Higgs searches in ATLAS representing the ATLAS Collaboration EM calorimeter: Pb-LAr Accordion e/γ trigger, identification and measurement E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$ HAD calorimetry ($|\eta|<5$): segmentation, hermeticity Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$ Peak luminosity seen by ATLAS: ~ 3.6 ×10³³ cm⁻² s⁻¹ Fraction of non-operational detector channels: (depends on the sub-detector) few permil to 3.5% Data-taking efficiency = (recorded lumi)/(delivered lumi): ~ 93.5% Good-quality data fraction, used for analysis: (depends on the analysis) 90-96% # Price to pay for the high luminosity: larger-than-expected pile-up #### Pile-up = number of interactions per crossing Tails up to \sim 20 \rightarrow comparable to design luminosity (50 ns operation; several machine parameters pushed beyond design) LHC figures used over the last 20 years: $\sim 2 (20)$ events/crossing at L= $10^{33} (10^{34})$ Challenging for trigger, computing resources, reconstruction of physics objects (in particular E_T^{miss} , soft jets, ..) Precise modeling of both in-time and out-of-time pile-up in simulation is essential ### Summary of main electroweak and top cross-section measurements Good agreement with SM expectations (within present uncertainties) Experimental precision starts to challenge theory for e.g. tt (background to most H searches) # Summary of main electroweak and top cross-section measurements Good agreement with SM expectations (within present uncertainties) Experimental precision starts to challenge theory for e.g. tt (background to most H searches) ### SM Higgs production cross-section and decay modes - \Box Cross-sections computed to NNLO in most cases \rightarrow theory uncertainties reduced to < 20% - $oldsymbol{\square}$ Huge progress also in the theoretical predictions of numerous and complex backgrounds - → Excellent achievements of the theory community; very fruitful discussions with the experiments (e.g. through LHC Higgs Cross Section WG, LPCC, etc.) #### Micro-summary of present Higgs searches in ATLAS | Channel | m _H range
(GeV) | Int. lumi
fb ⁻¹ | Main
backgrounds | Number of signal events after cuts | | Expected
σ/σ _{sм}
sensitivity | |--|-------------------------------|-------------------------------|---------------------|------------------------------------|----------|--| | Н→ үү | 110-150 | 4.9 | YY, YJ, JJ | ~70 | ~0.02 | 1.6-2 | | H → ττ → II+ν | 110-140 | 1.1 | Z→ ττ, top | ~0.8 | ~0.02 | 30-60 | | $H \rightarrow \tau \tau \rightarrow I \tau_{had}$ | 100-150 | 1.1 | Ζ→ тт | ~10 | ~5 10-3 | 10-25 | | W/ZH → bbl(l) | 110-130 | 1.1 | W/Z+jets, top | ~6 | ~5 10-3 | 15-25 | | $H \rightarrow WW^{(*)} \rightarrow IvIv$ | 110-300 | 2.1 | WW, top, Z+jet | ~20 (130 <i>G</i> eV) | ~0.3 | 0.3-8 | | $H \rightarrow ZZ^{(*)} \rightarrow 4I$ | 110-600 | 4.8 | ZZ*, top, Zbb | ~2.5 (130 GeV) | ~1.5 | 0.7-10 | | H→ ZZ → II vv | 200-600 | 2.1 | ZZ, top, Z+jets | ~20 (400 GeV) | ~0.3 | 0.8-4 | | H→ ZZ → II qq | 200-600 | 2.1 | Z+jets, top | 2-20 (400 GeV) | 0.05-0.5 | 2-6 | | H→ WW → Ivqq | 240-600 | 1.1 | W+jets,top,jets | ~45 (400 GeV) | 10-3 | 5-10 | [☐] Based on (conservative) cut-based selections 8 [□] Large and sometimes not well-known backgrounds estimated mostly with data-driven techniques using signal-free control regions # $H \rightarrow WW^{(*)} \rightarrow |v|v \text{ (evev, }\mu\nu\mu\nu, \text{ ev}\mu\nu)$ 110 < m_H < 300 GeV - \square Most sensitive channel over \sim 125-180 GeV ($\sigma \sim$ 200 fb) - \square However: challenging: $2v \rightarrow no$ mass reconstruction/peak \rightarrow "counting channel" - \square 2 isolated opposite-sign leptons, large E_T^{miss} - ☐ Main backgrounds: WW, top, Z+jets, W+jets - \rightarrow m_{II} \neq m_Z, b-jet veto, ... - → Topological cuts against "irreducible" WW background: 2.1 fb⁻¹ p_{TII} , m_{II} , $\Delta \phi_{II}$ (smaller for scalar Higgs), m_T (II, E_T^{miss}) #### Crucial