Recherche des oscillations $\nu_{\mu} \rightarrow \nu_{\tau}$ auprès d'OPERA

A. Lucotte pour le groupe: J. Boucrot, J.E. Campagne, A. Cazes, J.P. Repellin

1. L'oscillation des neutrinos avant Opera

- a) Résultats récents
- b) Contexte en 2006

2. Le détecteur Opera

- a) Design du détecteur
- b) Statut & calendrier

3. Le rôle du LAL dans Opera

- a) Electronique FE du tracker
- b) Développements Software

Neutrino'02

Oscillations de neutrinos solaires: SNO

Mesures de SNO (1kt D₂O, 7kt H₂O)

- Interprétation:
 - Mesure du flux total $\phi_{,,}(^{8}B)$ en accord avec prédictions
 - Composition multi-saveurs actives des v solaires
 - Oscillation de ν_e en ν actifs $\phi_{\mu\tau} \neq 0 @ 5.3 \sigma$

- CC: v_e +d \rightarrow p+p+e $\Rightarrow \phi_{CC}$ = ϕ_e
- $\text{NC: } \nu_{x} \text{+} \text{d} \rightarrow \text{p+n+}\nu \quad \Rightarrow \phi_{\text{NC}} \text{=} \phi_{\text{e}} \text{+} \phi_{\mu\tau}$

 - ES: v_x +e $\rightarrow v_x$ +e $\Rightarrow \phi_{ES} = \phi_e + \epsilon \phi_{u\tau}$ Neutrino '02 ¢_{CC} SNO SNO ES SNO

- Test des effets de matière MSW:
 - FLux v_{a} fonction de distance et de la densité N_a
 - Mesure de l'asymétrie jour-nuit • des evts CC et des NC (A=0)
 - $\Rightarrow A_{CC} = 7.0\% \pm 4.9\%_{stat} \pm 1.3\%_{sys}$

- Solution LMA favorisée $-\Delta m^2 = 5.10^6 \, eV^2$, $\sin^2 2\theta = 0.76$

Confirmation future par Kamland

Oscillations de neutrinos atmosphériques: SuperK

Résultats de SuperK (50 kt H₂O)

- Distribution azimuthale des evts NC (multi-anneaux)

Oscillations de neutrinos auprès d'accélérateur: K2K

Contexte expérimental

- Faisceau:
 - Composition: 99% v_{μ} , 1% v_{e}
 - Energie: proton ~ 12 GeV & E, ~ 1.4 GeV •
 - Intensité: 4.8 ×10¹⁹ p.o.t. (112 jours 1999-2001)
- Détecteurs:
 - L(proche SuperK) = 250 km

Mesures de K2K

- Oscillations $v_{\mu} \leftrightarrow v_{\tau}$:

Disparition (flux) de v_{μ} & Distorsion du spectre E

Calendrier

- Reprise de données fin 2002→2004:
 - Statistique accrue par un facteur 2 d'ici 2004 ?

Am²<3.10⁻³ eV²

Oscillations de neutrinos auprès à MINOS

Contexte expérimental

- Faisceau:
 - Composition: 98.7% v_{μ} 0.85% v_{μ} 0.5% v_{e}
 - Energie : <E_v> ~ 3 − 7 − 15 GeV
 - Intensité : 3.7×10²⁰ p.o.t. / an (~2500 CC)
- Détecteurs:
 - L(proche-lointain)= 732 km
 - M_{cible} ~ 5.4 kt & Tracking + calo in 1.5T

Mesures de MINOS

- Disparition de $v_{\mu} \leftrightarrow v_{\tau}$
 - Distorsion du spectre E_v
 - Rapport v_{μ} CC / v_{μ} NC
 - Couvre zone SuperK
- Oscillation $v_{\mu} \leftrightarrow v_{e}$
 - Amélioration de CHOOZ ?

