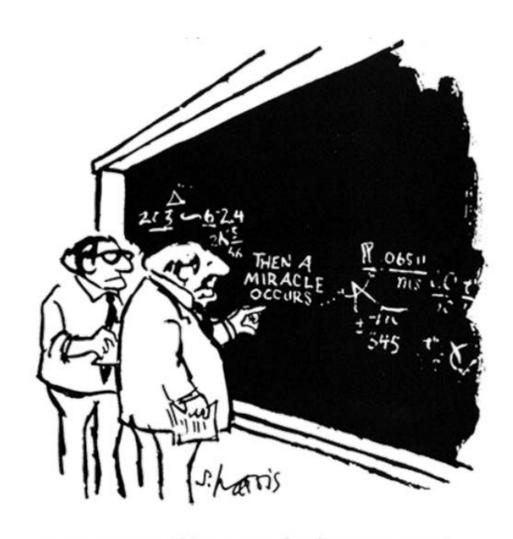

Physique des particules

MASTER 1 de physique

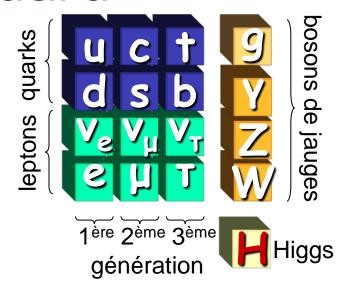

Université Joseph Fourier – Grenoble I

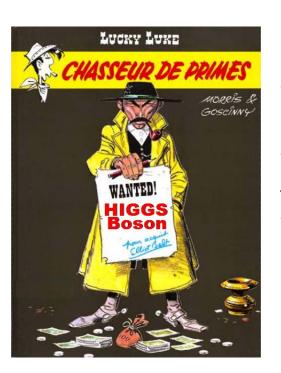
http://lpsc.in2p3.fr/atlas/bclement/M1Particules

[&]quot;I think you should be more explicit here in step two."

Au-delà du Modèle Standard

"I think you should be more explicit here in step two."


Le Modèle Standard


- Théorie quantique des champs (relativistes)
- Invariance de jauge du lagrangien:

 $SU(3)_C x SU(2)_L x U(1)_Y$

- Bosons W, Z massifs : brisure spontanée de la symétrie SU(2)_LxU(1)_Y → U(1)_{EM} Mécanisme de HIGGS

- Couplage Higgs/fermions : fermions massifs

Etat des lieux

Tout les fermions et les vecteurs ont été observés :

W/Z: 1983, top: 1995, v_{τ} : 2001

Tests de précision des secteurs électrofaible et fort: LEP, HERA, PEP (BaBar), KEK (Belle), TeVatron

En cours : LHC

Etude du boson de Higgs Propriétés du quark top Améliorer les mesures EW : m_W QCD à haute et basse énergie Physique des saveurs lourdes (b,c)

19 (24) Paramètres libres

Paramètre libre : dont la valeur n'est pas prédite par le modèle uniquement accessible par la mesure !!!

Théories de jauge:

Les couplages ne sont pas fixés par la théorie : 3 interactions

```
\alpha_{Strong}, \alpha_{EM}, \alpha_{Weak}
```

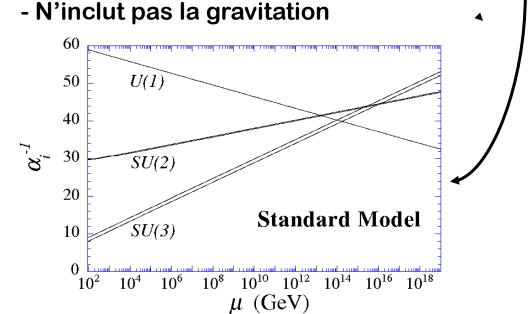
Masses des fermions:

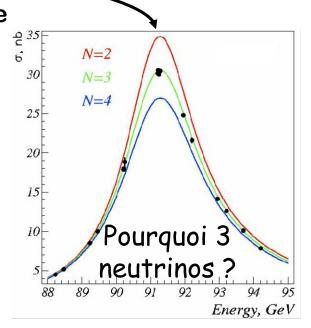
Couplages (de Yukawa) au champ de Higgs : 9(+3) fermions massifs m_u , m_d , m_s , m_c , m_b , m_t , m_e , m_μ , m_τ , $(m_{\nu e}$, $m_{\nu \mu}$, $m_{\nu \tau}$)

