Top Physics with the ATLAS detector

Arnaud Lucotte

(IN2P3/LPSC Grenoble)

on behalf of the ATLAS collaboration

Outline

Motivation

Top pair production :

- Mass measurement
- Cross-section measurement
- **Single-top production :**
 - Single-top cross-section
 - Search for charged higgs
- Conclusion

Top Quark Physics : Motivations

Top Quark : a tool for precise EW Sector studies

A special role in the EW sector

- Top, W and Higgs masses enter radiative corrections in theoretical calculations of many observables
 - \rightarrow Precision on (m_t,m_W) constrains m_H
- Heaviest elementary particle known
 → Yukawa couplings close to 1.0
- CKM Matrix element V_{tb}

A special role in QCD & the quark family

- Test of QCD
- Vast swath of phase space available to the decay
 - \rightarrow short lifetime (< t_{QCD}=28x10⁻²⁵ s)
 - \rightarrow Window on properties of bare quark

Top Quark : a probe to new physics

A special role in (all) various extensions of the SM:

- Searches for new (heavy) particles
 - → flavor/mass dependent couplings
 - \rightarrow extra-bosons : W+,
 - → Higgs boson H⁺

A link to the (new) theory fundamentals

- Central role in
 - → Technicolor : strong interaction @ TeV
 - \rightarrow SUSY : given its (high) mass, room for
 - SUSY Top decays

Top pair production : Top mass and cross-section

A. Lucotte / LPSC

Top pair : production & decay

Top pair production SM Total cross-section NLO calculations σ_{tt} = 835 pb ± 10%_{pdf} ± 6% _{µ-scale} - Production via gluon-fusion (90%) and quark anihilation Dependence in Top Mass : $\delta \sigma_{tt} / \sigma_{tt} \approx 5 \times \delta m_t / m_t$ pp → tt, √S=14 TeV σ (pb) (σ_{ref}) at NLO+NLL QCD 1000 10% MRST, $\alpha_s(M_z)=0.1175$, $k_T=0.4$ GeV =2, $\mu = m_t$ 900 Lower inset: $\sigma(PDF)/\sigma(ref)$ 800 δm/m=0.21 δσ/σ =MRSTIg J 90% PDF=MRST(g 1) لأوووو LEERE 700 $PDF = MRST(\alpha_*)$ $PDF = MRST(\alpha_{*})$ CTEQ5M 0000 600 CTE05HJ g 20000 لكلك CTEQ5HQ 1.15 qqŦ Ŧ 1.10 1 05 1.00 0.95 0.90 0.5 0.85 165 170 175 180 185 Top pair decay modes m_t (GeV/c²) SM Branching ratio : - BR(t \rightarrow W+b) \approx 1 "lepton+jets" BR (pb) N_{evt} (10 fb⁻¹) tt final state 2.5x 10⁶ tt \rightarrow (lv)b (jj)b 30% "di-lepton" tt→(lv)b(lv)b 5% 400,000 tt→(jj)b (jj)b 3.7x 10⁶ 44% "full-hadronic"

A. Lucotte / LPSC

1 or 2 weeks of the ATLAS data...

Top pair events in 300 pb⁻¹ Selection

- Missing E_T, 1 lepton, ≥4 jets , NO b-tag !!
 - \rightarrow efficiency ~ 5.3 %
 - → Apply extra cut on hadronic W mass

Expected performance

- Signal + background (comb. + W+jets): Mass: $m_t \sim 160 \pm 1.2 \text{ GeV/c}^2$ Resolution: $\sigma(m_t) \sim 15.4 \pm 2.0 \text{ GeV/c}^2$
- Use for commissioning :
 - → Start of light jet calibration
 - \rightarrow b-tagging algorithms
 - → b-jet calibration

Top Mass measurements

A. Lucotte / LPSC

Top Mass measurement : motivations ...

