

# Higgs searches in ATLAS

representing the ATLAS Collaboration

















EM calorimeter: Pb-LAr Accordion  $e/\gamma$  trigger, identification and measurement E-resolution:  $\sigma/E \sim 10\%/\sqrt{E}$ 

HAD calorimetry ( $|\eta|<5$ ): segmentation, hermeticity Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing  $E_T$  E-resolution:  $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$ 



Peak luminosity seen by ATLAS: ~ 3.6 ×10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>



Fraction of non-operational detector channels: (depends on the sub-detector)

few permil to 3.5%

Data-taking efficiency = (recorded lumi)/(delivered lumi):

~ 93.5%

Good-quality data fraction, used for analysis: (depends on the analysis)

90-96%

# Price to pay for the high luminosity: larger-than-expected pile-up

#### Pile-up = number of interactions per crossing

Tails up to  $\sim$ 20  $\rightarrow$  comparable to design luminosity

(50 ns operation; several machine parameters pushed beyond design)

LHC figures used over the last 20 years:  $\sim 2 (20)$  events/crossing at L= $10^{33} (10^{34})$ 





Challenging for trigger, computing resources, reconstruction of physics objects (in particular  $E_T^{miss}$ , soft jets, ..)

Precise modeling of both in-time and out-of-time pile-up in simulation is essential

### Summary of main electroweak and top cross-section measurements



Good agreement with SM expectations (within present uncertainties)

Experimental precision starts to challenge theory for e.g. tt (background to most H searches)

# Summary of main electroweak and top cross-section measurements



Good agreement with SM expectations (within present uncertainties)

Experimental precision starts to challenge theory for e.g. tt (background to most H searches)

### SM Higgs production cross-section and decay modes



- $\Box$  Cross-sections computed to NNLO in most cases  $\rightarrow$  theory uncertainties reduced to < 20%
- $oldsymbol{\square}$  Huge progress also in the theoretical predictions of numerous and complex backgrounds
- → Excellent achievements of the theory community; very fruitful discussions with the experiments (e.g. through LHC Higgs Cross Section WG, LPCC, etc.)

#### Micro-summary of present Higgs searches in ATLAS

| Channel                                            | m <sub>H</sub> range<br>(GeV) | Int. lumi<br>fb <sup>-1</sup> | Main<br>backgrounds | Number of signal events after cuts |          | Expected<br>σ/σ <sub>sм</sub><br>sensitivity |
|----------------------------------------------------|-------------------------------|-------------------------------|---------------------|------------------------------------|----------|----------------------------------------------|
| Н→ үү                                              | 110-150                       | 4.9                           | YY, YJ, JJ          | ~70                                | ~0.02    | 1.6-2                                        |
| H → ττ → II+ν                                      | 110-140                       | 1.1                           | Z→ ττ, top          | ~0.8                               | ~0.02    | 30-60                                        |
| $H \rightarrow \tau \tau \rightarrow I \tau_{had}$ | 100-150                       | 1.1                           | Ζ→ тт               | ~10                                | ~5 10-3  | 10-25                                        |
| W/ZH → bbl(l)                                      | 110-130                       | 1.1                           | W/Z+jets, top       | ~6                                 | ~5 10-3  | 15-25                                        |
| $H \rightarrow WW^{(*)} \rightarrow IvIv$          | 110-300                       | 2.1                           | WW, top, Z+jet      | ~20 (130 <i>G</i> eV)              | ~0.3     | 0.3-8                                        |
| $H \rightarrow ZZ^{(*)} \rightarrow 4I$            | 110-600                       | 4.8                           | ZZ*, top, Zbb       | ~2.5 (130 GeV)                     | ~1.5     | 0.7-10                                       |
| H→ ZZ → II vv                                      | 200-600                       | 2.1                           | ZZ, top, Z+jets     | ~20 (400 GeV)                      | ~0.3     | 0.8-4                                        |
| H→ ZZ → II qq                                      | 200-600                       | 2.1                           | Z+jets, top         | 2-20 (400 GeV)                     | 0.05-0.5 | 2-6                                          |
| H→ WW → Ivqq                                       | 240-600                       | 1.1                           | W+jets,top,jets     | ~45 (400 GeV)                      | 10-3     | 5-10                                         |