Masses des bosons faible et des fermions :

Mécanisme de Higgs : 2 paramètres libres dans le potentiel de Higgs | la masse m_H et l'autocouplage λ

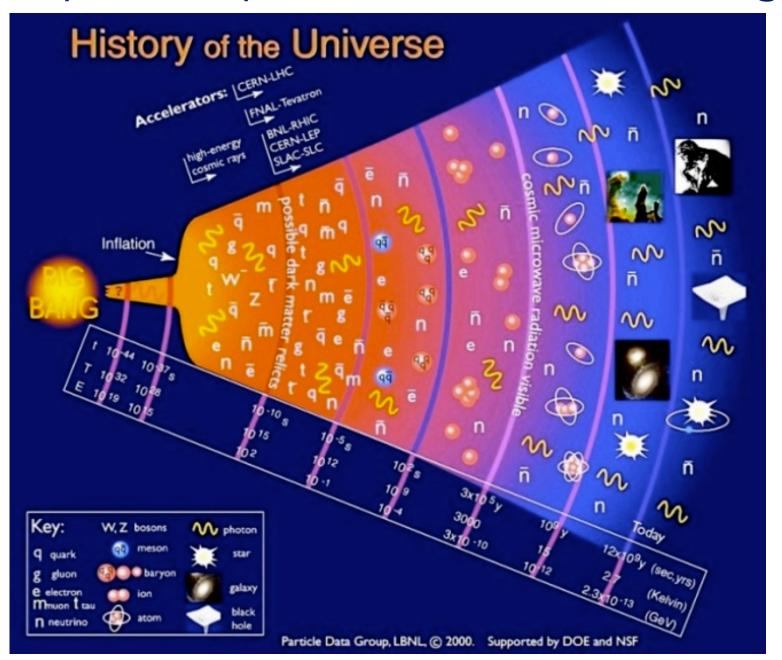
Mélanges de saveurs : matices CKM (3 angles +1 phase) et PMNS (3 angles +1 phase)


Violation de CP par l'interaction forte : 1 phase (=0 ?)

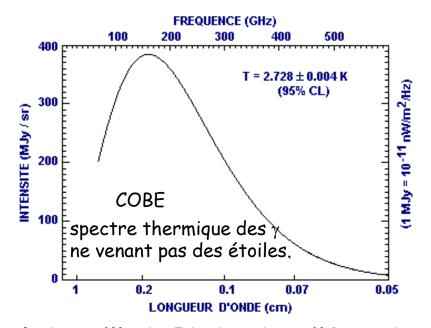

Les limitations

- 19 paramètres libres (masses, couplages, mélanges) : TROP
 - -> masses non prédites : couplages de Yukawa (higgs/fermion)

arbitraires

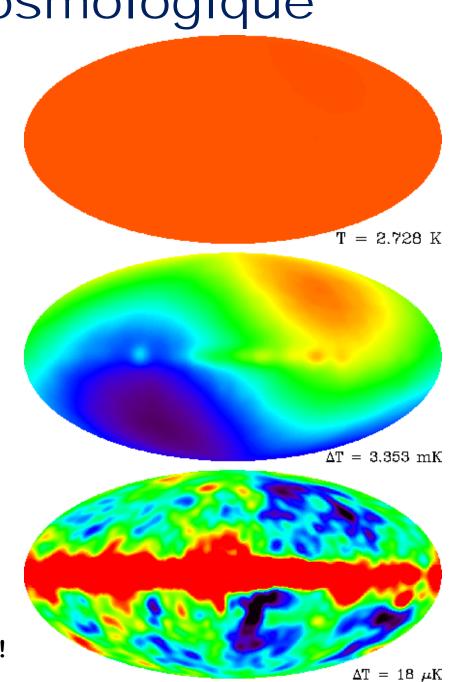

- Pas de masses de neutrinos
 - -> n'explique pas les oscillations
- Divergences quadratiques des corrections radiatives à la masse du boson de Higgs : problème de hiérarchie
 - -> ajustement fin des paramètres pour l'éviter
- Pas d'explications du nombre de familles
- Pas d'unification des couplages à haute énergie