Precision measurements in the EW sector

Boson masses relation:

hep-ph/0303092

 $\pi^{2\sqrt{2}}$

A. Lucotte / LPSC

Top Mass measurement : motivations ...

Precision measurements in the EW sector

Boson masses relation:

LHC precision measurements

- Consistency checks with direct m_H measurements
- Determination of the underlying framework requires :
 - $\rightarrow \Delta m_w \approx 15 \text{ MeV/c}^2 \text{ vs } \Delta m_t \approx 1 \text{ GeV/c}^2$

A. Lucotte / LPSC

Top Mass using "lepton+jets" : Event Selection

Strategy

- (1) "leptonic top" to tag the event
 - 1 high-p_T lepton
 - high missing Energy
 - at least 4 high-p_T jets
 - at least 1 high-p_T b-tagged jet

(2) "hadronic top" to measure the mass

- Identify b-quark jets
 - \rightarrow 2 samples : 2 btag (1 btag)
- W-boson reconstruction from jj
 - → in-situ light jet calibration
- Top quark reconstruction from jjb

2005

Event yields @ 10 fb⁻¹

Processus	σ x BR (pb)	٤(%)	N _{events}
bb . →lv+jets	2.2 x 10 ⁶	3x10 ⁻⁸	15
W+jets→ lv+ jets	7.8 x 10 ³	2x10 ⁻⁴	930
Z+jets →I⁺I⁻+jets	1.2 x 10 ³	6x10 ⁻⁵	150
WZ → Iv + jets	3.4	1x10 ⁻²	12
WW → Iv + jets	17.1	7x10 ⁻³	10
ZZ → I ⁺ I ⁻ + jets	9.2	5	5
Tt → (lv)b (jj)b	250	3.5%	87,000
A. Lucotte / LPSC	M	ain backgrou combinatior	and from wrong

Top Mass using "lepton+jets" : b-tagged jet

Top Mass using "lepton+jets" : b-tagged jet

Top Mass using "lepton+jets" : **W-boson reconstruction**

W-boson reconstruction

Jet association :

- Select (jj)-pair with minimum |m_{ii} m_w|
- Sample W-purity : 66% (55%) w/ efficiency : 3.2%

jet

Top Mass using "lepton+jets" : Top reconstruction

Top Quark reconstruction

Association of hadronic W and b-jet :

- Combination leading to the highest p_T^{top} or that maximizes ∆R(I,b) / minimizes ∆R(b,W→jj)
 - → Top Purity : 69% (65%) w/ efficiency : 1.2% (2.5%)

Event Yield :

- ~30K (80K) events in 2 b-tag (≥1b-tag)
- Physics bckgd ~ 100 events
- Good linearity m_{iib} vs m_t^{gen} and $|m_{iib} m_t^{gen}| < 100 \text{ MeV/c}^2$
- Mass resolution : $\sigma \approx 11 \text{ GeV/c}^2$ (13 before calibration)

Top mass uncertainty

Μ	ain systematics :		hep-ex/0	403021	
	sources of uncertainty	δm _t (GeV/c²)	Δ	n, for a 1%
	light jets energy scale	$\left(\right)$	0.2	mis	scalibration
	b-jet energy scale		0.7		
	Initial State Radiation		0.1		
	Final State Radiation		1.0		
	b-quark fragmentation		0.1		
	Combinatorial backgd		0.1		
	Total SYSTEMATIC		1.3		
	Total STATISTICAL).07		

Energy scale :

- Knowledge at the 1% level :

→ light jets: makes use of an in-situ calibration

 \rightarrow b-jets : use of Z+b jets

ISR / FSR :

- ISR affect the number of jets N(jet)

- FSR affect the jet-energy scale, selection of jets, N(jet)