<sup>☐</sup> Based on (conservative) cut-based selections

8

<sup>□</sup> Large and sometimes not well-known backgrounds estimated mostly with data-driven techniques using signal-free control regions

# $H \rightarrow WW^{(*)} \rightarrow |v|v \text{ (evev, }\mu\nu\mu\nu, \text{ ev}\mu\nu)$

110 < m<sub>H</sub> < 300 GeV

- $\square$  Most sensitive channel over  $\sim$  125-180 GeV ( $\sigma \sim$  200 fb)
- $\square$  However: challenging:  $2v \rightarrow no$  mass reconstruction/peak  $\rightarrow$  "counting channel"
- $\square$  2 isolated opposite-sign leptons, large  $E_T^{miss}$
- ☐ Main backgrounds: WW, top, Z+jets, W+jets
  - $\rightarrow$  m<sub>II</sub>  $\neq$  m<sub>Z</sub>, b-jet veto, ...
  - → Topological cuts against "irreducible" WW background:

2.1 fb<sup>-1</sup>

 $p_{TII}$ ,  $m_{II}$ ,  $\Delta \phi_{II}$  (smaller for scalar Higgs),  $m_T$  (II,  $E_T^{miss}$ )

#### Crucial experimental aspects:

- $\Box$  understanding of  $E_T^{miss}$  (genuine and fake)
- $\square$  excellent understanding of background in signal region  $\rightarrow$  use signal-free control regions in data to constrain MC  $\rightarrow$  use MC to extrapolate to the signal region

 Control region
 MC expectation
 Observed in data

 WW 0-jet
 296±36
 296

 WW 1-jet
 171±21
 184

 Top 1-jet
 270±69
 249

#### After leptons, $m_7$ and $E_T^{miss}$ cuts 2400 2200 2000 <sub>2200</sub> **ATLAS** Data Diboson $2000 = 7 \text{ TeV}, \int L \, dt = 2.05 \, \text{fb}^{-1}$ H [150 GeV] Z+jets 1800 W+jets (data driven) 1600E H→WW→lvlv 1400E 1200 1000 800 600 400 200 8 10 Niets with pt>25 GeV



 $E_T^{miss}$  spectrum in data for inclusive events with  $\mu^+\mu^-$  pair well described (over 5 orders of magnitude) by the various background components. Dominated by real  $E_T^{miss}$  from v's starting

Dominated by real  $E_T^{miss}$  from v's starting at  $E_T^{miss} \sim 50 \text{ GeV}$ 

→ little tails from detector effects

 $E_T^{miss}$  spectrum and resolution very sensitive to pile-up  $\rightarrow$  we will include Period-B data when understanding at similar level as Period A



Transverse mass spectrum after all cuts (except  $M_T$ )



#### After all cuts (selection for $m_H$ =130 GeV)

2.1 fb<sup>-1</sup>

Observed in data

Expected background Expected signal m<sub>H</sub>=130 GeV

94 events 10 ee, 42 eμ, 42 μμ 76 (±11) 19 (±4)





200

250

300

m<sub>⊢</sub> [GeV]

Consistency of the data with the

- □ Excluded (95% CL): 145 < m<sub>H</sub> < 206 GeV (expected: 134-200 GeV)</p>
- $\square$  Observed limit within 2 $\sigma$  of expected: max deviation 1.9  $\sigma$  for m<sub>H</sub> ~ 130 GeV

10<sup>-7</sup>

100

150

 $H \rightarrow \gamma \gamma$ 

110 ≤ m<sub>H</sub> ≤ 150 GeV

- $\Box$  Small cross-section:  $\sigma \sim 40 \text{ fb}$
- $\square$  Simple final state: two high-p<sub>T</sub> isolated photons

 $E_{T}(\gamma_{1}, \gamma_{2}) > 40, 25 \text{ GeV}$ 

- □ Main background: γγ continuum (irreducible, smooth, ..)
- $\Box$  Events divided into 9 categories based on η-photon (e.g. central, rest, ...), converted/unconverted,  $p_T^{\gamma\gamma}$  perpendicular to  $\gamma\gamma$  thrust axis
- $\square$  ~70 signal events expected in 4.9 fb<sup>-1</sup> after all selections for m<sub>H</sub>=125 GeV
  - ~ 3000 background events in signal mass window  $\rightarrow$  5/B ~ 0.02