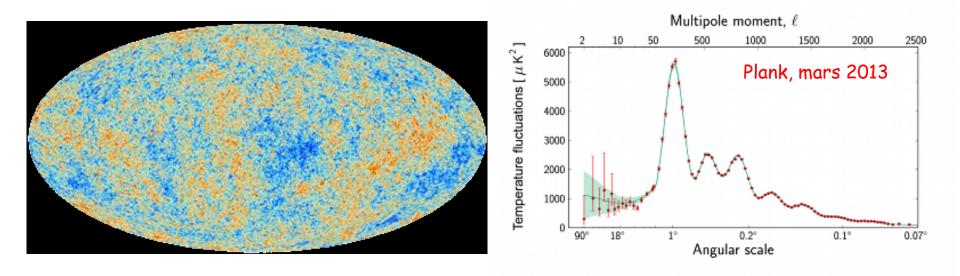
Modèle effectif, valable jusqu'à l'échelle du TeV


Physique des particules et Cosmologie

Fond diffus cosmologique

Photons libérés lors du découplage Plasma->Atomes


Photographie de l'univers primordial


Aujourd'hui : Diminution d'énergie due à l'expansion de l'univers

Spectre de corps noir à 2.7K

Isotropie du rayonnent : équilibre thermique au moment du découplage... entre régions de l'univers non causales !!!

Fond diffus cosmologique: Zoom

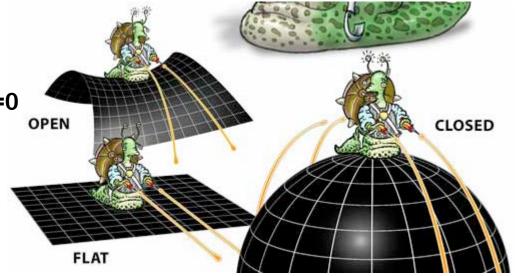
- → il existe des fluctuations de densité de l'ordre de 10-5, d'une taille de l'ordre de 100 Mpc (1 pc = 3·10¹⁶ m, distance typique entre deux galaxies ~ 6 Mpc, amas de galaxie mesure ~ 50 Mpc).
- → Ces anisotropie sont les graine de la formations des structures de l'univers
- → l'Univers primordial (379 000 ans) n'est déjà plus homogène.
- → Etude des corrélation angulaires (spectre de puissance) permet de contraindre la plupart des paramètres cosmologiques.

Géométrie de l'univers

Métrique de Robertson et Walker :

$$ds^2 = dt^2 - R^2(t) \left(dr^2/(1 - k r^2) + r^2 (dq^2 + sin^2q df^2) \right)$$
 (avec c=1)

La géométrie et l'évolution de l'Univers sont décrites par deux paramètres :


la courbure k de l'espace-temps, prend les valeurs discrètes 0 (géométrie plate), -1 (Univers ouvert) ou +1 (Univers fermé).

le paramètre d'échelle $a(t) = R(t) / R_0$ paramétrise l'expansion de l'Univers, il est proportionnel aux distances intergalactiques (R_0 = maintenant).

On peut déterminer, en relativité générale une densité critique de matière dans l'univers telle que k=0 (univers plat) : ρ_c

La densité de matière dans l'univers est alors :