 \rightarrow known up to ~10% (~ α_s uncertainty)

b-quark fragmentation :

b-quark fragmentation based on Peterson ε_b

Top mass uncertainty

Main systematics :		hep-ex	/0403021
	sources of uncertainty	δm _t (GeV/c²)	
	light jets energy scale	0.2	20% of Δ m _t for :
	b-jet energy scale	0.7 m	n _t (ISR ON)-m _t (ISR OFF)
	Initial State Radiation	0.1	(FSR ON)-m _t (FSR OFF)
	Final State Radiation	1.0	
	b-quark fragmentation	0.1	
	Combinatorial backgd	0.1	
	Total SYSTEMATIC	1.3	
	Total STATISTICAL	0.07	

Energy scale :

- Knowledge at the 1% level :

→ light jets: makes use of an in-situ calibration

 \rightarrow b-jets : use of Z+b jets

ISR / FSR :

- ISR affect the number of jets N(jet)

- FSR affect the jet-energy scale, selection of jets, N(jet)

 \rightarrow known up to ~10% (~ α_s uncertainty)

b-quark fragmentation :

– b-quark fragmentation based on Peterson ϵ_b

Top mass uncertainty

Main systematics :		hep-ex	/0403021
	sources of uncertainty	δm _t (GeV/c²)	
	light jets energy scale	0.2	change in Peterson :
	b-jet energy scale	0.7	$\varepsilon_{\rm b} = -0.006 / -0.0035$
	Initial State Radiation	0.1	
	Final State Radiation	1.0	
	b-quark fragmentation	0.1	
	Combinatorial backgd	0.1	
	Total SYSTEMATIC	1.3	
	Total STATISTICAL	0.07	

Energy scale :

- Knowledge at the 1% level :

→ light jets: makes use of an in-situ calibration

 \rightarrow b-jets : use of Z+b jets

ISR / FSR :

- ISR affect the number of jets N(jet)

- FSR affect the jet-energy scale, selection of jets, N(jet)

 \rightarrow known up to ~10% (~ α_s uncertainty)

b-quark fragmentation :

b-quark fragmentation based on Peterson ε_b

Top mass uncertainty

Main systematics :			hep-ex/	0403021
	sources of uncertainty	δm _t (G	GeV/c²)	
	light jets energy scale	0	.2	change in backed
	b-jet energy scale	0	.7 🧲	shape
	Initial State Radiation	0).1	
	Final State Radiation	1	.0	
	b-quark fragmentation	0	.1	
	Combinatorial backgd	0	.1	
	Total SYSTEMATIC	1	.3	
	Total STATISTICAL	0.	.07	

Energy scale :

- Knowledge at the 1% level :

→ light jets: makes use of an in-situ calibration

 \rightarrow b-jets : use of Z+b jets

ISR / FSR :

- ISR affect the number of jets N(jet)

- FSR affect the jet-energy scale, selection of jets, N(jet)

 \rightarrow known up to ~10% (~ α_s uncertainty)

b-quark fragmentation :

b-quark fragmentation based on Peterson ε_b

Top mass uncertainty

M	ain systematics :		hep-ex/	0403021	
	sources of uncertainty	δm _t (G	ieV/c²)	δm _t (Ge	V/c²)
	light jets energy scale	0	.2	0.2	2
	b-jet energy scale	0	.7	0.7	7
	Initial State Radiation	0	.1	0.1	I
	Final State Radiation	1	.0	≤ 0.	5
	b-quark fragmentation	0	.1	p . ⁻	I
	Combinatorial backgd	0	.1	0.1	I
	Total SYSTEMATIC	1	.3	0.9)
	Total STATISTICAL	0.	07	0.1	2

Improvements :

- Use of a kinematic fit on the entire tt event
 - → reconstruct hadronic / leptonic top
- Use Constraints event / event :

 $m_{ii} = m_W \& m_{Iv} = m_W$

 $m_{iib} = m_{lvb}$

 \rightarrow (X²,m_t^{fit})

→ Select lower X² to reduce contamination from badly reconstructed b-jets (FSR)

 Am_t ~ 1 GeV/c² seems achievable provided 1% calibration Jet-energy scale
 Systematics–limited measurement : b-jet energy scale & FSR are dominant