#### Crucial experimental aspects:

- excellent γγ mass resolution to observe narrow signal peak above irreducible background
- Dowerful  $\gamma$ /jet separation to suppress  $\gamma$ j and jj background with jet  $\rightarrow \pi^0$  faking single  $\gamma$

#### After all cuts: 22489 events with 100 < $m_{\nu\nu}$ < 160 GeV observed in the data

Sample composition estimated from data using control samples



|      | Number of events | Fraction   |
|------|------------------|------------|
| YY   | 16000 ± 1120     | 71 ±5 %    |
| Υj   | 5230 ± 890       | 23 ±4 %    |
| jj   | 1130 ± 600       | 5 ±3 %     |
| DY/Z | 165 ± 8          | 0.7 ±0.1 % |



 $\gamma j + j j \leftrightarrow \gamma \gamma$  irreducible (purity ~ 70%)

Photon identification efficiency: ~ 85±5% from MC, cross-checked with data (Z $\rightarrow$  ee, Z $\rightarrow$  ee $\gamma$ ,  $\mu\mu\gamma$ )

#### After all selections: kinematic cuts, y identification and isolation

- $\square$  22489 events with 100 <  $m_{yy}$  < 160 GeV observed in the data
- $\square$  expected signal efficiency: ~ 35% for m<sub>H</sub>=125 GeV



m<sub>yy</sub> spectrum fit with exponential function for background plus Crystal Ball + Gaussian for signal → background determined directly from data

# Systematic uncertainties on signal expectation

| Event yield                               |           |
|-------------------------------------------|-----------|
| Photon reconstruction and identification  | ±11%      |
| Effect of pileup on photon identification | ±4%       |
| Isolation cut efficiency                  | ±5%       |
| Trigger efficiency                        | ±1%       |
| Higgs boson cross section                 | +15%/-11% |
| Higgs boson $p_T$ modeling                | ±1%       |
| Luminosity                                | ±3.9%     |
| Mass resolution                           |           |
| Calorimeter energy resolution             | ±12%      |
| Photon energy calibration                 | ±6%       |
| Effect of pileup on energy resolution     | ±3%       |
| Photon angular resolution                 | ±1%       |
| Migration                                 |           |
| Higgs boson $p_{\rm T}$ modeling          | ±8%       |
| Conversion reconstruction                 | ±4.5%     |

#### Main systematic uncertainties

Expected signal yield : ~ 20%

H→ yy mass resolution: ~ 14%

 $H \rightarrow \gamma \gamma p_T \text{ modeling}$  : ~ 8%

Background modeling : ±0.1-5.6 events



Excluded (95% CL):  $114 \le m_H \le 115 \ GeV$ ,  $135 \le m_H \le 136 \ GeV$ 



Maximum deviation from background-only expectation observed for m<sub>H</sub>~126 GeV:

- lue local p<sub>0</sub>-value: 0.27% or 2.8 $\sigma$
- □ expected from SM Higgs: ~ 1.4σ local
- □ global p<sub>0</sub>-value: includes probability for such an excess to appear anywhere in the investigated mass range (110-150 GeV) ("Look-Elsewhere-Effect"): ~7% (1.5σ)



- $\Box$   $\sigma \sim 2-5 \text{ fb}$
- ☐ However:
  - -- mass can be fully reconstructed  $\rightarrow$  events would cluster in a (narrow) peak
  - -- pure: S/B ~ 1
- $\Box$  4 leptons:  $p_T^{1,2,3,4} > 20,20,7,7 \text{ GeV}$ ;  $m_{12} = m_Z \pm 15 \text{ GeV}$ ;  $m_{34} > 15-60 \text{ GeV}$  (depending on  $m_H$ )
- Main backgrounds:
  - -- ZZ<sup>(\*)</sup> (irreducible)
  - --  $m_H < 2m_Z$ : Zbb, Z+jets, tt with two leptons from b/q-jets  $\rightarrow 1$
- → Suppressed with isolation and impact parameter cuts on two softest leptons
- $\square$  Signal acceptance x efficiency: ~ 15 % for m<sub>H</sub>~ 125 GeV

