Higgs Discovery Prospects at the TeVatron Run II

Arnaud Lucotte LAL, Orsay

I. Higgs Phenomenology at the TeVatron

II. Tools for Higgs Search

III. Run II expectations for main Channels

Conclusion

Higgs Phenomenology at the TeVatron

Theoretical Constraints on the SM Higgs

Experimental constraints on the SM Higgs

Indirect Search

Precision Measurements

 m_Z , m_W , m_t $sin^2 \theta_W$, α_{EM}

Prediction within SM:

 m_H , χ^2

Light Higgs Favored m_H < 300 GeV/c²

SM Higgs Production at the TeVatron

Decay Modes

Production Modes

Theoretical Constraints on MSSM Higgses

Tree Level

- 2 main free parameters:
 - $\tan\beta = v_u/v_d$
 - m_A (or m_H , m_h)

$$m_{H\pm}^2 = m_W^2 + m_A^2$$

 $m_{H,h}^2 = \frac{1}{2} (m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)} - 4m_Z^2 m_A^2 \cos^2 2\beta)$

Higher Orders

Experimental Constraints on neutral MSSM Higgses

Phenomenology of h/H/A at the TeVatron (tan β =6)

Decay Modes:

Light Higgs:

- $BR(b\bar{b}) > 90\%$
- $BR(\tau^{+}\tau^{-}) < 8\%$
- Heavy Higgs:
 - $g_{H/Abb} \propto tan\beta$
 - BR(bb) > 80%
 - BR($\tau^+\tau^-$) < 8%
 - BR(W+W-)< 12%

Production Modes:

Light Higgs:

 $\sigma(p\bar{p} \rightarrow Wh) \sim 0.15 \text{ pb}$

SM-like analysis

Heavy Higgs:

 $\sigma(p\bar{p} \rightarrow A/Hb\bar{b}) \sim 10 \text{ fb}$ \Rightarrow 4b 's final state

tanβ=6:

Light Higgs h: SM-like analysis Heavy Higgs A/H: 4 b's final states

Phenomenology of h/H/A at the TeVatron (tan β =30)

tanβ=30: – Standard channels not relevant for h/A/H – 4 b's final states analysis

SM Backgrounds to Higgs Search

Large K factors (1.3-1.8) + effects on $d\sigma/dm_{bb}$

Tools for Higgs Search

Strategy and Tools for Higgs Search

Low Mass Analysis

- $pp \to WH \to I\nu bb$
- $pp \to ZH \to \nu\nu bb$
- $pp \rightarrow ttH \rightarrow WbWb bb$
- Triggers:
 - Lepton, mE_T
 - Displaced Vertex
- b-tagging:
 - b-tagging efficiency
 - mistag rate
- Jet Energy & Resolution:
 - M_{bb} resolution

High Mass Analysis

- $H \rightarrow WW^*$, WWW^*
- $pp \rightarrow ttH \rightarrow WbWb WW^*$
- Triggers:
 - Lepton, mE_T
- Lepton ID
- E_{T_1} , mE_T, angles resolution

Z→bb Control

Sample

Lepton trigger for Higgs Searches

Motivation & goals

- Huge QCD Background:
 - $\sigma_{\text{dijets}} \approx 43 \text{ mbarn}$
- Specific triggers:
 - Soft Lepton for b-tagging $b \rightarrow Iv + X$ and $b \rightarrow J/\psi (\rightarrow II) + X$
 - High p_T leptons & mE_T $H \rightarrow W^*W^*.Z^*Z^* \le W \rightarrow \downarrow v. Z \rightarrow \downarrow \downarrow$

Proba density / 4 GeV/c $h \rightarrow WW$ W+jets WW W 7 0.1 tt 0.05 10 20 30 40 50 60 70 80 P_r in GeV/c

Lepton P_T

New Trigger Design

- New Architecture:
 - Fast & pipelined electronics
 - Band width: L1= 10-50 kHz •
 - Correlations at L1
- Lowered Thresholds:
 - [ee] $p_{\tau}(e) > 2.5 \text{ GeV/c}$
 - $[\mu\mu] p_T(\mu) > 1.5 \text{ GeV/c}$
 - $[\mu] p_{T}(\mu) > 4.0 \text{ GeV/c}$
- Missing E_T triggers: missing E_{τ} resolution ~7-10GeV
 - Triggers to be tested with 1st data
 - effects of mbias, pile-up, to be assessed

b trigger for Higgs Searches

0

50,000 Z→bb /exp./2 fb⁻¹

0

4

S_{min}

0

0

S_{min}

b-tagging for Higgs Search

b-jet Tagging

- "Multi-tag" approach developped:
 - Soft Lepton from $b \rightarrow lvX$
 - High Impact parameter tracks
 - Secondary Vertices: $|L_{xv}|/\sigma_{xv}$
- b/c separation:
 - LifeTime
 - Vertex Mass
 - Kinematics, topology
- Optimization w/ Likelihood & Nnet
 - Tight / Loose taggers