Top Mass in the "di-lepton" channel

V. Simak et al.	jing
b-jet energy scale (1%)	0.6
b-quark fragmentation	0.7
ISR / FSR modelisation	0.6
Parton Distr. function	1.2
Total SYSTEMATIC	1.6
bodiem & BUITEITE	0.3

A. Lucotte / LPSC

Mass resolution :

Systematics :

 $-\sigma \approx 13 \text{ GeV/c}^2$

– Choice of PDF

b-jet energy-scale

09-JUN-2005

b

Top mass in the "di-lepton" channel

Performance with 10 fb⁻¹

Mass resolution :
$-\sigma \approx 13 \text{ GeV/c}^2$
Systematics :
– Choice of PDF
 b-jet energy-scale

V. Simak et al.	δm _t
b-jet energy scale (1%)	0.6
b-quark fragmentation	0.7
ISR / FSR modelisation	0.6
Parton Distr. function	1.2
Total SYSTEMATIC	1.6
STATISTICS & method	0.3

A. Lucotte / LPSC

Top mass in the "full hadronic" channel

Procedure

- (1) Selection & yield @ 10 fb⁻¹
 - at least 6 central high-p_T jets
 - 2 high-p_T b-tagged jets
 - → 100,000 evts & S/B ~ 1/19 (QCD)
 - "most challenging channel"
- (2) Analysis :
 - Jet energy variables (H_T , ETb, $\Delta Rjj..$)
 - Event shape variables
 - form $W \rightarrow jj (X^2_w) \& t \rightarrow Wb (X^2_t)$

- Kinematic fit to m_t

Performance with 10 fb⁻¹

Event yields :
 Keep events with
p _T ^{top} ≥200 GeV/c
130 < m _{iib} < 200
– Resolution $\sigma \approx 13$ GeV/c ²
→ Signal ~ 3,300 events
→ S/B ~ 18/1
Systematics:
- dominated by FSR
 light-jet and
b-jet energy scale

hep-ex/0403021	δm _t
light jet energy scale	0.8
b-jet energy scale	0.7
Initial State Radiation	0.4
Final State Radiation	2.8
b-quark fragmentation	0.3
Background	0.4
Total SYSTEMATIC	3.1
Total STATISTICAL	0.2

A. Lucotte / LPSC

Top pair production : cross-section measurement

Cross-section measurement

Strategy :

- Same pre-selection as for m_t measurements
- **Performance :**
 - Uncertainty $\delta \sigma^{\text{stat}} \sim \text{negl.}$
 - Systematics dominated : 1 m
 machine : ΔL/L ~ 5%
 b-tagging ε & mistag rates
 ISR/FSR, pdf, Jet energy scale

Atlas Preliminary				
	N _{event} @ 10 ³³	∆σ/σ ^{stat}		
1 month	70,000	0.4%		
1 year	300,000	0.2%		

Interpretations

Single-top cross-section measurements

A. Lucotte / LPSC

Single-top cross-section measurements

Motivations :

Properties of the Wtb vertex :

- Determination of $\sigma(pp \rightarrow tX)$, $\Gamma(t \rightarrow Wb)$
- Direct determination of |V_{tb}|
- Test of V-A, top polarization

Probe to new physics :

- Anomalous couplings, FCNC
- Extra gauge-bosons W' (GUT, KK)
- Extra Higgs boson (2HDM)

Single-top is one of the main background to ...

... Higgs physics with jets...