$$\Omega_{tot} = \rho/\rho_c$$

CMB et paramètres cosmologiques

WMAP Cosmological Parameters

Model: lcdm+sz+lens

Data: wmap7

	$10^2\Omega_bh^2$	$2.258^{+0.057}_{-0.056}$		$1-n_s$	0.037 ± 0.014
	$1 - n_s$	$0.0079 < 1 - n_s < 0.0642$ (9)	5% CL)	$A_{\mathrm{BAO}}(z=0.35)$	$0.463^{+0.021}_{-0.020}$
	C_{220}	5763^{+38}_{-40}		$d_A(z_{eq})$	$14281^{+158}_{-161} \mathrm{\ Mpc}$
	$d_A(z_*)$	$14116^{+160}_{-163} \mathrm{\ Mpc}$		$\Delta_{\mathcal{R}}^2$	$(2.43 \pm 0.11) \times 10^{-9}$
	h	0.710 ± 0.025		H_0	$71.0 \pm 2.5~\mathrm{km/s/Mpc}$
	$k_{ m eq}$	$0.00974^{+0.00041}_{-0.00040}$		$\ell_{\rm eq}$	137.5 ± 4.3
	ℓ_{\star}	302.44 ± 0.80		n_s	0.963 ± 0.014
	Ω_b	0.0449 ± 0.0028		$\Omega_b h^2$	$0.02258^{+0.00057}_{-0.00056}$
	Ω_c	0.222 ± 0.026		$\Omega_c h^2$	0.1109 ± 0.0056
	Ω_{Λ}	0.734 ± 0.029		Ω_m	0.266 ± 0.029
	$\Omega_m h^2$	$0.1334^{+0.0056}_{-0.0055}$		$r_{ m hor}(z_{ m dec})$	$285.5 \pm 3.0 \; \mathrm{Mpc}$
	$r_s(z_d)$	$153.2\pm1.7~\mathrm{Mpc}$		$r_s(z_d)/D_v(z=0.2)$	$0.1922^{+0.0072}_{-0.0073}$
$r_s(z_d)/D_v(z=0.35)$		$0.1153^{+0.0038}_{-0.0039}$		$r_s(z_*)$	$146.6^{+1.5}_{-1.6}~\mathrm{Mpc}$
	R	1.719 ± 0.019		σ_8	0.801 ± 0.030
	$A_{ m SZ}$	$0.97^{+0.68}_{-0.97}$		$t_{\scriptscriptstyle m O}$	$13.75 \pm 0.13~\mathrm{Gyr}$
	au	0.088 ± 0.015		θ_*	0.010388 ± 0.000027
	$ heta_*$	0.5952 ± 0.0016 $^{\circ}$		t_*	$379164^{+5187}_{-5243} \mathrm{\ yr}$
	$z_{ m dec}$	1088.2 ± 1.2		z_d	1020.3 ± 1.4
	$z_{\rm eq}$	3196^{+134}_{-133}		$z_{ m reion}$	10.5 ± 1.2
	z_*	$1090.79^{+0.94}_{-0.92}$			
				·	

La matière dans l'univers

W_{lumineuse} = 0.003 : Densité estimée des objets visibles (étoiles,...)

W_{matière} = 0.27 : Densité de la matières (=fermions)

W_{barvon} = 0.05 : Densité des baryons (neutrons, protons)

W_{total} = 1 : Densité totale

⇒ W_{baryon} >> W_{lumineux}

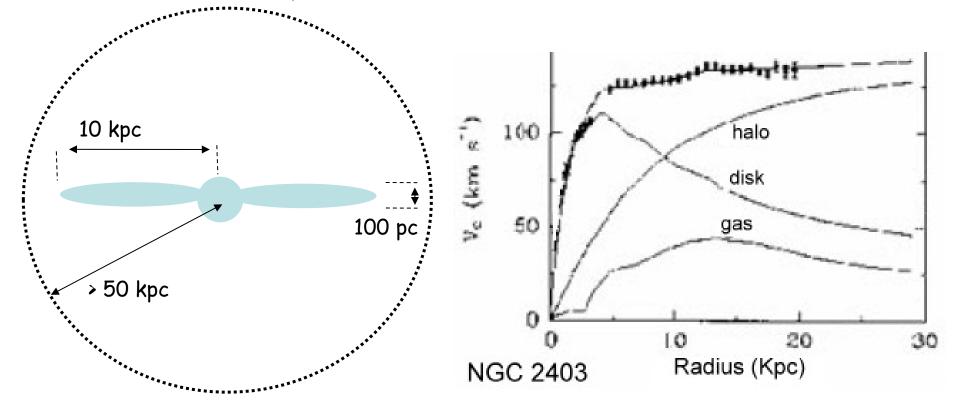
Donc il y a des sources inconnues de baryons non lumineux dans l'Univers.

il y a une source inconnue de matière non baryonique dans l'Univers : 99 % de la matière dans l'Univers est non visible, de nature inconnue.