Checks in progress

• c-jet: ε_{1b} ~ 13%

 $\varepsilon_{1-\text{btag}} \sim 70\%$

Tagging for WH→lvbb

light jet: ε_{1b}~0.7%

Performances

Numerous progresses made / still to be made Use of likelihood & NNet being tested & implemented

bottom charm primary output 0.3 0.4 0.5 0.6 0.7 0.8 0.7 0.8 0.9 R.Demina / FNAL

Mass resolution and $Z \rightarrow b\overline{b}$ sample

Jet E_T resolution

Run I data:

σ/E ~75%/√E (DØ)
 σ/E ~78%/√E (CDF)

Run II:

- More challenging (materials, mbias etc.)
- Improve energy scale
 (20 x more γ+jet)
- Use Track+Calorimeter
 (CDF: 30% better)

M resolution with Z→bb

Run I (CDF):

- Inclusive muon sample
- Corrections for b→l
- \Rightarrow S ~50 evts / 0.1 fb⁻¹ 15% resolution in M_{bb}

Run II:

 Specific Zbb triggers: Muon: 500 evts / fb⁻¹
 Vertex: 50,000 evts / fb⁻¹

- Improvements needed* to reach $\sigma/M \sim 10\%$

Main Channels in Higgs Search

The WH→lvbb Channel

Signal Selection

Pre-selection:

- High p_Tlepton, mE_T
- 2 b-tagged jets

Discriminant Variables:

- Lepton: E_T^{I} et η^{I} et m E_T
- Energy E_t^{b} , M_{bb} (= $m_H \pm 2\sigma_m$)
- Total jet Energy H_T
- Sphericity
- Dominant backgrounds:
 - Wbb, tt, single top, WZ

Key parameters:

- b tagging efficiency & mistag
- Knowledge of Wbb background
- M(bb) resolution ($\sigma_M/M \sim 10\%$)

1 fb ⁻¹	m _H GeV	110	120	130	
Cuts	Signal ε x BR S/√B	5.0 2.3% 0.72	3.7 2.3% 0.53	2.2 1.9% 0.35	- S ~ 4 / fb ⁻¹ - S/B ~ 10%
NNet	S/√B	1.1	0.87	0.55	

The $ZH \rightarrow v\overline{v}b\overline{b}$ Channel

Selection

Pre-selection:

High mE_T + 2 b-tagged jets

Discriminant Variables:

- E_T^b et mE_T
- $M_{bb} (= m_H \pm 2\sigma_m)$
- Total jet energy H_T
- Sphericity, Centrality
- $\Delta \Phi(mE_T, jet) > 0.5$

Dominant Backgrounds:

• QCD bb, Zbb, tt

From Data only !!

Expected performance

Key parameters:

- b-tagging & σ_M/M Resolution (~10%)
- Reliable estimates for QCD bb+mE_T & Zbb

1 fb ⁻¹	m _H GeV	110	120	130	
	Signal	2.7	1.7	0.9	 S ~ 2 e
Cuts	ε x BR	2.1%	1.7%	1.2%	S/B ~ 1
	S/√B	0.84	0.59	0.38	M _H distr
NNet	S/√B	0.90	0.73	0.53	

The ZH→I⁺I⁻bb Channel

Selection

Pre-selection:

- 2 high p_T lepton
- 2 b-tagged jets

Discriminant variables:

- Energy E_t^{b} , E_T^{l}
- M(II) & M(bb)
- Total jet Energy H_T
- $\Delta R(l,b)$

Dominant Backgrounds:

• ZZ, Zbb, Wbb

 $m_{\rm H} = 120 \, {\rm GeV}$

Expected performance

Key parameters:

- b-tagging and σ_M/M Resolution (~10%)
- Reliable estimates for Zbb

1 fb⁻¹	m _H GeV	110	120	130
Cuts	Signal	0.9	0.6	0.4
	S/√B	0.5	0.4	0.3
NNet	S/√B	0.6	0.5	0.4