Calendrier de MINOS

- Détecteurs lointain/proche prêts en 2003-2004
- Ligne faisceaux prête en DEC-2004

pour 2 ans

Oscillations auprès de superfaisceaux

Projet japonais: JHF

- Faisceau:
 - Composition: $v_{\mu} / \overline{v_{\mu}}$ (0.2% v_{e})
 - Intensité: 10²¹ p.o.t. / an (Phase I: 0.77 MW & Phase II: 4MW)
 - Energie : $0.4 \le E_v \le 1.0 \text{ GeV}$
- Type de faisceaux :
 - Wide [WBB] : 2-horns focused beam
 - Narrow [NB]: 2 horns + DiPole focused beam
 - Off-Axis [OA]: far detector off-axis

Détecteurs:

- Distance au détecteur: L = 295 km
- Phase I: Super-K(50 kt H_2O)
- Phase II: Hyper K(1Mt H₂O)

Oscillations auprès de SuperFaisceaux: JHF

Physique @ Phase I (2007-2012):

- Sensibilité $v_{\mu} \leftrightarrow v_{\mu}$ oscillation (disparition)

- Sensibilité $v_{\mu} \leftrightarrow v_{e}$ oscillation (apparition)

 $\delta sin^2 2\theta_{\mu e} \approx 0.5 \, sin^2 \theta_{13} > 0.003$

Physique @ Phase II:

- $\nu_{\mu} \leftrightarrow \nu_{e}$ oscillation
 - sensibilité < 10⁻³
- Mesure de la phase CP
 - sensibilité < 10°-20°
- Test du triangle d'unitarité

Oscillations Neutrinos au CNGS: le faisceau

Le Faisceau CNGS

- Caractéristiques
 - Composition: 97% v_{μ} + 2.1% $\overline{v_{\mu}}$ + 0.9% v_{e} 's
 - Energie : <E_v> ~ 17 GeV
 - Intensité : 4.5×10¹⁹ p.o.t./an (2500 CC / kt /an)
 - Intensité: Hausse envisageable de 30-50% pour < 2 MCHF (R. Cappi et al.)

– Calendrier:

En cours de révision

La collaboration OPERA

Belgium IIHE(ULB-VUB) Brussels

China IHEP Beijing, Shandong

Croatia Zagreb

France Annecy, Lyon, Orsay, Strasbourg

Germany Berlin, Hagen, Hamburg, Münster, Rostock

> Israel Technion Haifa

Italy Bari, Bologna, Frascati, Naples, Padova, Rome, Salerno

> **Japan** Aichi, Toho, Kobe, Nagoya, Utsunomiya

> > **Switzerland** Bern, Neuchatel

Turkey METU Ankara

Russia: ITEP Moscow, INR Moscow, JINR Dubna

Le détecteur OPERA

Eléments nouveaux depuis 2001

- Actualisation du design du détecteur:
 - Validation de la technologie du tracker et de la DAQ
 - Validation des "changeable sheets" pour les briques
- Désengagement du CERN: secteurs touchés
 - Brick Assembly Machine BAM
 - Tracker: contrôle de fabrication, installation, calibration
- Attribution du Hall C au Gran Sasso
 - Nouvelles conditions d'assemblage & maintenance

Conséquences

- Ré-actualisation du design
 - Passage de 3 à 2 Supermodules
 - Accroissement du Nb de plans de détection / Supermodule
- Ré-organisation de l'expérience
 - Redistribution des responsabilités (BAM etc...)
- Nouveau Calendrier
 - Retards dus au moratoire du CERN
- Adpatation à un faisceau de haute intensité
 - Utilisation des "changeable sheets"

Le design d'OPERA

Le Détecteur

- 2 supermodules: 2 x 31 murs (brique+Tracker) + 1 spectro
 - Tracker: scintillateurs plastiques + fibres WLS
 - Cible : Briques émulsion ECC + CS
 - Spectro: aimant dipolaire + RPC's + Drift Tubes

Spectromètre + Tracker

Caractéristiques - Aimants dipolaires - 8.75 x 10.0 x 2.64 (m) - Trackers RPC's - Inserés dans la paroi - 12 x (RPC + Fe - 50 mm) - tubes dérives - tubes dérives - tubes dérives - RPC(45°) - RPC + Fe

- Trackers de précision
 - 6 plans Tubes à dérive + RPC(45°)

Responsabilités & Statut

- Aimants (Frascati)
 - Prototype de 8.6 x 2.5 m
 - \rightarrow tests mécaniques + uniformité de B
- RPC's (Naples, Frascati, Padoue)
 - 2 couches de RPC (7mm)
 - \rightarrow Tests Poli.Tech en cours
- Tubes dérive (Hambourg, Moscou, Hagen...)
 - Design achevé, support en cours
 - Prototype achevé (2 x 1m) en test

Prototype Frascati

Production et assemblage des briques à émulsions

Production

- Assemblage des briques: la BAM
 - 27 millions de (plaque Pb + film émulsion FUJI)
 - 206000 briques au total (+30000 en avance)

Composants:

• Emulsions: 36 t / Pb: 2000 t / Origami paper: 20000 m²

Responsabilités & Statut

- Production des émulsions (Nagoya)
 - Tests faisceaux en 2002 (CERN)
 - Démarrage en 2003
- La BAM (Frascati, Nagoya, Naples)
 - Transfert majeur du CERN à Frascati
- Feuilles Plomb (Munich + Fonds communs)

retrait du CERN

Structure et manipulation des briques

- Prototype partiel réalisé (8m x..)
- Manipulateur (LAPP)
 - Bras + carousel réalisés
 - Tests de prototypes en cours au LAPP

Stations de scanning

Stations @ Nagoya

Table de scan:

- Camera CCD
- Système d'Acquisition
- Monitoring (température, humidité)

Responsabilités & statut

- Stations de scanning (Nagoya + Italie, Bern, Lyon, Munich)
 - Perfomances présentes: 10 cm²/ h / couche
 - Nouvelles stations en cours de tests et d'installation

Les Changeable Sheets

Caractéristiques

- Fonction:
 - 2 films amovibles/surface de brique
 - Remplace les Films "Veto" et Special Sheet (2+2 couches)
 - Non exposés aux cosmics
- Utilisation:
 - Initiation de la recherche de vertex: si recherche négative alors la brique n'est pas scannée

Intérets

- Réduction par 2 de la charge de scanning
- Technique déja connue (CHORUS)
- Efficacité de sélection
 - Amélioration de la détection de la brique à scanner ?

Adapté à un faisceau de haute intensité

Responsabilités & Statut

- Production (Nagoya)
- Scan & Analyse (Europe)

Le Target Tracker

Caractéristiques

- Choix des scintillateurs plastique + fibre WLS (DEC-2001)
- Géométrie:
 - Plan XY: 4×4 barreaux × 64 canaux
 - Total (62 plans): 63,488 canaux
 - Dimension: 670 x 2.6 x 1.1 (cm)
 - Etalonnage:
 - spectromètre électron
 - avant installation

- Système d'Acquisition:
 - PMT's multi-anode (64)
 - Carte "analogue" FE:
 - chip uniformiseur de gains

(injection UV pour monitoring)

- chip autodéclenchant

- Controleur Ethernet

- Circuit pour LED

Carte "digitale" DAQ:
 – ADC + FPGA

DAQ Lyon

Bern +

LAL

Le Target Tracker (2)

Responsabilités & Statut

- Barreaux scintillateurs (IReS, Bern, Bruxelles)
 - Tests d'un prototype complet
 - Mesures du signal: 1 MIP = 2 x 5.5 γ_{e} . (milieu)
 - Définition de la gamme dynamique: [1-1000] γ_e

- PMTs (IReS, Bern, Bruxelles, Lyon)
 - Mesures Gains & Uniformités de 1-3, cross-talks ...
- Electronique d'acquisition (Bern, Bruxelles, LAL, Lyon)
 - Design & tests de chip FE en cours
 - Design & tests de carte analogique en cours
 - Design Carte digitale en cours

Le Target Tracker (3)

Electronique Front End au LAL

Développement au LAL

Design d'un Chip 32-voies complet

- Technologie: AMS 0.8 μm BiCMOS
- Fonctions: 32 inputs + 1 sortie trigger + 1 sortie multiplexée

Caractéristiques:

- Pré-amplificateur à gain variable:
 - gamme 1-3 (ajustable)
 - résolution: 4 bits (1, $\frac{1}{2}$, $\frac{1}{4}$, 1/8)
- Fast Shaper pour auto-déclenchement
 - $-t_{\rm P}$ = 10 ns, G ~ 20
- Slow Shaper: mesure de charge
 - $-t_{P}$ = 120 ns, G ~ 1
- Track & Hold
 - sortie multiplexée
- Temps de lecture:
 - 32×200 ns = 6.4 μs
- Surface du chip : – 10 mm²

Soumis en FEV-02 Réception le 17 JUIN-02

Si les tests sont OK: – Soumission du chip final fin 2002 – Reception & tests finaux fin 2003 C. DeLaTaille G. Martin-Chassard L. Raux

Banc Test au LAL

Montage Expérimental au LAL

Développements Software: reconstruction des traces

Motivations:

- Localisation de la brique à analyser:
 - Reconstruction du muon dans les modes (CC, $\tau \rightarrow \mu$)
- Identification du muon
 - Corrélation émulsion & traces: p^{ECC} vs p^{trace} (TT+spectro)
- Pointage et « μ-matching » avec une trace dans les émulsions
 - Séparation μ/π par dEdx dans les émulsions (bdf charme)
 - Bruit de fond dans le canal $\tau \rightarrow \mu$ (long decay)

J. Boucrot J.E. Campagne

> A. Cazes A. Lucotte

Algorithmes

- Pattern + filtre Kalman
 - Liste de traces 2D en XZ et YZ
 - Forme les traces 3D & fit avec filtre Kalman
 - \rightarrow Amélioration de localisation de la brique: de ~70 à ~80%
 - \rightarrow Etude en cours pour inclure Drift Tubes + RPC
- Transformation de Hough
 - Liste de traces 2D en XZ, YZ
 - \rightarrow Directions privilégiées pour localiser la brique
 - \rightarrow Classifications des evts (v_{\mu} CC vs v_{\mu} NC..)

A. Lucotte

J.E. Campagne

A. Cazes

p.24

Performances attendues

Mesures d'OPERA

- Signal + Fonds re-estimés
 - Nouveau résultats de SuperK
- Sensibilité
 - Proposal vs nouvelle estimation
 - CNGS x 1 : 4.50x10¹⁹ pot / an sur 5 ans
 - CNGS x 1.5 : 6.75x10¹⁹ pot / an sur 5 ans (amélioration faisceau)

Comparaison avec ICARUS

Mesures Physiques

- Oscillations $v_{\mu} \leftrightarrow v_{\tau}$
 - Apparition dans canal $\tau \rightarrow e$

même sensibilité qu' OPERA

		\sim			
au decay mode	$\begin{array}{l} \text{Signal} \\ \Delta m^2 = \end{array}$	$\begin{array}{c} \text{Signal} \\ \Delta m^2 = \end{array}$	$\begin{array}{l} \text{Signal} \\ \Delta m^2 = \end{array}$	$\begin{array}{l} \text{Signal} \\ \Delta m^2 = \end{array}$	BG
	$1.6 imes 10^{-3} \ \mathrm{eV^2}$	$2.5 imes10^{-3}~{ m eV^2}$	$3.0 imes 10^{-3} \ \mathrm{eV^2}$	$4.0 imes 10^{-3} \ \mathrm{eV^2}$	10000000000
au ightarrow c	3.7	9	13	23	0.7
$\tau ightarrow ho$ DIS	0.6	1.5	2.2	3,9	< 0.1
$\tau \to \rho \ \mathrm{QE}$	0.6	1.4	2.0	3.6	< 0.1
Total	4.9	11.9	17.2	30.5	0.7

- Oscillations $v_{\mu} \leftrightarrow v_{e}$
 - Zone d'exclusion CHOOZ améliorée $\rightarrow \Delta m^2 \sim 3 \times 10^{-4} \text{ eV}^2$

Calendrier

- Prototype T300 en fonctionnement
- Détecteur T600 prévu en 2003 au Gran Sasso
- 5 modules prévus pour 2006 (T3000)

T600: installed in LNGS early 2003 T3000: operational by summer 2005

Conclusions & perspectives

Statut de l'expérience

- Le retrait du CERN et l'atttribution par le Gran Sasso du Hall C ont eu un impact négatif sur le design & calendrier
- Reconsidération des objectifs basés sur:
 - Contraintes sur le coût
 - Conservation des principes du détecteur
 - Maintien de la 'même sensibilité' au signal

Design et calendrier du détecteur

- Validation du design:
 - Choix de 2 Supermodules de 31 murs de détection
 - Validation du Target Tracker, de la DAQ, des CS
 - Réduction de la M(cible) de 12.5%
- Calendrier:
 - Démarrage de la production des Scintillateurs: 2003 -
 - Production des émulsions / FUJI : 2003-2004
 - Assemblage des briques : 2004 -

Performances attendues

- Sensibilité dans la configuration présente:
 - Oscillations $v_{\mu} \leftrightarrow v_{\tau}$: ~10 evts pour Δm^2 =2.5×10⁻³ en 5 ans
 - Oscillations $\nu_{\mu} \leftrightarrow \nu_{e}$: études en cours
- Le contexte neutrinos sera concurrentiel en 2006
 - Importance du démarrage en 2006

 – OPERA devrait être prêt pour un démarrage en 2006
 – OPERA est adapté à l'éventualité

d'une hausse de l'intensité faisceau

Superfaisceaux: les options