Single Top cross-section : Production @ LHC

Production at the LHC

All 3 contributing mechanisms in SM

Theoretical uncertainties are significant :

- NLO/NLL available for s-, t- and (new) W+t channels
- Main uncertainty due to the choice for the (b,g) PDF
- Choice of renormalization scale $\boldsymbol{\mu}$
- Top mass uncertainty : Δm_{top}

A. Lucotte / LPSC

09-JUN-2005

 Δ theo= ± 4-8%

Single Top : Event Selection

Procedure

- (1) Select and tag event
 - 1 high-p_T lepton
 - high missing Energy
 - at least 2 high-p_T jets
 - at least 1 high-p_T b-tagged jet

(2) Discriminate vs non-top background

- Reconstruct a Top mass M_{Ivb}
- Use event shape & high H_T or M_{TOT}

(3) Discriminate vs top backgrounds

- Number of b-jets
- Event topology

	σ x BR (pb)	
Wg →(lv)b qb	54.2	
Wt → (jj) (lv)b	17.8	
W* → (lv)b b	2.2	
W+jets→ lv+jets	3,850	Main backgrounds :
W+QQ→ lv+QQ	66.7	– ttbar : ~ 1/100 , ∆theo~10% – W+iets : ~ 1/2000. ∆theo~ ??
WZ →lv+jets	3.4	
WW → Iv + jets	17.1	9 USE OF DATA!
tt → (lv)b (lv)b	38.2	
tt → (lv)b (jj)b	242.8	

A. Lucotte / LPSC

t-channel cross-section

Performance :

- Efficiency $\epsilon \approx 0.44\%$ and N(30fb⁻¹) ~ 7,000 events
- Main backgrounds : W+jets , top pair
- Main systematics (lumi excepted):

b-tagging efficiency & mistag rates, JES

A. Lucotte / LPSC

W+t channel cross-section

Selection

Specific criteria :

- Exactly 3 high-p_T jets
 - 1 high p_T central b-jet (p_T> 50 GeV/c)
- Reconstruct a W \rightarrow jj with : 60 <m_{ii} < 90 GeV/c²
- Reconstruct leptonic Top : |m_{lvb}–m_t|< 25 GeV/c²
- Window in H_T or M_{tot}

Performance :

- efficiency $\epsilon \approx 0.90\%$ and N(30fb⁻¹) ~ 4,700 events
- Main background : top pair, t-channel
- Main systematics (lumi excepted):
 b-tagging efficiency & mistag rates, JES
 Background estimate (exp., theo., use of data?)

A. Lucotte / LPSC

s-channel cross-section

Selection **Specific criteria :** – Exactly 2 high-p_T jets: 2 high p_{T} central b-jet ($|\eta| < 2.5$) Reconstruct Top with: $|m_{lvb} - m_t^{gen}| < 25 \text{ GeV/c}^2$ Window in H_T or M_{tot} 2000 1600 GeV Top Mass /20 1800 of evt / 1200 Energy H_T Preliminary Preliminary $(L= 30 \text{ fb}^{-1})$ $(L= 30 \text{ fb}^{-1})$ All Monte Carlo All Monte Carlo Np of even Np of even Np 1400 1200 signal+bkgd signal+backgd 9 Single-top production Single-top production s-channel 1000 s-channel t-cha t-channel S/B~0.2 1000 Backarounds Backgrounds √(S+B)/S ~ 6% W+C W+QQ 800 W+jets W+jets Top pairs Top pairs 600 400 400 200 200 0 50 100 150 200 250 300 350 100 200 300 400 500 600 700 Top mass in GeV/c^2 Energy H_{T} (GeV)

Performance :

- Efficiency $\epsilon \approx 1.72\%$ and N(30fb⁻¹) ~ 1,100 events
- Main backgrounds : top pair, t-channel
- Main systematics (lumi excepted):
 - b-tagging efficiency & mistag rates likelihood analysis Background estimates (use of data) under development

A. Lucotte / LPSC

Charged Higgs & single-top

Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- Use same analysis as developed for the s-channel
 - \rightarrow efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

A. Lucotte / LPSC

Charged Higgs & single-top

Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- Use same analysis as developed for the s-channel \rightarrow efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

A. Lucotte / LPSC

Charged Higgs & single-top

Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- Use same analysis as developed for the s-channel \rightarrow efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