The H→W*W* →I⁺ I⁻vv Channel

Selection **Discriminant Variables:** M_e Mass $M_{h}=160 \text{ GeV}$ • Spin correlation h→WW* W+jets $\Phi(||), \theta(||)$ WW $M_T(IIE_T), p_T(II) (vs \tau^+\tau)$ • wΖ Cluster Mass: (vs WW) tŦ 0.06 $M_{c} = \sqrt{p_{T}^{2}(II) + M_{T}^{2}(II)} + \not \models_{T} \langle f_{T} \rangle$ 0.04 0.02 Dominant backgrounds: $W^+W^- \rightarrow I^+I^-\sqrt{\nu}$ Cluster Mass M_c (GeV/ c^2) • W+fake, tt \rightarrow I⁺I⁻ $\nu \overline{\nu} \overline{b} \overline{b}$ $p\bar{p} \rightarrow H^0 X$ A. Turcot / BNL Dilepton + E. 30 fb⁻¹ **Expectated Performance** $N_{2} = 32.4$ $N_{\rm p} = 72.3$ Key parameters: Reliable estimates for WW,W+jets 0, 01, 05 Counting experiment ! Cluster Mass (GeV) 1 fb⁻¹ 150 160 170 180 Signal 11 S ~ 1-3 / fb⁻¹ 2.8 1.5 1.0 25% S/B ~ 10-45% S/B(%) 10% 34% 45% 0.7 S/√B 0.7 0.5 0.5

Channel: $pp \rightarrow tt H \rightarrow WbWb bb$

Selection

Discriminant Variables:

- \geq 1 high p_T lepton+mE_T
- 4 high E_T jets + 2 jets \rightarrow reconstruct tt
- 3 b-tags (vs tt+jets)
- Mbb once tt jets id !

Dominant backgrounds:

Backgrounds	σ×BR [fb]
tt+jj (∆Rjj>0.4)	1030
tt+bb	27
tt+Z(bb)	1.5
W(lv)Z(bb)+jj	10.4

Expected Performance

Key Parameters:

- btagging & mistag: $\epsilon_b \sim 60\% \epsilon_c \sim 25\% \epsilon_{uds} \sim 0.5\%$
- Top products Grouping efficiency (many combinations)
- Add H→WW* channels (more difficult)
- Reliable NLO calculations

See S. Dittmaier, L. Reina

MSSM Higgs: pp̄ →bb̄φ →bb̄bb̄ (φ = h,H,A)

Selection

- Discriminant Variables:
 - 4 b-jets: (≥ 3 b-tags)
 - E_T(j) cuts as f(m_o)
 - Topology $\Delta \Phi(bb)$
- Dominant Backgrounds
 - QCD (bb/cc), Z/Wjj, tt

Fonds	σ×BR [pb]
qq,gg →bbbb	2.40
$pp \rightarrow Zbb$	0.49
$pp \to W(jj)bb$	2.11
$pp \to bbjj$	1610.8

Expected Performance

Key parameters:

- σ_M/M Resolution
- Reliable estimates for Backgrounds

 Sensitivity for M_A to 125GeV with 2fb⁻¹
 Stringent Constraints in (m_A,tanβ) plane

Arnaud Lucotte

Conclusion & Perspectives

Neutral (SM) Higgs

Needed luminosity to get 95% exclusion / discovery:

- Assuming 10% M_{bb} resolution, NNet analysis for H \rightarrow bb
- Bands represent 30% effect in M_{bb}, ε_b, backgds

New Channel: ttH

 looks promising : ~15% reduction in luminosity threshold for discovery at 120 GeV

MSSM Higgses

Accessible with 4 b's final states and Charged Higgs

Still a lot of work ahead of us. Progress needed:

- on M_{bb} resolution (energy flow)
- on b-tagging & trigger
- on theoretical calculation (bckgd)
- ...But data are flowing in...and could bring suprises

....What about m_H = 115 GeV ?

If Higgs is indeed here:

- Signal Evidence requires
 - ~5 fb⁻¹ with 3 standard evidence (2004-5)

Expected number of events

• per experiment with 15 fb⁻¹ (2007)

		J.Wor	J.Womersley. / DØ	
Mode	Signal	Background	S/√B	
lybb	92	450	4.3	
vvbb	90	880	3.0	
llbb	10	44	1.5	

- If we do see something, we need to measure:
 - its Mass
 - Its production cross-section
 - Can we see $H \rightarrow \tau \tau$ (BR ~ 8%)?
 - Can we see H→W*W* (BR ~ 5%) ?

If Higgs is not here:

- we can exclude a m_H = 115 GeV Higgs
 - at 95% CL with 2 fb⁻¹ (2003)

Higgs Search at the TeVatron Run 1

Updates & References

Higgs Search at the TeVatron:

- Htt : J. Goldstein et al., FERMILAB-PUB-00/146-T
- « QCD Corrections to ttH production », L. Reina, FNAL Workshop, May 2001
- « NLO QCD corrections to ttH production », S. Dittmaier

Backgournds to TeVatron Higgs production

K. Ellis , J. Campbell, S. Veseli hep-ph/9810489, hep-ph/9905386, hep-ph/0006404