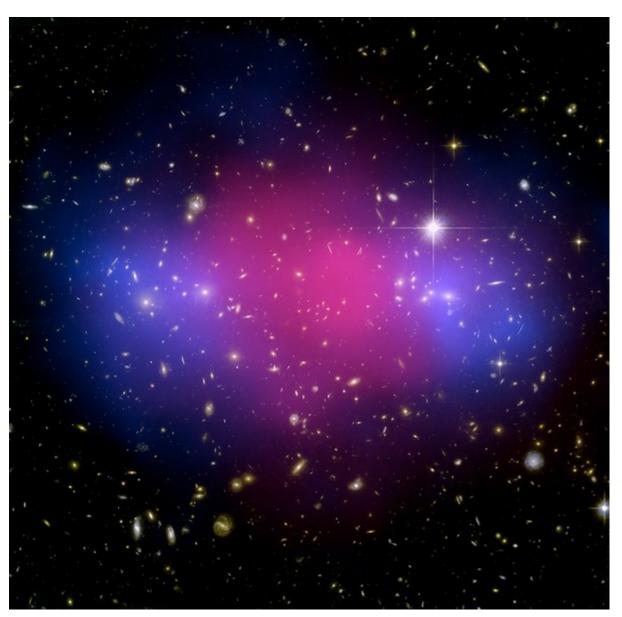
$$\Rightarrow$$
 W_{total} – W_{matière} = 0.68

Les ¾ de l'univers ne sont pas composé de matière : "Energie noire" (ie personne ne sait ce que c'est)

La matière dans l'univers



Courbes de rotation d'un galaxie spirale : vitesse de rotation des étoiles en fonction de la distance au centre


-> Halo de matière noire autour des galaxies

Composition: WIMP (Weakely interacting massive particles)

Tentative de détection directe et indirecte de ces particules

La matière dans l'univers

Collision d'amas de galaxies

Matière visible : Galaxies (Hubble)

Halo gazeux : zones bleue (froid) et rose (chaud) (CHANDRA)

Déformation gravitationelle des images de Hubble indique la présence de halo de matière sombre

La supersymétrie

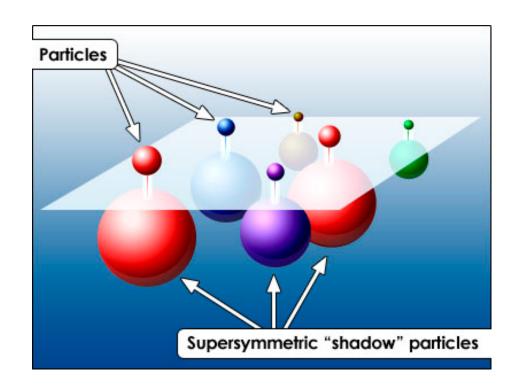
Nouveau type de symétrie (≠symétries de jauge) : Symétrie Boson ↔ Fermion

Chaque particule du MS a un partenaire supersymétrique :

Quarks, leptons : fermions ($s=\frac{1}{2}$) \rightarrow Squarks, Slepton : boson (s=0)

Bosons de Jauges : bosons (s=1) → **Jauginos** : fermions (s=½)

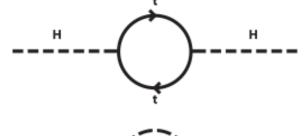
Bosons de Higgs: bosons (s=0) \rightarrow **Higgsinos**: fermions (s= $\frac{1}{2}$)


Secteur de Higgs:

5 états physiques au lieu de 1 h⁰, H⁰, A⁰, H⁺, H⁻

Mélanges Higgsinos Jauginos EW (Photino, Wino, Zino)

 \rightarrow 4 charginos $\tilde{\chi}^{\pm}_{1,2}$


 \rightarrow 4 neutralinos : $\mathring{\chi}^0_{1,2,3,4}$

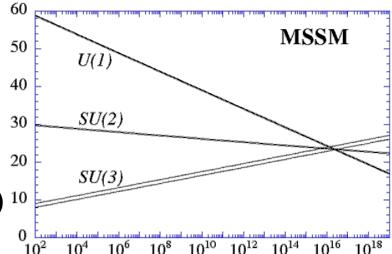
La supersymétrie

Suppression de divergence quadratique

Les boucle de bosons compensent les boucles de fermions

Unification des couplages à haute énergie

Origine commune des couplages



Symétrie brisée

Aucune particules SUSY observées :

 $m_{\text{SUSY}} \neq m_{\text{MS}}$

Symétrie brisée → Mécanisme de brisure ?