experimental aspects: - \Box understanding of E_T^{miss} (genuine and fake) - \square excellent understanding of background in signal region \rightarrow use signal-free control regions in data to constrain MC \rightarrow use MC to extrapolate to the signal region Control region MC expectation Observed in data WW 0-jet 296±36 296 WW 1-jet 171±21 184 Top 1-jet 270±69 249 #### After leptons, m_7 and E_T^{miss} cuts 2400 2200 2000 ₂₂₀₀ **ATLAS** Data Diboson $2000 = 7 \text{ TeV}, \int L \, dt = 2.05 \, \text{fb}^{-1}$ H [150 GeV] Z+jets 1800 W+jets (data driven) 1600E H→WW→lvlv 1400E 1200 1000 800 600 400 200 8 10 Niets with pt>25 GeV E_T^{miss} spectrum in data for inclusive events with $\mu^+\mu^-$ pair well described (over 5 orders of magnitude) by the various background components. Dominated by real E_T^{miss} from v's starting Dominated by real E_T^{miss} from v's starting at $E_T^{miss} \sim 50 \text{ GeV}$ → little tails from detector effects E_T^{miss} spectrum and resolution very sensitive to pile-up \rightarrow we will include Period-B data when understanding at similar level as Period A Transverse mass spectrum after all cuts (except M_T) #### After all cuts (selection for m_H =130 GeV) 2.1 fb⁻¹ Observed in data Expected background Expected signal m_H=130 GeV 94 events 10 ee, 42 eμ, 42 μμ 76 (±11) 19 (±4) 200 250 300 m_⊢ [GeV] Consistency of the data with the - □ Excluded (95% CL): 145 < m_H < 206 GeV (expected: 134-200 GeV)</p> - \square Observed limit within 2 σ of expected: max deviation 1.9 σ for m_H ~ 130 GeV 10⁻⁷ 100 150 $H \rightarrow \gamma \gamma$ 110 ≤ m_H ≤ 150 GeV - \Box Small cross-section: $\sigma \sim 40 \text{ fb}$ - \square Simple final state: two high-p_T isolated photons $E_{T}(\gamma_{1}, \gamma_{2}) > 40, 25 \text{ GeV}$ - □ Main background: γγ continuum (irreducible, smooth, ..) - \Box Events divided into 9 categories based on η-photon (e.g. central, rest, ...), converted/unconverted, $p_T^{\gamma\gamma}$ perpendicular to $\gamma\gamma$ thrust axis - \square ~70 signal events expected in 4.9 fb⁻¹ after all selections for m_H=125 GeV - ~ 3000 background events in signal mass window \rightarrow 5/B ~ 0.02 #### Crucial experimental aspects: - excellent γγ mass resolution to observe narrow signal peak above irreducible background - Dowerful γ /jet separation to suppress γ j and jj background with jet $\rightarrow \pi^0$ faking single γ #### After all cuts: 22489 events with 100 < $m_{\nu\nu}$ < 160 GeV observed in the data Sample composition estimated from data using control samples | | Number of events | Fraction | |------|------------------|------------| | YY | 16000 ± 1120 | 71 ±5 % | | Υj | 5230 ± 890 | 23 ±4 % | | jj | 1130 ± 600 | 5 ±3 % | | DY/Z | 165 ± 8 | 0.7 ±0.1 % | $\gamma j + j j \leftrightarrow \gamma \gamma$ irreducible (purity ~ 70%) Photon identification efficiency: ~ 85±5% from MC, cross-checked with data (Z \rightarrow ee, Z \rightarrow ee γ , $\mu\mu\gamma$) #### After all selections: kinematic cuts, y identification and isolation - \square 22489 events with 100 < m_{yy} < 160 GeV observed in the data - \square expected signal efficiency: ~ 35% for m_H=125 GeV m_{yy} spectrum fit with exponential function for background plus Crystal Ball + Gaussian for signal → background determined directly from data # Systematic uncertainties on signal expectation | Event yield | | |---|-----------| | Photon reconstruction and identification | ±11% | | Effect of pileup on photon identification | ±4% | | Isolation cut efficiency | ±5% | | Trigger efficiency | ±1% | | Higgs boson cross section | +15%/-11% | | Higgs boson p_T modeling | ±1% | | Luminosity | ±3.9% | | Mass resolution | | | Calorimeter energy resolution | ±12% | | Photon energy calibration | ±6% | | Effect of pileup on energy resolution | ±3% | | Photon angular resolution | ±1% | | Migration | | | Higgs boson $p_{\rm T}$ modeling | ±8% | | Conversion reconstruction | ±4.5% | #### Main systematic uncertainties Expected signal yield : ~ 20% H→ yy mass resolution: ~ 14% $H \rightarrow \gamma \gamma p_T \text{ modeling}$: ~ 8% Background modeling : ±0.1-5.6 events Excluded (95% CL): $114 \le m_H \le 115 \ GeV$, $135 \le m_H \le 136 \ GeV$ Maximum deviation from background-only expectation observed for m_H~126 GeV: - lue local p₀-value: 0.27% or 2.8 σ - □ expected from SM Higgs: ~ 1.4σ local - □ global p₀-value: includes probability for such an excess to appear anywhere in the investigated mass range (110-150 GeV) ("Look-Elsewhere-Effect"): ~7% (1.5σ) - \Box $\sigma \sim 2-5 \text{ fb}$ - ☐ However: - -- mass can be fully reconstructed \rightarrow events would cluster in a (narrow) peak - -- pure: S/B ~ 1 - \Box 4 leptons: $p_T^{1,2,3,4} > 20,20,7,7 \text{ GeV}$; $m_{12} = m_Z \pm 15 \text{ GeV}$; $m_{34} > 15-60 \text{ GeV}$ (depending on m_H) - Main backgrounds: - -- ZZ^(*) (irreducible) - -- $m_H < 2m_Z$: Zbb, Z+jets, tt with two leptons from b/q-jets $\rightarrow 1$ - → Suppressed with isolation and impact parameter cuts on two softest leptons - \square Signal acceptance x efficiency: ~ 15 % for m_H~ 125 GeV #### Crucial experimental aspects: - ☐ High lepton reconstruction and identification efficiency down to lowest p_T - ☐ Good lepton energy/momentum resolution - ☐ Good control of reducible backgrounds (Zbb, Z+jets, tt) in low-mass region: - \rightarrow cannot rely on MC alone (theoretical uncertainties, b/q-jet \rightarrow 1 modeling, ..) - → need to compare MC to data in background-enriched control regions (but: low statistics ..) - \rightarrow Conservative/stringent p_T and m(II) cuts used at this stage #### After all selections: kinematic cuts, isolation, impact parameter Full mass range Observed: 71 events: $24 4\mu + 30 2e2\mu + 17 4e$ Expected from background: 62±9 m(4l) < 180 GeV Observed: 8 events: $3 4\mu + 3 2e2\mu + 2 4e$ Expected from background: 9.3±1.5 In the region m_H < 141 GeV (not already excluded at 95% C.L.) 3 events are observed: two 2e2 μ events (m=123.6 GeV, m=124.3 GeV) and one 4 μ event (m=124.6 GeV) In the region 117< m_{41} <128 GeV (containing ~90% of a m_{H} =125 GeV signal): - □ similar contributions expected from signal and background: ~ 1.5 events each - \Box 5/B ~ 2 (4 μ), ~ 1 (2e2 μ), ~ 0.3 (4e) - □ Background dominated by ZZ* (4µ and 2e2µ), ZZ* and Z+jets (4e) #### Main systematic uncertainties Higgs cross-section : $\sim 15\%$ Electron efficiency : $\sim 2-8\%$ ZZ* background : $\sim 15\%$ Zbb, +jets backgrounds : $\sim 40\%$ 4μ candidate with $m_{4\mu}$ = 124.6 GeV $p_T (\mu^-, \mu^+, \mu^+, \mu^-) = 61.2, 33.1, 17.8, 11.6 GeV$ $m_{12} = 89.7 GeV, m_{34} = 24.6 GeV$ # $2e2\mu$ candidate with $m_{2e2\mu}$ = 124.3 GeV p_{T} (e⁺, e⁻, μ^{-} , μ^{+})= 41.5, 26.5, 24.7, 18.3 GeV m (e⁺e⁻)= 76.8 GeV, m($\mu^{+}\mu^{-}$) = 45.7 GeV #### From fit of signal and background expectations to 41 mass spectrum Excluded (95% CL): 135 < m $_H$ < 156 GeV and 181 < m $_H$ < 415 GeV (except 234-255 GeV) Expected (95% CL): 137 < m $_H$ < 158 GeV and 185 < m $_H$ < 400 GeV ## Putting all channels together \rightarrow combined constraints H→yy, H→ TT H→ WW^(*)→ IvIv H→ ZZ^(*) → 4I, H→ ZZ → IIvv H→ ZZ → IIqq, H→ WW→Ivqq W/ZH→ Ibb+X not included Excluded at 95% CL $112.7 < m_H < 115.5 GeV$ $131 < m_H < 453 GeV$, except 237-251 GeV Expected if no signal 124.6-520 GeV Excluded at 99% CL $133 < m_H < 230 GeV, 260 < m_H < 437 GeV$ #### Consistency of the data with the background-only expectation Maximum deviation from background-only expectation observed for m_H~126 GeV Local po-value: 1.9 10-4 \rightarrow local significance of the excess: 3.6 σ ~ 2.8σ H \rightarrow $\gamma\gamma$, 2.1σ H \rightarrow 4I, 1.4σ H \rightarrow |v|v Expected from SM Higgs: ~2.40 local (~1.40 per channel) Global p₀-value : $0.6\% \rightarrow 2.5\sigma$ LEE over 110-146 GeV Global p_0 -value: 1.4% \rightarrow 2.2 σ LEE over 110-600 GeV