#### Crucial experimental aspects:

- ☐ High lepton reconstruction and identification efficiency down to lowest p<sub>T</sub>
- ☐ Good lepton energy/momentum resolution
- ☐ Good control of reducible backgrounds (Zbb, Z+jets, tt) in low-mass region:
  - $\rightarrow$  cannot rely on MC alone (theoretical uncertainties, b/q-jet  $\rightarrow$  1 modeling, ..)
  - → need to compare MC to data in background-enriched control regions (but: low statistics ..)
- $\rightarrow$  Conservative/stringent p<sub>T</sub> and m(II) cuts used at this stage

#### After all selections: kinematic cuts, isolation, impact parameter

Full mass range

Observed: 71 events:  $24 4\mu + 30 2e2\mu + 17 4e$ 

Expected from background: 62±9



m(4l) < 180 GeV

Observed: 8 events:  $3 4\mu + 3 2e2\mu + 2 4e$ 

Expected from background: 9.3±1.5



In the region  $m_H$  < 141 GeV (not already excluded at 95% C.L.) 3 events are observed: two 2e2 $\mu$  events (m=123.6 GeV, m=124.3 GeV) and one 4 $\mu$  event (m=124.6 GeV)

In the region 117<  $m_{41}$ <128 GeV (containing ~90% of a  $m_{H}$ =125 GeV signal):

- □ similar contributions expected from signal and background: ~ 1.5 events each
- $\Box$  5/B ~ 2 (4 $\mu$  ), ~ 1 (2e2 $\mu$ ), ~ 0.3 (4e)
- □ Background dominated by ZZ\* (4µ and 2e2µ), ZZ\* and Z+jets (4e)

#### Main systematic uncertainties

Higgs cross-section :  $\sim 15\%$ Electron efficiency :  $\sim 2-8\%$ ZZ\* background :  $\sim 15\%$ Zbb, +jets backgrounds :  $\sim 40\%$   $4\mu$  candidate with  $m_{4\mu}$ = 124.6 GeV

 $p_T (\mu^-, \mu^+, \mu^+, \mu^-) = 61.2, 33.1, 17.8, 11.6 GeV$  $m_{12} = 89.7 GeV, m_{34} = 24.6 GeV$ 



# $2e2\mu$ candidate with $m_{2e2\mu}$ = 124.3 GeV

 $p_{T}$  (e<sup>+</sup>, e<sup>-</sup>,  $\mu^{-}$ ,  $\mu^{+}$ )= 41.5, 26.5, 24.7, 18.3 GeV m (e<sup>+</sup>e<sup>-</sup>)= 76.8 GeV, m( $\mu^{+}\mu^{-}$ ) = 45.7 GeV



#### From fit of signal and background expectations to 41 mass spectrum



Excluded (95% CL): 135 < m $_H$  < 156 GeV and 181 < m $_H$  < 415 GeV (except 234-255 GeV) Expected (95% CL): 137 < m $_H$  < 158 GeV and 185 < m $_H$  < 400 GeV

## Putting all channels together $\rightarrow$ combined constraints

H→yy, H→ TT H→ WW<sup>(\*)</sup>→ IvIv H→ ZZ<sup>(\*)</sup> → 4I, H→ ZZ → IIvv H→ ZZ → IIqq, H→ WW→Ivqq W/ZH→ Ibb+X not included





Excluded at 95% CL

 $112.7 < m_H < 115.5 GeV$  $131 < m_H < 453 GeV$ , except 237-251 GeV

Expected if no signal

124.6-520 GeV

Excluded at 99% CL

 $133 < m_H < 230 GeV, 260 < m_H < 437 GeV$ 

#### Consistency of the data with the background-only expectation



Maximum deviation from background-only expectation observed for m<sub>H</sub>~126 GeV



Local po-value: 1.9 10-4

 $\rightarrow$  local significance of the excess: 3.6 $\sigma$ 

~  $2.8\sigma$  H $\rightarrow$   $\gamma\gamma$ ,  $2.1\sigma$  H $\rightarrow$  4I,  $1.4\sigma$  H $\rightarrow$  |v|v

Expected from SM Higgs: ~2.40 local (~1.40 per channel)

Global p<sub>0</sub>-value :  $0.6\% \rightarrow 2.5\sigma$  LEE over 110-146 GeV

Global  $p_0$ -value: 1.4%  $\rightarrow$  2.2 $\sigma$  LEE over 110-600 GeV

