt{s}
 - ightarrow Validation of Wbb/cc & W+jets generators at low \sqrt{s}
 - \rightarrow Use of techniques NN, likelihood etc...

C.P. Yuan et al, hep-ph/0409040 hep-ph/0408180, Q. Cao, R.Schwienhorst

A. Lucotte / LPSC