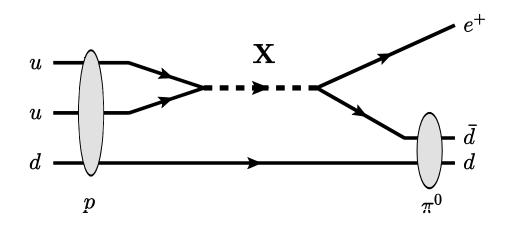
Candidat matière noire

Selon les modèles la particule SUSY la plus ²⁰ légère est stable (et électriquement neutre) ¹⁰

+de 120 paramètres

réduits à 5 ou 6 selon le mécanisme de brisure.

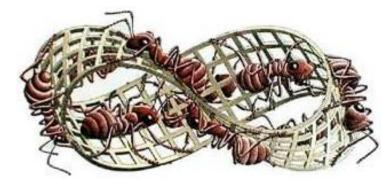
Grande unification

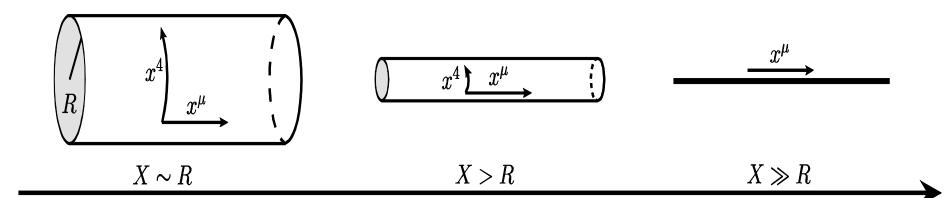

Ajout de symétries de jauge plus large, contenant le MS

 $U(3)_C x S U(2)_L x U(1)_Y \subset G_{GUT}$

- 1 seule constante de couplage
- couplages quarks/fermions : proton instable -> bosons très massif pour rendre la désintégration du proton très rare

Symétries brisée

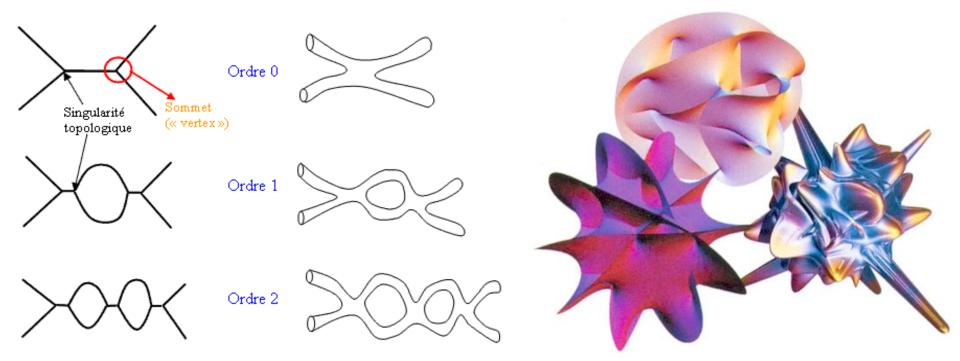

- bosons de type « Higgs » supplémentaires
- bosons de jauges massifs : Z', W'
- bosons de jauge d'un nouveau type : LeptoQuark : couplent les quarks aux leptons.



Dimensions supplémentaires

Ajout de dimensions d'espaces

- dimensions « compactifiés » : pas d'effets macroscopiques
- seules certaines particule se propagent dans ces dimensions (par exemple seul le graviton : « dilue » la constante de gravitation)


Encore au-delà...

Beaucoup de modèles théoriques combinent ces différentes solutions:

- Supersymétrie
- Grande unification
- Dimensions supplémentaires

Un exemple particulier : Théorie des supercordes

- particule ponctuelle -> corde (ouverte ou fermée)
- 10 dimensions d'espace + 1 de temps :
 - → comment compactifier 10->4 ? -> Variétés de Calabi-Yau
 - → aucune prédiction phénoménologique : joujou mathématique