Charged Higgs & single-top

Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- − Use same analysis as developed for the s-channel → efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

A. Lucotte / LPSC

Charged Higgs & single-top

Production mode in 2 HDM :

- 5 higgs: 3 neutral (A,h,H) + 2 charged (H[±])
- Mass spectrum predicted in MSSM
- (H⁺tb) couplings depends on $m_{H\pm}$ and tan β
 - \rightarrow tb final state cross-sections are modified by an H⁺

Event Selection :

- Use same analysis as developed for the s-channel \rightarrow efficiency increases with m_{H+}
- Systematics limited measurements
- Only standard sequential analysis so far

A. Lucotte / LPSC

Conclusion & perspectives

Top pair production

LHC as a "top factory"

- more than 300k events a year
 - → measurements will be systematics limited

Top mass measurements:

- Total uncertainty of ~1 GeV/c² seems achievable
- Main systematics :
 - \rightarrow 1% level calibration of (b)-jet energy scale
- Together with m_w ≈15 MeV/c²
 - \rightarrow constraint m_H/m_h

Cross-section measurements:

- Systematics limited measurements
 - → luminosity determination ...
- Cross-check of direct m_t measurements
- Test of QCD at 6% level

Single-top production

Cross-section measurements;

- Specific tests of EW production
- t-channel, W+t channel
 - \rightarrow Statistical sensitivity to V_{tb} at ~1% level
 - → Tests of anomalous couplings, FCNC
- s-channel, W+t channel
 - \rightarrow probe to new extra boson in (3 years low luminosity)

Thanks to :

Bentvelsen, Van Vulpen et al.

Correard, Devivie, Rozanov, Vacavant et al.

D. Pallin, P. Roy et al.

A. Lucotte / LPSC

BACKUP SLIDES

A. Lucotte / LPSC

A. Lucotte / LPSC

"lepton+jets" : systematics

A. Lucotte / LPSC

b-tagging : 3D impact parameter

Conclusion

Physics

Precision measurements are only possible @ LHC

s-channel

tt, WQQ, W+jets, W+g major backgrounds

Statistical Precision ~ few % with 30 fb⁻¹

W-g channel

Higher signal cross-section (cont. by tt & W+jets)

Expect statistical precision of ~1-2%

W+t channel

top-pair is the major backgd

Expect statistical precision of ~ few %

Systematic uncertainty

JES should be a dominant source of error

b-tagging knowledge & model. (eff, rejection) is crucial Background knowledge is important

 \rightarrow Use of data is mandatory (ttbar, WQQ, W+jets))

FullSim

Results seem compatible with AtlFast, but :

All backgrounds have to be reestimated (new Gen.) FullSim have to be used for systematic studies (JES, b-tagging, electron ID, calibration)

Light jet energy scale : sharing between two jets

Top Quark Mass measurement : Top Quark reconstruction

Top Quark reconstruction Association of hadronic W and b-jet : • Combination leading to the highest p_T^{top} or that maximizes $\Delta R(I,b) / \text{minimizes } \Delta R(b,W \rightarrow jj)$ \Rightarrow right (jjb) combination in ~ 80% cases

Single Top cross-section : Production @ LHC

Production at the LHC

All 3 contributing mechanisms in SM

Theoretical prediction

NLO/NLL available for W* and W-g only

\rightarrow affect significantely σ as well as p_T(jet), H_T etc...

Channel	σ(pb)	Uncerta hep-ph/0408049			
		PDF	µ-scale	Δm_{top}	
W-g	246.6 ± 8.7	4%	3%	1%	
W+t	60 ± 20?	10%	?	1%	
W*	10.6 ± 0.7	4%	2%	3%	

Theoretical uncertainties:

Quark-gluon luminosity --choice of the (b) PDF Renormalization scale μ Δm_{top} (175 to 178 GeV $\rightarrow \sigma$ (W*) down by 6%)

A. Lucotte / LPSC